Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Assessing the contributions of metals in environmental media to exposure biomarkers in a region of ferroalloy industry

Abstract

Residential proximity to ferroalloy production has been associated with increased manganese exposure, which can adversely affect health, particularly among children. Little is known, however, about which environmental samples contribute most to internal levels of manganese and other ferroalloy metals. We aimed to characterize sources of exposure to metals and evaluate the ability of internal biomarkers to reflect exposures from environmental media. In 717 Italian adolescents residing near ferromanganese industry, we examined associations between manganese, lead, chromium, and copper in environmental samples (airborne particles, surface soil, indoor/outdoor house dust) and biological samples (blood, hair, nails, saliva, urine). In multivariable regression analyses adjusted for child age and sex, a 10% increase in soil Mn was associated with increases of 3.0% (95% CI: 1.1%, 4.9%) in nail Mn and 1.6% (95% CI: −0.2%, 3.4%) in saliva Mn. Weighted-quantile-sum (WQS) regression estimated that higher soil and outdoor dust Mn accounted for most of the effect on nail Mn (WQS weights: 0.61 and 0.22, respectively, out of a total of 1.0). Higher air and soil Mn accounted for most of the effect on saliva Mn (WQS weights: 0.65 and 0.29, respectively). These findings can help inform biomarker selection in future epidemiologic studies and guide intervention strategies in exposed populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Carrizales L, Razo I, Tellez-Hernandez JI, Torres-Nerio R, Torres A, Batres LE, et al. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure of children. Environ Res. 2006;10:1–10.

    Google Scholar 

  2. Claus Henn B, Ettinger AS, Hopkins MR, Jim R, Amarasiriwardena C, Christiani DC, et al. Prenatal arsenic exposure and birth outcomes among a population residing near a mining-related superfund site. Environ Health Perspect. 2016;124:1308–15.

    PubMed  Google Scholar 

  3. Haynes EN, Sucharew H, Kuhnell P, Alden J, Barnas M, Wright RO, et al. Manganese exposure and neurocognitive outcomes in rural school-age children: The Communities Actively Researching Exposure Study (Ohio, USA). Environ Health Persp. 2015;123:1066–71.

    CAS  Google Scholar 

  4. Torres-Agustin R, Rodriguez-Agudelo Y, Schilmann A, Solis-Vivanco R, Montes S, Riojas-Rodriguez H, et al. Effect of environmental manganese exposure on verbal learning and memory in Mexican children. Environ Res. 2013;121:39–44.

    CAS  PubMed  Google Scholar 

  5. Claus Henn B, Bellinger DC, Hopkins MR, Coull BA, Ettinger AS, Jim R, et al. Maternal and cord blood manganese concentrations and early childhood neurodevelopment among residents near a mining-impacted superfund site. Environ Health Perspect. 2017;125:067020.

    PubMed  PubMed Central  Google Scholar 

  6. Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci. 2011;15:141–68.

    CAS  Google Scholar 

  7. EPA. Background report AP-42 Section 12.4 ferroalloy production. 10/86. Reformatted1/95; 1995.

  8. ATSDR. Agency for Toxic Substances Disease Registry—toxicological profile: manganese; 2012.

  9. Boudissa SM, Lambert J, Müller C, Kennedy G, Gareau L, Zayed J. Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. Sci Total Environ. 2006;361:67–72.

    CAS  PubMed  Google Scholar 

  10. Haynes EN, Ryan P, Chen A, Brown D, Roda S, Kuhnell P, et al. Assessment of personal exposure to manganese in children living near a ferromanganese refinery. Sci Total Environ. 2012;427-428:19–25.

    CAS  PubMed  Google Scholar 

  11. Lucas EL, Bertrand P, Guazzetti S, Donna F, Peli M, Jursa TP, et al. Impact of ferromanganese alloy plants on household dust manganese levels: Implications for childhood exposure. Environ Res. 2015;138:279–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Menezes-Filho JA, Paes CR, Pontes AMdC, Moreira JC, Sarcinelli PN, Mergler D. High levels of hair manganese in children living in the vicinity of a ferro-manganese alloy production plant. Neurotoxicology. 2009;30:1207–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Menezes-Filho JA, Souza KOFd, Rodrigues JLG, Santos NlRd, Bandeira MdJ, Koin NL, et al. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant. Environ Res. 2016;148:322–9.

    CAS  PubMed  Google Scholar 

  14. Pavilonis BT, Lioy PJ, Guazzetti S, Bostick BC, Donna F, Peli M, et al. Manganese concentrations in soil and settled dust in an area with historic ferroalloy production. J Expo Sci Environ Epidemiol. 2015;25:443–50.

    CAS  PubMed  Google Scholar 

  15. Riojas-Rodriguez H, Solis-Vivanco R, Schilmann A, Montes S, Rodriguez S, Rios C, et al. Intellectual function in Mexican children living in a mining area and environmentally exposed to manganese. Environ Health Perspect. 2010;118:1465–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vollet K, Haynes EN, Dietrich KN. Manganese exposure and cognition across the lifespan: contemporary review and argument for biphasic dose-response health effects. Curr Environ Health Rep. 2016;3:392–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zoni S, Lucchini RG. Manganese exposure: cognitive, motor and behavioral effects on children: a review of recent findings. Curr Opin Pediatr. 2013;25:255–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bouchard M, Fo Laforest, Vandelac L, Bellinger D, Mergler D. Hair manganese and hyperactive behaviors: Pilot study of school-age children exposed through tap water. Environ Health Persp. 2007;115:122–7.

    CAS  Google Scholar 

  19. Mora AM, Arora M, Harley KG, Kogut K, Parra K, Hernandez-Bonilla D, et al. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 10.5 years in the CHAMACOS cohort. Environ Int. 2015;84:39–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nascimento S, Baierle M, Goethel G, Barth A, Brucker N, Charao M, et al. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children. Environ Res. 2016;147:32–43.

    CAS  PubMed  Google Scholar 

  21. Roels HA, Bowler RM, Kim Y, Claus Henn B, Mergler D, Hoet P, et al. Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity. Neurotoxicology. 2012;33:872–80.

    CAS  PubMed  Google Scholar 

  22. Bjørklund G, Chartrand MS, Aaseth J. Manganese exposure and neurotoxic effects in children. Environ Res. 2017;155:380–4.

    PubMed  Google Scholar 

  23. Claus Henn B, Ettinger AS, Schwartz J, Téllez-Rojo MM, Lamadrid-Figueroa H, Hernández-Avila M, et al. Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology. 2010;21:433–9.

    PubMed  Google Scholar 

  24. Bellinger DC. Very low lead exposures and children’s neurodevelopment. Curr Opin Pediatr. 2008;20:172–7.

    PubMed  Google Scholar 

  25. Caito S, Aschner M. Developmental neurotoxicity of lead. Adv Neurobiol. 2017;18:3–12.

    PubMed  Google Scholar 

  26. Akil M, Brewer GJ. Psychiatric and behavioral abnormalities in Wilson’s disease. Adv Neurol. 1995;65:171–8.

    CAS  PubMed  Google Scholar 

  27. Burger J, Gochfeld M. Growth and behavioral effects of early postnatal chromium and manganese exposure in herring gull (Larus argentatus) chicks. Pharmacol Biochem Behav. 1995;50:607–12.

    CAS  PubMed  Google Scholar 

  28. Desai V, Kaler SG. Role of copper in human neurological disorders. Am J Clin Nutr. 2008;88:855S–8S.

    CAS  PubMed  Google Scholar 

  29. Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, et al. Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health. 2013;1:e350–61.

    PubMed  Google Scholar 

  30. Claus Henn B, Coull BA, Wright RO. Chemical mixtures and children’s health. Curr Opin Pediatr. 2014;26:223–9.

    CAS  PubMed  Google Scholar 

  31. Sanders AP, Claus Henn B, Wright RO. Perinatal and childhood exposure to cadmium, manganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr Environ Health Rep. 2015;2:284–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fulk F, Succop P, Hilbert TJ, Beidler C, Brown D, Reponen T, et al. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: a structural equation modeling approach. Sci Total Environ. 2017;579:768–75.

    CAS  PubMed  Google Scholar 

  33. Loh MM, Sugeng A, Lothrop N, Klimecki W, Cox M, Wilkinson ST, et al. Multimedia exposures to arsenic and lead for children near an inactive mine tailings and smelter site. Environ Res. 2016;146:331–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zota AR, Riederer AM, Ettinger AS, Schaider LA, Shine JP, Amarasiriwardena CJ. et al. Associations between metals in residential environmental media and exposure biomarkers over time in infants living near a mining-impacted site. J Expo Sci Environ Epidemiol. 2016;26:510–519.

    CAS  PubMed  Google Scholar 

  35. Czarnota J, Gennings C, Wheeler DC. Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk. Cancer Inform. 2015;14(Suppl 2):159–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lucchini RG, Albini E, Benedetti L, Borghesi S, Coccaglio R, Malara EC, et al. High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med. 2007;50:788–800.

    CAS  PubMed  Google Scholar 

  37. Lucchini R, Zoni S, Guazzetti S, Bontempi E, Micheletti S, Broberg K, et al. Inverse association of intellectual function with very low blood lead but not with manganese exposure in Italian adolescents. Environ Res. 2012;118:65–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lucchini RG, Guazzetti S, Zoni S, Donna F, Peter S, Zacco A, et al. Tremor, olfactory and motor changes in Italian adolescents exposed to historical ferro-manganese emission. Neurotoxicology. 2012;33:687–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Borgese L, Zacco A, Pal S, Bontempi E, Lucchini R, Zimmerman N, et al. A new non-destructive method for chemical analysis of particulate matter filters: The case of manganese air pollution in Vallecamonica (Italy). Talanta. 2011;84:192–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Eastman RR, Jursa TP, Benedetti C, Lucchini RG, Smith DR. Hair as a biomarker of environmental manganese exposure. Environ Sci Technol. 2013;47:1629–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith D, Gwiazda R, Bowler R, Roels H, Park R, Taicher C, et al. Biomarkers of Mn exposure in humans. Am J Ind Med. 2007;50:801–11.

    CAS  PubMed  Google Scholar 

  42. Cesana GC, Ferrario M, De Vito G, Sega R, Grieco A. [Evaluation of the socioeconomic status in epidemiological surveys: hypotheses of research in the Brianza area MONICA project]. Med Lav. 1995;86:16–26.

    CAS  PubMed  Google Scholar 

  43. Czarnota J, Gennings C, Colt JS, De Roos AJ, Cerhan JR, Severson RK, et al. Analysis of environmental chemical mixtures and non-Hodgkin lymphoma risk in the NCI-SEER NHL study. Environ Health Perspect. 2015;123:965–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gennings C, Carrico C, Factor-Litvak P, Krigbaum N, Cirillo PM, Cohn BA. A cohort study evaluation of maternal PCB exposure related to time to pregnancy in daughters. Environ Health. 2013;12:66.

    PubMed  PubMed Central  Google Scholar 

  45. Carrico C, Gennings C, Wheeler DC, Factor-Litvak P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agr Biol Envir St. 2015;20:100–20.

    Google Scholar 

  46. Horton MK, Blount BC, Valentin-Blasini L, Wapner R, Whyatt R, Gennings C, et al. CO-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women. Environ Res. 2015;143:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brunst KJ, Sanchez Guerra M, Gennings C, Hacker M, Jara C, Bosquet Enlow M. et al. Maternal lifetime stress and prenatal psychological functioning are associated with decreased placental mitochondrial DNA copy number in the PRISM study. Am J Epidemiol. 2017;186:1227–1236.

    PubMed  PubMed Central  Google Scholar 

  48. Renzetti S, Curtin P, Just AC, Gennings C. Generalized weighted quantile sum regression. R package ‘gWQS’. 2016. Published 21 Oct 2016.

  49. Yaemsiri S, Hou N, Slining MM, He K. Growth rate of human fingernails and toenails in healthy American young adults. J Eur Acad Dermatol Venereol. 2010;24:420–3.

    CAS  PubMed  Google Scholar 

  50. Mielke HW, Gonzales CR, Powell ET, Mielke PW Jr.. Spatiotemporal dynamic transformations of soil lead and children’s blood lead ten years after Hurricane Katrina: new grounds for primary prevention. Environ Int. 2016;94:567–75.

    CAS  PubMed  Google Scholar 

  51. Safruk AM, McGregor E, Whitfield Aslund ML, Cheung PH, Pinsent C, Jackson BJ, et al. The influence of lead content in drinking water, household dust, soil, and paint on blood lead levels of children in Flin Flon, Manitoba and Creighton, Saskatchewan. Sci Total Environ. 2017;593-594:202–10.

    CAS  PubMed  Google Scholar 

  52. Davis MA, Gilbert-Diamond D, Karagas MR, Li Z, Moore JH, Williams SM, et al. A dietary-wide association study (DWAS) of environmental metal exposure in US children and adults. PLoS One. 2014;9:e104768.

    PubMed  PubMed Central  Google Scholar 

  53. Ferri R, Hashim D, Smith DR, Guazzetti S, Donna F, Ferretti E, et al. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure. Sci Total Environ. 2015;518-519:507–17.

    CAS  PubMed  Google Scholar 

  54. Barbosa F Jr., Tanus-Santos JE, Gerlach RF, Parsons PJ. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect. 2005;113:1669–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barbosa F Jr., Correa Rodrigues MH, Buzalaf MR, Krug FJ, Gerlach RF, et al. Evaluation of the use of salivary lead levels as a surrogate of blood lead or plasma lead levels in lead exposed subjects. Arch Toxicol. 2006;80:633–7.

    CAS  PubMed  Google Scholar 

  56. Gil F, Hernandez AF, Marquez C, Femia P, Olmedo P, Lopez-Guarnido O, et al. Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ. 2011;409:1172–80.

    CAS  PubMed  Google Scholar 

  57. Koh D, Ng V, Chua LH, Yang Y, Ong HY, Chia SE. Can salivary lead be used for biological monitoring of lead exposed individuals? Occup Environ Med. 2003;60:696–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Omokhodion FO, Crockford GW. Lead in sweat and its relationship to salivary and urinary levels in normal healthy subjects. Sci Total Environ. 1991;103:113–22.

    CAS  PubMed  Google Scholar 

  59. Bergdahl IA, Skerfving S. Biomonitoring of lead exposure-alternatives to blood. J Toxicol Environ Health A. 2008;71:1235–43.

    CAS  PubMed  Google Scholar 

  60. National Research Council (U.S.). Committee on Measuring Lead in Critical Populations., Fowler BA, National Research Council (U.S.). Board on Environmental Studies and Toxicology. National Research Council (U.S.). Commission on Life Sciences. Measuring lead exposure in infants, children, and other sensitive populations. Washington, DC.: National Academy Press; 1993. xvi, 337 pp.

    Google Scholar 

  61. Jursa T, Stein CR, Smith DR. Determinants of hair manganese, lead, cadmium and arsenic levels in environmentally exposed children. Toxics. 2018;6:pii: E19.: https://doi.org/10.3390/toxics6020019.

    PubMed Central  Google Scholar 

  62. Viana GF, de Carvalho CF, Nunes LS, Rodrigues JL, Ribeiro NS, de Almeida DA, et al. Noninvasive biomarkers of manganese exposure and neuropsychological effects in environmentally exposed adults in Brazil. Toxicol Lett. 2014;231:169–78.

    CAS  PubMed  Google Scholar 

  63. Coetzee DJ, McGovern PM, Rao R, Harnack LJ, Georgieff MK, Stepanov I. Measuring the impact of manganese exposure on children’s neurodevelopment: advances and research gaps in biomarker-based approaches. Environ Health. 2016;15:91.

    PubMed  PubMed Central  Google Scholar 

  64. Hassani H, Golbabaei F, Shirkhanloo H, Tehrani-Doust M. Relations of biomarkers of manganese exposure and neuropsychological effects among welders and ferroalloy smelters. Ind Health. 2016;54:79–86.

    CAS  PubMed  Google Scholar 

  65. Fan X, Luo Y, Fan Q, Zheng W. Reduced expression of PARK2 in manganese-exposed smelting workers. Neurotoxicology. 2017;62:258–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang D, Du X, Zheng W. Alteration of saliva and serum concentrations of manganese, copper, zinc, cadmium and lead among career welders. Toxicol Lett. 2008;176:40–7.

    CAS  PubMed  Google Scholar 

  67. Zhou YZ, Chen J, Shi XJ, Zou Y, Shen XB, Zheng W, et al. [Early biological markers of manganese exposure]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2010;28:645–7.

    CAS  PubMed  Google Scholar 

  68. Ntihabose R, Surette C, Foucher D, Clarisse O, Bouchard MF. Assessment of saliva, hair and toenails as biomarkers of low level exposure to manganese from drinking water in children. Neurotoxicology 2017;64:126-133.

    CAS  PubMed  Google Scholar 

  69. Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85:162–9.

    CAS  PubMed  Google Scholar 

  70. Chillrud SN, Grass D, Ross JM, Coulibaly D, Slavkovich V, Epstein D. et al. Steel dust in the New York City subway system as a source of manganese, chromium, and iron exposures for transit workers. J Urban Health. 2005;82:33–42.

    PubMed  PubMed Central  Google Scholar 

  71. Danzeisen R, Araya M, Harrison B, Keen C, Solioz M, Thiele D, et al. How reliable and robust are current biomarkers for copper status? Br J Nutr. 2007;98:676–83.

    CAS  PubMed  Google Scholar 

  72. Freeman NC, Wainman T, Lioy PJ, Stern AH, Shupack SI. The effect of remediation of chromium waste sites on chromium levels in urine of children living in the surrounding neighborhood. J Air Waste Manag Assoc. 1995;45:604–14.

    CAS  PubMed  Google Scholar 

  73. Gunier RB, Jerrett M, Smith DR, Jursa T, Yousefi P, Camacho J, et al. Determinants of manganese levels in house dust samples from the CHAMACOS cohort. Sci Total Environ. 2014;497-498:360–8.

    CAS  PubMed  Google Scholar 

  74. Rodrigues JLG, Bandeira MJ, Araujo CFS, Dos Santos NR, Anjos ALS, Koin NL, et al. Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ Pollut. 2018;236:1004–13.

    CAS  PubMed  Google Scholar 

  75. Lanphear BP, Emond M, Jacobs DE, Weitzman M, Tanner M, Winter NL, et al. A side-by-side comparison of dust collection methods for sampling lead-contaminated house dust. Environ Res. 1995;68:114–23.

    CAS  PubMed  Google Scholar 

  76. Gulson B, Mizon K, Taylor A, Korsch M, Davis JM, Louie H, et al. Pathways of Pb and Mn observed in a 5-year longitudinal investigation in young children and environmental measures from an urban setting. Environ Pollut. 2014;191:38–49.

    CAS  PubMed  Google Scholar 

  77. Claus Henn B, Kim J, Wessling-Resnick M, Tellez-Rojo MM, Jayawardene I, Ettinger AS, et al. Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models. Environ Health. 2011;10:97.

    PubMed  PubMed Central  Google Scholar 

  78. Hopkins MR, Ettinger AS, Hernandez-Avila M, Schwartz J, Tellez-Rojo MM, Lamadrid-Figueroa H, et al. Variants in iron metabolism genes predict higher blood lead levels in young children. Environ Health Perspect. 2008;116:1261–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Raghunath R, Tripathi RM, Kumar AV, Sathe AP, Khandekar RN, Nambi KS. Assessment of Pb, Cd, Cu, and Zn exposures of 6- to 10-year-old children in Mumbai. Environ Res. 1999;80:215–21.

    CAS  PubMed  Google Scholar 

  80. Torrente M, Colomina MT, Domingo JL. Metal concentrations in hair and cognitive assessment in an adolescent population. Biol Trace Elem Res. 2005;104:215–21.

    CAS  PubMed  Google Scholar 

  81. Katz SA, Salem H. The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol. 1993;13:217–24.

    CAS  PubMed  Google Scholar 

  82. Harkey MR. Anatomy and physiology of hair. Forensic Sci Int. 1993;63:9–18.

    CAS  PubMed  Google Scholar 

  83. Robbins CR. Chemical and physical behavior of human hair. 5th ed. Berlin/Heidelberg, Germany: Springer; 2012.

    Google Scholar 

  84. Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Asp Med. 2005;26:353–62.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge all PHIME study participants. We also thank Chang Chen for assistance with data analyses. This study was supported by National Institutes of Health (NIH) grants: R00 ES022986, T32 ES014562, R01 ES019222, R56 ES019222, R01 ES013744, P30 ES000002, and P30 ES023515. This study was also supported by funding from the European Union through its Sixth Framework Program for RTD (contract no. FOOD-CT-2006-016253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Claus Henn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, L., Gennings, C., Peli, M. et al. Assessing the contributions of metals in environmental media to exposure biomarkers in a region of ferroalloy industry. J Expo Sci Environ Epidemiol 29, 674–687 (2019). https://doi.org/10.1038/s41370-018-0081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-018-0081-6

Keywords:

This article is cited by

Search

Quick links