Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data

Abstract

A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM2.5. Spatiotemporal PM2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    WHO (World Health Organization). Over 7 million premature deaths annually linked to air pollution. 2016; http://www.who.int.

  2. 2.

    Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360:1233–42.

    CAS  Article  Google Scholar 

  3. 3.

    Liao D, Duan Y, Whitsel EA, Zheng ZJ, Heiss G, Chinchilli VM, et al. Association of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: a population-based study. Am J Epidemiol. 2003;159:768–77.

    Article  Google Scholar 

  4. 4.

    Pope CA III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag. 2006;56:709–42.

    CAS  Article  Google Scholar 

  5. 5.

    Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in fine particulate air pollution and mortality extended follow-up of the Harvard six cities study. Am J Resp Crit Care. 2006;173:667–72.

    CAS  Article  Google Scholar 

  6. 6.

    Pope CA III, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009;360:376–86.

    CAS  Article  Google Scholar 

  7. 7.

    Gurjar BR, Sharma JA, Agarwal A, Gupta P, Nagpure AS, Lelieveld J. Human health risks in megacities due to air pollution. Atmos Environ. 2010;44:4606–13.

    CAS  Article  Google Scholar 

  8. 8.

    Nyhan M, Misstear BD, McNabola A. Comparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers. Sci Total Environ. 2014;468-469:821–31.

    CAS  Article  Google Scholar 

  9. 9.

    Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Rouz AV, et al. Particulate matter air pollution and cardiovascular disease, an update to the scientific statement from the American Heart Association. Circulation. 2010;121:2331–78.

    CAS  Article  Google Scholar 

  10. 10.

    Burnett RT, Goldberg MS. Size-fractionated particulate mass and daily mortality in eight Canadian cities. Revised Analyses of Time-Series of Air Pollution and Health. Special Report, Health Effects Institute: Boston, 2003, pp 85–90.

  11. 11.

    Dominici F, McDermott A, Zeger SL, Samet JM. National maps of the effects of particulate matter on mortality: exploring geographical variation. Environ Health Persp. 2003;111:39–43.

    Article  Google Scholar 

  12. 12.

    Jerrett M, Burnett RT, Ma R, Pope CA, Krewski D, Newbold KB, et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology. 2005;16:727–36.

    Article  Google Scholar 

  13. 13.

    Puett RC, Hart JE, Yanosky JD, Paciorek C, Schwartz J, Suh H, et al. Chronic fine and coarse particulate exposure, mortality and coronary heart disease in the Nurses’ Health Study. Environ Health Persp. 2009;117:1697–701.

    Article  Google Scholar 

  14. 14.

    Zanobetti A, Schwartz J. The effects of fine and coarse particulate air pollution on mortality: a national analysis. Environ Health Persp. 2009;117:898–903.

    Article  Google Scholar 

  15. 15.

    Avery CL, Mills KT, Williams R, McGraw KA, Poole C, Smith RL, et al. Estimating error in using ambient PM2.5 concentrations as proxies for personal exposures: a review. Epidemiology. 2010;21:215–23.

    Article  Google Scholar 

  16. 16.

    Ma Y, Chen R, Pan G, Xu X, Song W. Fine particulate air pollution and daily mortality in Shenyang, China. Sci Total Environ. 2011;409:2473–7.

    CAS  Article  Google Scholar 

  17. 17.

    Lepeule J, Laden F, Dockery DW, Schwartz J. Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities Study from 1974 to 2009. Environ Health Persp. 2012;120:965–70.

    Article  Google Scholar 

  18. 18.

    Lindström J, Szpiro AA, Sampson PD, Sheppard L, Oron A, Richards M et al. A flexible spatio-temporal model for air pollution: allowing for spatio-temporal covariates (January 19, 2011). UW Biostatistics Working Paper Series. Working Paper 370. 2010; http://www.bepress.com/uwbiostat/paper370

  19. 19.

    Szpiro AA, Sampson PD, Sheppard L, Lumley T, Adar SD, Kaufman JD. Predicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependencies. Environmetrics. 2010;21:606–31.

    CAS  Google Scholar 

  20. 20.

    Kloog I, Melly SJ, Ridgway WL, Coull BA, Schwartz J. Using new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and birth weight in Massachusetts. Environ Health. 2012;11:40.

    Article  Google Scholar 

  21. 21.

    Hajat A, Diez-Roux AV, Adar SD, Auchincloss AH, Lovasi GS, O’Neill MS, et al. Air pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of Atherosclerosis. Environ Health Perspect. 2013;121:1325–33.

    Article  Google Scholar 

  22. 22.

    Gonzalez M, Hidalgo C, Barabasi AL. Understanding individual human mobility patterns. Nature. 2008;453:779–82.

    CAS  Article  Google Scholar 

  23. 23.

    Candia J, Gonzalez MG, Wang P, Schoenharl T, Madey G, Barabasi A-L. Uncovering individual and collective human dynamics from mobile phone records. J Phys A-Math Theor. 2008;41:224015(pp 11).

    Article  Google Scholar 

  24. 24.

    Calabrese F, Diao Mi, Di Lorenzo G, Ferreira JJr, Ratti C. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transp Res C-EMER. 2013;26:301–13.

    Article  Google Scholar 

  25. 25.

    Jiang S, Fiore GA, Yang Y, Ferreira J Jr, Frazzoli E, Gonzalez MC. A review of urban computing for mobile phone traces: Current methods, challenges and opportunities. Chicago, IL, USA: Proceedings of the ACM SIGKDD International Workshop on Urban Computing; 2013.

    Book  Google Scholar 

  26. 26.

    Setton E, Marshall JD, Brauer M, Lundquist KR, Hystad P, Keller P, et al. The impact of daily mobility on exposure to traffic-related air pollution health effect estimates. J Expo Sci Environ Epidemiol. 2011;21:42–8.

    Article  Google Scholar 

  27. 27.

    Ozkaynak H, Baxter LK, Dionisio KL, Burke J. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J Expo Sci Environ Epidemiol. 2013;23:566–72.

    CAS  Article  Google Scholar 

  28. 28.

    Baxter LK, Dionisio KL, Burke J, Sarnet SE, Sarnet JA, Hodas N, et al. Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations. J Expo Sci Environ Epidemiol. 2013;23:654–9.

    CAS  Article  Google Scholar 

  29. 29.

    Breen MS, Long TC, Schultz BD, Williams RW, Richard-Bryant J, Breen M, et al. Air pollution exposure model for individuals (EMI) in health studies: evaluation for ambient PM2.5 in Central North America. Environ Sci Technol. 2015;49:14184–94.

    CAS  Article  Google Scholar 

  30. 30.

    Burke JM, Zufall M, Özkaynak H. A population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PA. J Expo Sci Environ Epidemiol. 2001;11:470–89.

    CAS  Article  Google Scholar 

  31. 31.

    Beckx C, Int Panis L, Arentze T, Janssens D, Torfs R, Broekx S, et al. A dynamic activity-based population modelling approach to evaluate exposure to air pollution: methods and application to a Dutch urban area. Environ Impact Asses. 2009;29:179–85.

    Article  Google Scholar 

  32. 32.

    Hatzopoulou M, Miller EJ. Linking an activity-based travel demand model with traffic emission and dispersion models: transport’s contribution to air pollution in Toronto. Transp Res D- TR E. 2010;15:315–25.

    Article  Google Scholar 

  33. 33.

    Dons E, Int Panis L, Van Poppel M, Theunis J, Willems H, Torfs R, et al. Impact of time–activity patterns on personal exposure to black carbon. Atmos Environ. 2011;45:3594–602.

    CAS  Article  Google Scholar 

  34. 34.

    Dhondt S, Beckx C, Degraeuwe B, Lefebvre W, Kochan B, Bellemans T, et al. Health impact assessment of air pollution using a dynamic exposure profile: implications for exposure and health impact estimates. Environ Impact Asses. 2012;36:42–51.

    Article  Google Scholar 

  35. 35.

    USEPA (United States Environmental Protection Agency). Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model (APEX) Documentation: TRIM.Expo/APEX, Version 4; User Guide, 2012.

  36. 36.

    Smith JD, Mitsakou C, Kitwiroon N, Barratt BM, Walton HA, Taylor JG, et al. London hybrid exposure model: improving human exposure estimates to NO2 and PM2.5 in an urban setting. Environ Sci Technol. 2016;50:11760–8.

    CAS  Article  Google Scholar 

  37. 37.

    Nyhan M, Grauwin S, Britter R, Laden F, McNabola A, Misstear B, et al. Exposure track -the impact of mobile device based mobility patterns on quantifying population exposure to air pollution. Environ Sci Technol. 2016; https://doi.org/10.1021/acs.est.6b02385

    CAS  Article  Google Scholar 

  38. 38.

    Dewulf B, Neutens T, Lefebvre W, Seyneave G, Vanpoucke C, Beckx C, et al. Dynamic assessment of exposure to air pollution using mobile phone data. Int J Health Geogr. 2016;15:14.

    Article  Google Scholar 

  39. 39.

    De Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, Jerrett M. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ Pollut. 2013;176:92–9.

    Article  Google Scholar 

  40. 40.

    Glasgow ML, Rudra CB, Yoo E, Demirbas M, Merriman J, Nayak P, et al. Using smartphones to collect time-activity data for long-term personal-level air pollution exposure assessment. J Expo Sci Environ Epidemiol. 2014;26:356–64.

    Article  Google Scholar 

  41. 41.

    Su JG, Jerrett M, Meng Y, Pickett M, Ritz B. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment. Sci Total Environ. 2015;506-507:518–26.

    CAS  Article  Google Scholar 

  42. 42.

    USEPA (United States Environmental Protection Agency). Air quality system data; United States Environmental Protection Agency Website. 2016; www.epa.gov.

  43. 43.

    Lyapustin A, Martonchik J, Wang Y, Laszlo I, Korkin S. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J Geophys Res Atmos. 2011;116:D03210.

    Google Scholar 

  44. 44.

    Lyapustin A, Wang Y, Laszlo I, Kahn R, Korkin S, Remer L, et al. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J Geophys Res Atmos. 2011;116:D03211.

    Google Scholar 

  45. 45.

    Lyapustin A, Wang Y, Frey R. An automatic cloud mask algorithm based on time series of MODIS measurements. J Geophys Res Atmos. 2008;113:D16207.

    Article  Google Scholar 

  46. 46.

    Kloog I, Koutrakis P, Coull BA, Lee HJ, Schwartz J. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos Environ. 2011;45:6267–75.

    CAS  Article  Google Scholar 

  47. 47.

    Kloog I, Nordio F, Coull BA, Schwartz J. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. Environ Sci Technol. 2012;46:11913–21.

    CAS  Article  Google Scholar 

  48. 48.

    Armstrong BG. The effects of measurement on relative risk regressions. Am J Epidemiol. 1990;132:1176–84.

    CAS  Article  Google Scholar 

  49. 49.

    Wacholder S. When measurement errors correlate with truth - surprising effects of nondifferential misclassification. Epidemiology. 1995;6:157–61.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Airsage who have provided data for this study through their support of the Senseable City Laboratory at Massachusetts Institute of Technology. This publication was made possible by USEPA grant (RD-835872-01) through the Harvard University United States Environmental Protection Agency sponsored Air, Climate & Environment (ACE) Centre. The contents of the study are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. M. Nyhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nyhan, M., Kloog, I., Britter, R. et al. Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data. J Expo Sci Environ Epidemiol 29, 238–247 (2019). https://doi.org/10.1038/s41370-018-0038-9

Download citation

Keywords

  • Air pollution
  • Population exposure
  • Mobility
  • Cellular network data
  • PM2.5

Search

Quick links