Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects


Here, we review present understanding of sources and trends in human exposure to poly- and perfluoroalkyl substances (PFASs) and epidemiologic evidence for impacts on cancer, immune function, metabolic outcomes, and neurodevelopment. More than 4000 PFASs have been manufactured by humans and hundreds have been detected in environmental samples. Direct exposures due to use in products can be quickly phased out by shifts in chemical production but exposures driven by PFAS accumulation in the ocean and marine food chains and contamination of groundwater persist over long timescales. Serum concentrations of legacy PFASs in humans are declining globally but total exposures to newer PFASs and precursor compounds have not been well characterized. Human exposures to legacy PFASs from seafood and drinking water are stable or increasing in many regions, suggesting observed declines reflect phase-outs in legacy PFAS use in consumer products. Many regions globally are continuing to discover PFAS contaminated sites from aqueous film forming foam (AFFF) use, particularly next to airports and military bases. Exposures from food packaging and indoor environments are uncertain due to a rapidly changing chemical landscape where legacy PFASs have been replaced by diverse precursors and custom molecules that are difficult to detect. Multiple studies find significant associations between PFAS exposure and adverse immune outcomes in children. Dyslipidemia is the strongest metabolic outcome associated with PFAS exposure. Evidence for cancer is limited to manufacturing locations with extremely high exposures and insufficient data are available to characterize impacts of PFAS exposures on neurodevelopment. Preliminary evidence suggests significant health effects associated with exposures to emerging PFASs. Lessons learned from legacy PFASs indicate that limited data should not be used as a justification to delay risk mitigation actions for replacement PFASs.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    OECD (The Organisation for Economic Co-operation and Development). Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs): summary report on updating the OECD 2007 list of per and polyfluoroalkyl substances (PFASs); 2018.

  2. 2.

    Vecitis CD, Wang Y, Cheng J, Park H, Mader BT, Hoffmann MR. Sonochemical degradation of perfluorooctane sulfonate in aqueous film-forming foams. Environ Sci Technol. 2010;44:432–8.

    CAS  PubMed  Google Scholar 

  3. 3.

    Wang Z, DeWitt JC, Higgins CP, Cousins ITA. Never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol. 2017;51:2508–18.

    CAS  PubMed  Google Scholar 

  4. 4.

    Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, et al. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3:344–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Banzhaf S, Filipovic M, Lewis J, Sparrenbom C, Barthel R. A review of contamination of surface-, ground, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). Ambio. 2017;46:335–46.

    CAS  PubMed  Google Scholar 

  6. 6.

    Wang Z, Cousins IT, Scheringer M, Hungerbuehler K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing challenges and possible solutions. Environ Int. 2015;75:172–9.

    CAS  PubMed  Google Scholar 

  7. 7.

    Armitage J, Cousins IT, Buck RC, Prevedouros K, Russell MH, MacLeod M, et al. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ Sci Technol. 2006;40:6969–75.

    CAS  PubMed  Google Scholar 

  8. 8.

    Giesy J, Kannan K. Global distribution of perfluoroctane sulfonate in wildlife. Environ Sci Technol. 2001;35:1339–42.

    CAS  PubMed  Google Scholar 

  9. 9.

    Tomy G, Budakowski W, Halldorson T, Helm P, Stern G, Friesent K, et al. Fluorinated organic compounds in an eastern Arctic marine food web. Environ Sci Technol. 2004;38:6475–81.

    CAS  PubMed  Google Scholar 

  10. 10.

    Lewis RC, Johns LE, Meeker JD. Serum biomarkers of exposure to perfluoroalkyl substances in relation to serum testosterone and measures of thyroid function among adults and adolescents from NHANES 2011–2012. Int J Environ Res Public Health. 2015;12:6098–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    CDC. Fourth national report on human exposure to environmental chemicals. Atlanta: Centers for Disease Control and Prevention; 2015.

  12. 12.

    Calafat AM, Wong L-Y, Kuklenyik Z, Reidy JA, Needham LL. Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect. 2007;115:1696–702.

    Google Scholar 

  13. 13.

    Land M, de Wit CA, Cousins IT, Herzke D, Johansson J, Martin JW. What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review protocol. Environ Evid. 2015;4:3

    Google Scholar 

  14. 14.

    Gomis MI, Vestergren R, MacLeod M, Mueller JF, Cousins IT. Historical human exposure to perfluoroalkyl acids in the United States and Australia reconstructed from biomonitoring data using population-based pharmacokinetic modelling. Environ Int. 2017;108:92–102.

    CAS  PubMed  Google Scholar 

  15. 15.

    Okada E, Kashino I, Matsuura H, Sasaki S, Miyashita C, Yamamoto J, et al. Temporal trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan, 2003–2011. Environ Int. 2013;60:89–96.

    CAS  PubMed  Google Scholar 

  16. 16.

    Nøst TH, Vestergren R, Berg V, Nieboer E, Odland JØ, Sandanger TM. Repeated measurements of per-and polyfluoroalkyl substances (PFASs) from 1979 to 2007 in males from Northern Norway: assessing time trends, compound correlations and relations to age/birth cohort. Environ Int. 2014;67:43–53.

    PubMed  Google Scholar 

  17. 17.

    Ritscher A, Wang Z, Scheringer M, Boucher JM, Ahrens L, Berger U et al. Zürich Statement on future actions on per- and polyfluoroalkyl substances (PFASs). Environ Heath Perspect. 2018.

    PubMed Central  Google Scholar 

  18. 18.

    Gomis MI, Vestergren R, Borg D, Cousins IT. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int. 2018;113:1–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7:513–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Butt CM, Muir DCG, Mabury SA. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review. Environ Toxicol Chem. 2014;33:243–67.

    CAS  PubMed  Google Scholar 

  21. 21.

    Young C, Mabury S. Atmospheric perfluorinated acid precursors: chemistry, occurrence, and impacts. Rev Environ Contam Toxicol. 2010;208:1–109.

    CAS  PubMed  Google Scholar 

  22. 22.

    Pickard H, Criscitiello A, Spencer C, Sharp M, Muir D, De Silva A, et al. Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: a multi-decadal temporal record. Atmos Chem Phys. 2018;18:5045–58.

    CAS  Google Scholar 

  23. 23.

    Haug LS, Huber S, Becher G, Thomsen C. Characterisation of human exposure pathways to perfluorinated compounds—comparing exposure estimates with biomarkers of exposure. Environ Int. 2011;37:687–93.

    CAS  PubMed  Google Scholar 

  24. 24.

    Vestergren R, Cousins IT, Trudel D, Wormuth M, Scheringer M. Estimating the contribution of precursor compounds in consumer exposure to PFOS and PFOA. Chemosphere. 2008;73:1617–24.

    CAS  PubMed  Google Scholar 

  25. 25.

    Trudel D, Horowitz L, Wormuth M, Scheringer M, Cousins IT, Hungerbühler K. Estimating consumer exposure to PFOS and PFOA. Risk Anal. 2008;28:251–69.

    PubMed  Google Scholar 

  26. 26.

    3M Company. Fluorochemical use, distribution and release overview. US EPA Public Docket AR226-0550. St Paul, MN: 3M Company; 1999.

  27. 27.

    Kissa, E. Fluorinated Surfactants and Repellents, 2nd ed.; Vol. 97 in Surfactant Science Series; Marcel Dekker: New York, 2001.

  28. 28.

    Dassuncao C, Hu XC, Zhang X, Bossi R, Dam M, Mikkelsen B, et al. Temporal shifts in poly-and perfluoroalkyl substances (PFASs) in North Atlantic pilot whales indicate large contribution of atmospheric precursors. Environ Sci Technol. 2017;51:4512–21.

    CAS  PubMed  Google Scholar 

  29. 29.

    Zhang X, Zhang Y, Dassuncao C, Lohmann R, Sunderland EM. North Atlantic deep water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges. Glob Biogeochem Cycles. 2017;31:1332–43.

    CAS  Google Scholar 

  30. 30.

    Dassuncao C, Hu XC, Nielsen F, Weihe P, Grandjean P, Sunderland EM. Shifting global exposures to poly- and perfluoroalkyl substances (PFASs) evident in longitudinal birth cohorts from a seafood-consuming population. Environ Sci Technol. 2018.

    CAS  Google Scholar 

  31. 31.

    Favreau P, Poncioni-Rothlisberger C, Place BJ, Bouchex-Bellomie H, Weber A, Tremp J, et al. Multianalyte profiling of per- and polyfluoroalkyl substances (PFASs) in liquid commercial products. Chemosphere. 2017;171:491–501.

    CAS  PubMed  Google Scholar 

  32. 32.

    Robel AE, Marshall K, Dickinson M, Lunderberg D, Butt C, Peaslee G, et al. Closing the mass balance on fluorine on papers and textiles. Environ Sci Technol. 2017;51:9022–32.

    CAS  PubMed  Google Scholar 

  33. 33.

    Herzke D, Olsson E, Posner S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway—a pilot study. Chemosphere. 2012;88:980–7.

    CAS  PubMed  Google Scholar 

  34. 34.

    Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, et al. Fluorinated compounds in U.S. fast food packaging. Environ Sci Technol Lett. 2017;4:105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Guo Z, Liu X, Krebs AK. Perfluorocarboxylic acid content in 116 articles of commerce: EPA?600/R-09/-33. Research Triangle Park, NC: Environmental Protections Agency; 2009.

  36. 36.

    Yuan G, Peng H, Huang C, Hu J. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure. Environ Sci Technol. 2016;50:942–50.

    CAS  PubMed  Google Scholar 

  37. 37.

    Zabaleta I, Bizkarguenaga E, Bilbao D, Etxebarria N, Prieto A, Zuloaga O. Fast and simple determination of perfluorinated compounds and their potential precursors in different packaging materials. Talanta. 2016;152:353–63.

    CAS  PubMed  Google Scholar 

  38. 38.

    Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ Sci Pollut Res. 2015;22:14546–59.

    CAS  Google Scholar 

  39. 39.

    Ye F, Zushi Y, Masunaga S. Survey of perfluoroalkyl acids (PFAAs) and their precursors present in Japanese consumer products. Chemosphere. 2015;127:262–8.

    CAS  PubMed  Google Scholar 

  40. 40.

    Bečanová J, Melymuk L, Vojta Š, Komprdová K, Klánová J. Screening for perfluoroalkyl acids in consumer products, building materials and wastes. Chemosphere. 2016;164:322–9.

    PubMed  Google Scholar 

  41. 41.

    Begley TH, White K, Honigfort P, Twaroski ML, Neches R, Walker RA. Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam. 2005;22:1023–31.

    CAS  PubMed  Google Scholar 

  42. 42.

    Begley TH, Hsu W, Noonan G, Diachenko G. Migration of fluorochemical paper additives from food-contact paper into foods and food simulants. Food Addit Contam: Part A. 2008;25:384–90.

    CAS  Google Scholar 

  43. 43.

    Harrad S, de Wit C, Abdallah M, Bergh C, Bjorklund J, Covaci A, et al. Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people? Environ Sci Technol. 2010;44:3221–31.

    CAS  PubMed  Google Scholar 

  44. 44.

    Fromme H, Dreyer A, Dietrich S, Fembacher L, Lahrz T, Völkel W. Neutral polyfluorinated compounds in indoor air in Germany—the LUPE 4 study. Chemosphere. 2015;139:572–8.

    CAS  PubMed  Google Scholar 

  45. 45.

    US EPA. Lifetime health advisories and health effects support documents for perfluorooctanoic acid and perfluorooctane sulfonate. Washington, DC: Environmental Protection Agency; 2016. [Accessed 31 August 2018].

  46. 46.

    ATSDR. Toxicological profile for perfluoroalkyls: draft for public comment, June 2018. Atlanta, GA: Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services; 2018. Available: [Accessed 31 August 2018].

  47. 47.

    Health Canada. Health Canada’s drinking water screening values for perfluoroalkylated substances (PFASs). Ottawa, ON; February 2016. Available: [Accessed 20 August 2018].

  48. 48.

    Grandjean P, Budtz-Jorgensen E. Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children. Environ Health. 2013;12:35.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Emmett EA, Shofer FS, Zhang H, Freeman D, Desai C, Shaw LM. Community exposure to perfluorooctanoate: relationships between serum concentrations and exposure sources. J Occup Environ Med/Am Coll Occup Environ Med. 2006;48:759–70.

    CAS  Google Scholar 

  50. 50.

    Post GB, Louis JB, Cooper KR, Boros-Russo BJ, Lippincott RL. Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems. Environ Sci Technol. 2009;43:4547–54.

    CAS  PubMed  Google Scholar 

  51. 51.

    US EPA. The Third Unregulated Contaminant Monitoring Rule (UCMR 3): Data Summary, April 2016. Office of Water, EPA 815-S-16-002; 2016.

  52. 52.

    Sun M, Arevalo E, Strynar M, Linstrom A, Richardson M, Kearns B, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River watershed of North Carolina. Environ Sci Technol Lett. 2016;3:415–9.

    CAS  Google Scholar 

  53. 53.

    Lindh CH, Rylander L, Toft G, Axmon A, Rignell-Hydbom A, Giwercman A, et al. Blood serum concentrations of perfluorinated compounds in men from Greenlandic Inuit and European populations. Chemosphere. 2012;88:1269–75.

    CAS  PubMed  Google Scholar 

  54. 54.

    Weihe P, Kato K, Calafat AM, Nielsen F, Wanigatunga A, Needham L, et al. Serum concentrations of polyfluoroalkyl compounds in Faroese whale meat consumers. Environ Sci Technol. 2008;42:6291–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Zhou Z, Shi Y, Vestergren R, Wang T, Liang Y, Cai Y. Highly elevated serum concentrations of perflouroalkyl substances in fishery employees from Tangxun Lake, China. Environ Sci Technol. 2014;48:3864–74.

    CAS  PubMed  Google Scholar 

  56. 56.

    Berger U, Glynn A, Holmstrom K, Berglund M, Ankarberg E, Tomkvist A. Fish consumption as a source of human exposure to perfluorinated alkyl substances in Sweden—analysis of edible fish from Lake Vattern and the Baltic Sea. Chemosphere. 2009;76:799–804.

    CAS  PubMed  Google Scholar 

  57. 57.

    European Food Safety Authority. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food (draft). EFSA J. 2018;16:1–293.

  58. 58.

    Stahl L, Snyder B, Olsen A, Kinkaid T, Wathen J, McCarty H. Perfluorinated compounds in fish from U.S. urban rivers and the Great Lakes. Sci Total Environ. 2014;499:185–95.

    CAS  PubMed  Google Scholar 

  59. 59.

    Del Gobbo L, Tittlemier S, Diamond M, Pepper K, Tague B, Yeudall F, et al. Cooking decreases observed perfluorinated compound concentrations in fish. J Agric Food Chem. 2008;56:7551–9.

    PubMed  Google Scholar 

  60. 60.

    Kelly B, Ikonomou M, Blair J, Surridge B, Hoover D, Grace R, et al. Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnification and wildlife exposure. Environ Sci Technol. 2009;43:4037–43.

    CAS  PubMed  Google Scholar 

  61. 61.

    Condor J, Hoke R, de Wolf W, Russell MH, Buck RC. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophiic compounds. Environ Sci Technol. 2008;42:995–1003.

    Google Scholar 

  62. 62.

    Christensen K, Raymond M, Blackowicz M, Liu Y-J, Thompson B, Anderson H, et al. Perfluoroalkyl substances and fish consumption. Environ Res. 2017;154:145–51.

    CAS  PubMed  Google Scholar 

  63. 63.

    Hu XC, Dassuncao C, Zhang X, Grandjean P, Weihe P, Webster G, et al. Can profiles of poly- and perfluoroalkyl substances (PFASs) in human serum provide information on major exposure sources. Environ Health. 2018;17.

  64. 64.

    Buser A, Morf L. Substance flow analysis of PFOS and PFOA. In: Perfluorinated surfactants perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) in Switzerland. Bern, Switzerland: Federal Office for the Environment (FOEN); 2009.

  65. 65.

    Earnshaw MR, Paul AG, Loos R, Tavazzi S, Paracchini B, Scheringer M, et al. Comparing measured and modelled PFOS concentrations in a UK freshwater catchment and estimating emission rates. Environ Int. 2014;70:25–31.

    CAS  PubMed  Google Scholar 

  66. 66.

    Sepulvado JG, Blaine AC, Hundal LS, Higgins CP. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environ Sci Technol. 2011;45:8106–12.

    CAS  PubMed  Google Scholar 

  67. 67.

    Washington JW, Yoo H, Ellington JJ, Jenkins TM, Libelo EL. Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA. Environ Sci Technol. 2010;44:8390–6.

    CAS  PubMed  Google Scholar 

  68. 68.

    Venkatesan AK, Halden RU. National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey. J Hazard Mater. 2013;252–253:413–8.

    PubMed  Google Scholar 

  69. 69.

    Navarro I, de la Torre A, Sanz P, Pro J, Carbonell G, de los Ángeles Martínez M. Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils. Environ Res. 2016;149:32–9.

    CAS  PubMed  Google Scholar 

  70. 70.

    Navarro I, de la Torre A, Sanz P, Porcel MÁ, Pro J, Carbonell G, et al. Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environ Res. 2017;152:199–206.

    CAS  PubMed  Google Scholar 

  71. 71.

    Wen B, Wu Y, Zhang H, Liu Y, Hu X, Huang H, et al. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environ Pollut. 2016;216:682–8.

    CAS  PubMed  Google Scholar 

  72. 72.

    Domingo JL, Nadal M. Per- and polyfluoroalkyl substances (PFASs) in Food and human dietary intake: a review of the recent scientific literature. J Agric Food Chem. 2017;56:533–43.

    Google Scholar 

  73. 73.

    Hoffman K, Webster T, Bartell S, Weisskopf M, Fletcher T, Vieira V. Private drinking water wells as a source of exposure to perfluorooctanoic acid (PFOA) in communities surrounding a fluoropolymer production facility. Environ Health Perspect. 2010;119:92–7.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Vestergren R, Cousins IT. Tracking the pathways of human exposure to perfluorocarboxylates. Environ Sci Technol. 2009;43:5565–75.

    CAS  PubMed  Google Scholar 

  75. 75.

    Egeghy PP, Lorber M. An assessment of the exposure of Americans to perfluorooctane sulfonate: a comparison of estimated intake with values inferred from NHANES data. J Expo Sci Environ Epidemiol. 2011;21:150–68.

    CAS  PubMed  Google Scholar 

  76. 76.

    Lorber M, Egeghy PP. Simple intake and pharmacokinetic modeling to characterize exposure of Americans to perfluoroctanoic acid, PFOA. Environ Sci Technol. 2011;45:8006–14.

    CAS  PubMed  Google Scholar 

  77. 77.

    Johnson GW, Ehrlich R, Full W, Ramos S. Principal components analysis and receptor models in environmental forensics. San Diego: Academic Press; 2002.

    Google Scholar 

  78. 78.

    Wang Z, Stout SA, Fingas M. Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environ Forensics. 2006;7:105–46.

    CAS  Google Scholar 

  79. 79.

    Benskin JP, Phillips V, St Louis VL, Martin JW. Source elucidation of perfluorinated carboxylic acids in remote alpine lake sediment cores. Environ Sci Technol. 2011;45:7188–94.

    CAS  PubMed  Google Scholar 

  80. 80.

    D’eon JC, Mabury SA. Exploring indirect sources of human exposure to perfluoroalkyl carboxylates (PFCAs): evaluating uptake, elimination, and biotransformation of polyfluoroalkyl phosphate esters (PAPs) in the rat. Environ Health Perspect. 2011;119:344.

    PubMed  Google Scholar 

  81. 81.

    Zhang X, Lohmann R, Dassuncao C, Hu XC, Weber AK, Vecitis CD, et al. Source attribution of poly- and perfluoroalkyl substances (PFASs) in surface waters from Rhode Island and the New York Metropolitan Area. Environ Sci Technol Lett. 2016;3:316–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Tittlemier SA, Pepper K, Seymour C, Moisey J, Bronson R, Cao X-L, et al. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J Agric Food Chem. 2007;55:3203–10.

    CAS  PubMed  Google Scholar 

  83. 83.

    Li M, von Stackelberg K, Rheinberger CM, Hammitt JK, Krabbenhoft DP, Yin R, et al. Insights from mercury stable isotopes into factors affecting the internal body burden of methylmercury in frequent fish consumers. Elem Sci Anth. 2016;4:000103.

    Google Scholar 

  84. 84.

    Thurston GD, Spengler JD. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ. 1967;1985:9–25.

    Google Scholar 

  85. 85.

    Yeung LW, Miyake Y, Taniyasu S, Wang Y, Yu H, So MK, et al. Perfluorinated compounds and total and extractable organic fluorine in human blood samples from China. Environ Sci Technol. 2008;42:8140–5.

    CAS  PubMed  Google Scholar 

  86. 86.

    Miyake Y, Yamashita N, So MK, Rostkowski P, Taniyasu S, Lam PK, et al. Trace analysis of total fluorine in human blood using combustion ion chromatography for fluorine: a mass balance approach for the determination of known and unknown organofluorine compounds. J Chromatogr A. 2007;1154:214–21.

    CAS  PubMed  Google Scholar 

  87. 87.

    Taves DR. Evidence that there are two forms of fluoride in human serum. Nature. 1968;217:1050.

    CAS  PubMed  Google Scholar 

  88. 88.

    Hansen KJ, Clemen LA, Ellefson ME, Johnson HO. Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol. 2001;35:766–70.

    CAS  PubMed  Google Scholar 

  89. 89.

    Grandjean P. Delayed discovery, dissemination, and decisions on intervention in environmental health: a case study on immunotoxicity of perfluorinated alkylated substances. Environ Health. 2018;17.

  90. 90.

    Harris MH, Rifas-Shiman SL, Calafat AM, Ye X, Mora AM, Webster TF, et al. Predictors of per- and polyfluoroalkyl substance (PFAS) plasma concentrations in 6–10 year old American children. Environ Sci Technol. 2017;51:5193–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Hurley S, Goldberg D, Wang M, Park JS, Petreas M, Bernstein L, et al. Time trends in per- and polyfluoroalkyl substances (PFASs) in California women: declining serum levels, 2011–5. Environ Sci Technol. 2018;52:277–87.

    CAS  PubMed  Google Scholar 

  92. 92.

    Glynn A, Benskin J, Lignell S, Gyllenhammar I, Aune M, Cantillana T, et al. Temporal trends of perfluoroalkyl substances in pooled serum samples from first-time mothers in Uppsala 1997–2014. Report to the Swedish EPA; 2015.

  93. 93.

    Eriksson U, Mueller JF, Toms LL, Hobson P, Karrman A. Temporal trends of PFSAs, PFCAs and selected precursors in Australian serum from 2002 to 2013. Environ Pollut. 2017;220:168–77.

    CAS  PubMed  Google Scholar 

  94. 94.

    Haug LS, Thomsen C, Becher GB. Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples. Environ Sci Technol. 2009;43:2131–6.

    CAS  PubMed  Google Scholar 

  95. 95.

    Yeung LW, Miyake Y, Taniyasu S, Wang Y, Yu H, So MK, et al. Perfluorinated compounds and total and extractable organic fluorine in human blood samples from China. Environ Sci Technol. 2008;42:8140–5.

    CAS  PubMed  Google Scholar 

  96. 96.

    Mohsin M, Sarwar N, Ahmad S, Rasheed A, Ahmad F, Afzal A, et al. Maleic acid crosslinking of C-6 fluorocarbon as oil and water repellent finish on cellulosic fabrics. J Clean Prod. 2016;112:3525–30.

    CAS  Google Scholar 

  97. 97.

    Ritter SK. Fluorochemicals go short. Chem Eng News Arch. 2010;88:12–7.

    Google Scholar 

  98. 98.

    Bjerregaard-Olesen C, Bach CC, Long M, Ghisari M, Bossi R, Bech BH, et al. Time trends of perfluorinated alkyl acids in serum from Danish pregnant women 2008–2013. Environ Int. 2016;91:14–21.

    CAS  PubMed  Google Scholar 

  99. 99.

    Kato K, Wong L-Y, Jia LT, Kuklenyik Z, Calafat AM. Trends in exposure to polyfluoroalkyl chemicals in the US population: 1999–2008. Environ Sci Technol. 2011;45:8037–45.

    CAS  PubMed  Google Scholar 

  100. 100.

    Paul AG, Jones KC, Sweetman AJ. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol. 2009;43:386–92.

    CAS  PubMed  Google Scholar 

  101. 101.

    Griffith FD, Long JE. Animal toxicity studies with ammonium perfluorooctanoate. Am Ind Hyg Assoc J. 1980;41:576–83.

    CAS  PubMed  Google Scholar 

  102. 102.

    Ubel FA, Sorenson SD, Roach DE. Health status of plant workers exposed to fluorochemicals–a preliminary report. Am Ind Hyg Assoc J. 1980;41:584–9.

    CAS  PubMed  Google Scholar 

  103. 103.

    Goldenthal EI, Jessup DC, Geil RG, Mehring JS. 90-day subacute rhesus monkey toxicity study no. 137-092. Available on USEPA Public Docket AR-226-0137. Mattawan, MI: International Research and Development Corp.; 1978.

  104. 104.

    Goldenthal EI, Jessup DC, Geil RG, Mehring JS. 90-day subacute rhesus monkey toxicity study (aborted) no. 137-087. Available on USEPA Public Docket AR-226-0138. Mattawan, MI: International Research and Development Corp.; 1978.

  105. 105.

    RIKER laboratories. Two year oral (diet) toxicity/carcinogenicity study of fluorochemical FM-3924 in rats. Available on USEPA Public Docket AR-226-0257. St. Paul, Minnesota: RIKER Laboratoreis, Inc./3M Company; 1983.

  106. 106.

    Sibinski LJ, Allen JL, Elrod SV. Two year oral (diet) toxicity—oncogenicity study of fluorocarbon FM-3924 in rats. Available on USEPA Public Docket AR-226-0262. St. Paul, MN; 1988.

  107. 107.

    Pathology Associates International. Pathology review of reported tumorigenesis in a two year study of FM-3924 in rats. Available on U.S. EPA public docket AR-226-0264. West Chester, Ohio; 1998.

  108. 108.

    McMichael AJ. Standardized mortality ratios and the “healthy worker effect”: Scratching beneath the surface. J Occup Med. 1976;18:165–8.

    CAS  PubMed  Google Scholar 

  109. 109.

    Gilliland FD. Fluorocarbons and human health: studies in an occupational cohort. Available on U.S. EPA Public Docket AR-226-0473. University of Minnesota; 1992.

  110. 110.

    Olsen GW, Gilliland FD, Burlew MM, Burris JM, Mandel JS, Mandel JH. An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid. J Occup Environ Med. 1998;40:614–22.

    CAS  PubMed  Google Scholar 

  111. 111.

    Palmer CN, Hsu M-H, Griffin KJ, Raucy JL, Johnson EF. Peroxisome proliferator activated receptor-α expression in human liver. Mol Pharmacol. 1998;53:14–22.

    CAS  PubMed  Google Scholar 

  112. 112.

    Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121:1313.

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Lopez-Espinosa M-J, Mondal D, Armstrong B, Bloom MS, Fletcher T. Thyroid function and perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect. 2012;120:1036.

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Steenland K, Zhao L, Winquist A, Parks C. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley. Environ Health Perspect. 2013;121:900.

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Darrow LA, Stein CR, Steenland K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005–2010. Environ Health Perspect. 2013;121:1207.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Rappazzo K, Coffman E, Hines E. Exposure to perfluorinated alkyl substances and health outcomes in children: a systematic review of the epidemiologic literature. Int J Environ Res Public Health. 2017;14:691.

    PubMed Central  Google Scholar 

  117. 117.

    Grandjean P, Andersen E, Budtz-Jørgensen E, et al. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA. 2012;307:391–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Klaunig JE, Shinohara M, Iwai H, Chengelis CP, Kirkpatrick JB, Wang Z, et al. Evaluation of the chronic toxicity and carcinogenicity of perfluorohexanoic acid (PFHxA) in Sprague–Dawley rats. Toxicol Pathol. 2014;43:209–20.

    PubMed  Google Scholar 

  119. 119.

    Gilliland FD, Mandel JS. Mortality among employees of a perfluorooctanoic acid production plant. J Occup Med. 1993;35:950–4.

    CAS  PubMed  Google Scholar 

  120. 120.

    Raleigh KK, Alexander BH, Olsen GW, Ramachandran G, Morey SZ, Church TR, et al. Mortality and cancer incidence in ammonium perfluorooctanoate production workers. Occup Environ Med. 2014;71:500–6.

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Vieira VM, Hoffman K, Shin HM, Weinberg JM, Webster TF, Fletcher T. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ Health Perspect. 2013;121:318–23.

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Eriksen KT, Sorensen M, McLaughlin JK, Lipworth L, Tjonneland A, Overvad K, et al. Perfluorooctanoate and perfluorooctanesulfonate plasma levels and risk of cancer in the general Danish population. J Natl Cancer Inst. 2009;101:605–9.

    CAS  PubMed  Google Scholar 

  123. 123.

    DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol. 2012;40:300–11.

    CAS  PubMed  Google Scholar 

  124. 124.

    Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and Nutrition Examination Survey. Pediatr Res. 2016;79:348–57.

    CAS  PubMed  Google Scholar 

  125. 125.

    Granum B, Haug LS, Namork E, Stolevik SB, Thomsen C, Aaberge IS, et al. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J Immunotoxicol. 2013;10:373–9.

    CAS  PubMed  Google Scholar 

  126. 126.

    Stein CR, Ge YC, Wolff MS, Ye XY, Calafat AM, Kraus T, et al. Perfluoroalkyl substance serum concentrations and immune response to FluMist vaccination among healthy adults. Environ Res. 2016;149:171–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Looker C, Luster MI, Calafat AM, Johnson VJ, Burleson GR, Burleson FG, et al. Influenza vaccine response in adults exposed to perfluorooctanoate and perfluorooctanesulfonate. Toxicol Sci. 2014;138:76–88.

    CAS  PubMed  Google Scholar 

  128. 128.

    Dong G-H, Tung K-Y, Tsai C-H, Liu M-M, Wang D, Liu W, et al. Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of Taiwanese children. Environ Health Perspect. 2013;121:507–13.

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Buser MC, Scinicariello F. Perfluoroalkyl substances and food allergies in adolescents. Environ Int. 2016;88:74–9.

    CAS  PubMed  Google Scholar 

  130. 130.

    Gilliland FD, Mandel JS. Serum perfluorooctanoic acid and hepatic enzymes, lipoproteins, and cholesterol: a study of occupationally exposed men. Am J Ind Med. 1996;29:560–8.

    CAS  PubMed  Google Scholar 

  131. 131.

    Liu HS, Wen LL, Chu PL, Lin CY. Association among total serum isomers of perfluorinated chemicals, glucose homeostasis, lipid profiles, serum protein and metabolic syndrome in adults: NHANES, 2013–2014. Environ Pollut. 2018;232:73–9.

    CAS  PubMed  Google Scholar 

  132. 132.

    Steenland K, Fletcher T, Savitz DA. Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect. 2010;118:1100–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Cardenas A, Gold DR, Hauser R, Kleinman KP, Hivert MF, Calafat AM, et al. Plasma concentrations of per- and polyfluoroalkyl substances at baseline and associations with glycemic indicators and diabetes incidence among high-risk adults in the diabetes prevention program trial. Environ Health Perspect. 2017;125:107001.

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Liu G, Dhana K, Furtado JD, Rood J, Zong G, Liang L, et al. Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: a prospective study. PLoS Med. 2018;15:e1002502.

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Frisbee SJ, Shankar A, Knox SS, Steenland K, Savitz DA, Fletcher T, et al. Perfluorooctanoic acid, perfluorooctanesulfonate, and serum lipids in children and adolescents: results from the C8 Health Project. Arch Pediatr Adolesc Med. 2010;164:860–9.

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 2010;118:197–202.

    CAS  PubMed  Google Scholar 

  137. 137.

    Maisonet M, Näyhä S, Lawlor DA, Marcus M. Prenatal exposures to perfluoroalkyl acids and serum lipids at ages 7 and 15 in females. Environ Int. 2015;82:49–60.

    CAS  PubMed  Google Scholar 

  138. 138.

    Lin CY, Chen PC, Lin YC, Lin LY. Association among serum perfluoroalkyl chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care. 2009;32:702–7.

    CAS  PubMed  Google Scholar 

  139. 139.

    Zhang C, Sundaram R, Maisog J, Calafat AM, Barr DB, Buck Louis GM. A prospective study of prepregnancy serum concentrations of perfluorochemicals and the risk of gestational diabetes. Fertil Steril. 2015;103:184–9.

    CAS  PubMed  Google Scholar 

  140. 140.

    Matilla-Santander N, Valvi D, Lopez-Espinosa MJ, Manzano-Salgado CB, Ballester F, Ibarluzea J, et al. Exposure to perfluoroalkyl substances and metabolic outcomes in pregnant women: evidence from the Spanish INMA Birth Cohorts. Environ Health Perspect. 2017;125:117004.

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Min JY, Lee KJ, Park JB, Min KB. Perfluorooctanoic acid exposure is associated with elevated homocysteine and hypertension in US adults. Occup Environ Med. 2012;69:658–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Geiger SD, Xiao J, Shankar A. No association between perfluoroalkyl chemicals and hypertension in children. Integr Blood Press Control. 2014;7:1–7.

  143. 143.

    Conway B, Costacou T. Perfluoroalkyl acids and stroke risk in persons with and without diabetes: a salutatory effect of high oxygen carrying capacity environmental contaminants. Circulation. 2018;133:AP061.

  144. 144.

    Steenland K, Zhao L, Winquist A. A cohort incidence study of workers exposed to perfluorooctanoic acid (PFOA). Occup Environ Med. 2015;72:373–80.

    PubMed  Google Scholar 

  145. 145.

    Lin CY, Lin LY, Wen TW, Lien GW, Chien KL, Hsu SHJ, et al. Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. Int J Cardiol. 2013;168:3309–16.

    PubMed  Google Scholar 

  146. 146.

    Koshy TT, Attina TM, Ghassabian A, Gilbert J, Burdine LK, Marmor M, et al. Serum perfluoroalkyl substances and cardiometabolic consequences in adolescents exposed to the World Trade Center disaster and a matched comparison group. Environ Int. 2017;109:128–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Olsen GW, Ehresman DJ, Buehrer BD, Gibson BA, Butenhoff JL, Zobel LR. Longitudinal assessment of lipid and hepatic clinical parameters in workers involved with the demolition of perfluoroalkyl manufacturing facilities. J Occup Environ Med/Am Coll Occup Environ Med. 2012;54:974–83.

    CAS  Google Scholar 

  148. 148.

    Lin CY, Lin LY, Chiang CK, Wang WJ, Su YN, Hung KY, et al. Investigation of the associations between low-dose serum perfluorinated chemicals and liver enzymes in US adults. Am J Gastroenterol. 2010;105:1354–63.

    CAS  PubMed  Google Scholar 

  149. 149.

    Wang X, Li B, Zhao W-D, Liu Y-J, Shang D-S, Fang W-G, et al. Perfluorooctane sulfonate triggers tight junction “opening” in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem Biophys Res Commun. 2011;410:258–63.

    CAS  PubMed  Google Scholar 

  150. 150.

    Johansson N, Fredriksson A, Eriksson P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology. 2008;29:160–9.

    CAS  PubMed  Google Scholar 

  151. 151.

    Liew Z, Goudarzi H, Oulhote Y. Developmental exposures to perfluoroalkyl substances (PFASs): an update of associated health outcomes. Curr Environ Health Rep. 2018;5:1–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Yeung LW, Mabury SA. Are humans exposed to increasing amounts of unidentified organofluorine? Environ Chem. 2016;13:102–10.

    CAS  Google Scholar 

  153. 153.

    Gomis MI, Vestergren R, Nilsson H, Cousins IT. Contribution of direct and indirect exposure to human serum concentrations of perfluorooctanoic acid in an occupationally exposed group of Ski Waxers. Environ Sci Technol. 2016;50:7037–46.

    CAS  PubMed  Google Scholar 

  154. 154.

    Rotander A, Karrman A, Toms LM, Kay M, Mueller JF, Gomez Ramos MJ. Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach. Environ Sci Technol. 2015;49:2434–42.

    CAS  PubMed  Google Scholar 

  155. 155.

    Olsen GW, Chang S-C, Noker PE, Gorman GS, Ehresman DJ, Lieder PH, et al. A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans. Toxicology. 2009;256:65–74.

    CAS  PubMed  Google Scholar 

  156. 156.

    Fujii Y, Niisoe T, Harada KH, Uemoto S, Ogura Y, Takenaka K, et al. Toxicokinetics of perfluoroalkyl carboxylic acids with different carbon chain lengths in mice and humans. J Occup Health. 2015;57:1–12.

    CAS  PubMed  Google Scholar 

  157. 157.

    Ritter SK. Fluorochemicals go short. Chem Eng News. 2010;88:12–7.

    Google Scholar 

  158. 158.

    Butt CM, Muir DC, Mabury SA. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review. Environ Toxicol Chem/SETAC. 2014;33:243–67.

    CAS  Google Scholar 

  159. 159.

    Strynar M, Dagnino S, McMahen R, Liang S, Lindstrom A, Andersen E, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS). Environ Sci Technol. 2015;49:11622–30.

    CAS  PubMed  Google Scholar 

  160. 160.

    Wang Z, Cousins IT, Scheringer M, Hungerbühler K. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ Int. 2013;60:242–8.

    CAS  PubMed  Google Scholar 

  161. 161.

    Blum A, Balan SA, Scheringer M, Trier X, Goldenman G, Cousins IT, et al. The Madrid statement on poly-and perfluoroalkyl substances (PFASs). Environ Health Perspect. 2015;123:A107.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Boxer E, Chaves N, Niwa Y. Northestern SSEHRI PFAS contamination site tracker; 2018.

  163. 163.

    Tian Z, Kim S-K, Shoeib M, Oh J-E, Park J-E. Human exposure to per- and polyfluoroalkyl substances (PFASs) via house dust in Korea: implication to exposure pathway. Sci Total Environ. 2016;553:266–75.

    CAS  PubMed  Google Scholar 

  164. 164.

    Shan G, Wang Z, Zhou L, Du P, Luo X, Wu Q, et al. Impacts of daily intakes on the isomeric profiles of perfluoroalkyl substances (PFASs) in human serum. Environ Int. 2016;89-90:62–70.

    CAS  PubMed  Google Scholar 

  165. 165.

    Gebbink WA, Berger U, Cousins IT. Estimating human exposure to PFOS isomers and PFCA homologues: the relative importance of direct and indirect (precursor) exposure. Environ Int. 2015;74:160–9.

    CAS  PubMed  Google Scholar 

  166. 166.

    Wang, Z., J. M. Boucher, M. Scheringer, I. T. Cousins, and K. Hungerbühler (2017), Toward a Comprehensive Global Emission Inventory of C4–C10 Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C8-Based Products and Ongoing Industrial Transition, Environmental Science & Technology, 51(8), 4482-4493.

Download references


Financial support for this work was provided by the NIH Superfund Research Program P42ES027706 and the Harvard National Institute of Environmental Health and Sciences (NIEHS) Center Grant (P30 ES000002).

Author information



Corresponding author

Correspondence to Elsie M. Sunderland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sunderland, E.M., Hu, X.C., Dassuncao, C. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol 29, 131–147 (2019).

Download citation


  • Perfluoroalkyl Substances (PFASs)
  • PFAS Exposure
  • Aqueous Film Forming Foam (AFFF)
  • Perfluoroalkyl Carboxylic Acids (PFCAs)
  • Perfluorooctane Sulfonate (PFOS)

Further reading


Quick links