Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Predictors of blood volatile organic compound levels in Gulf coast residents

Abstract

To address concerns among Gulf Coast residents about ongoing exposures to volatile organic compounds, including benzene, toluene, ethylbenzene, o-xylene, and m-xylene/p-xylene (BTEX), we characterized current blood levels and identified predictors of BTEX among Gulf state residents. We collected questionnaire data on recent exposures and measured blood BTEX levels in a convenience sample of 718 Gulf residents. Because BTEX is rapidly cleared from the body, blood levels represent recent exposures in the past 24 h. We compared participants’ levels of blood BTEX to a nationally representative sample. Among nonsmokers we assessed predictors of blood BTEX levels using linear regression, and predicted the risk of elevated BTEX levels using modified Poisson regression. Blood BTEX levels in Gulf residents were similar to national levels. Among nonsmokers, sex and reporting recent smoky/chemical odors predicted blood BTEX. The change in log benzene was −0.26 (95% CI: −0.47, −0.04) and 0.72 (0.02, 1.42) for women and those who reported odors, respectively. Season, time spent away from home, and self-reported residential proximity to Superfund sites (within a half mile) were statistically associated with benzene only, however mean concentration was nearly an order of magnitude below that of cigarette smokers. Among these Gulf residents, smoking was the primary contributor to blood BTEX levels, but other factors were also relevant.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    ATSDR. Toxicological Profile for Total Petroleum Hydrocarbons (TPH). Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services; 1999.

  2. 2.

    NTP. Report on Carcinogens: Benzene. National Toxicology Program, Department of Health and Human Services; 2011.

  3. 3.

    Goldstein BD. Benzene as a cause of lymphoproliferative disorders. Chem Biol Interact. 2010;184:147–50.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Wallace LA. Major sources of benzene exposure. Environ Health Perspect. 1989;82:165–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Ilgen E, Karfich N, Levsen K, Angerer J, Schneider P, Heinrich J, et al. Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor versus outdoor sources, the influence of traffic. Atmos Environ. 2001;35:1235–52.

    Article  CAS  Google Scholar 

  6. 6.

    Lin YS, Egeghy PP, Rappaport SM. Relationships between levels of volatile organic compounds in air and blood from the general population. J Expo Sci Environ Epidemiol. 2008;18:421–9.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Wallace L. Environmental exposure to benzene: an update. Environ Health Perspect. 1996;104:1129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Symanski E, Stock TH, Tee PG, Chan W. Demographic, residential, and behavioral determinants of elevated exposures to benzene, toluene, ethylbenzene, and xylenes among the U.S. population: results from 1999-2000 NHANES. J Toxicol Environ Health. 2009;72(Pt A):915–24.

    Google Scholar 

  9. 9.

    Bolden AL, Kwiatkowski CF, Colborn T. New look at BTEX: are ambient levels a problem? Environ Sci Technol. 2015;49: 5261–76.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Egeghy PP, Tornero-Velez R, Rappaport SM. Environmental and biological monitoring of benzene during self-service automobile refueling. Environ Health Perspect. 2000;108:1195–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Singh HB, Salas L, Viezee W, Sitton B, Ferek R. Measurement of volatile organic chemicals at selected sites in California. Atmos Environ. 1992;26:2929–46.

    Article  Google Scholar 

  12. 12.

    Jia C, Batterman S, Godwin C. VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers. Atmos Environ. 2008;42: 2083–100.

    Article  CAS  Google Scholar 

  13. 13.

    Grattan LM, Roberts S, Mahan WT Jr., McLaughlin PK, Otwell WS, Morris JG Jr. The early psychological impacts of the deepwater horizon oil spill on Florida and Alabama communities. Environ Health Perspect. 2011;119:838–43.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Solomon GM, Janssen S. Health effects of the gulf oil spill. J Am Med Assoc. 2010;304:1118–9.

    Article  CAS  Google Scholar 

  15. 15.

    Kostiainen R. Volatile organic compounds in the indoor air of normal and sick houses. Atmos Environ. 1995;29:693–702.

    Article  CAS  Google Scholar 

  16. 16.

    Wallace L, Pellizzari E, Hartwell TD, Perritt R, Ziegenfus R. Exposures to benzene and other volatile compounds from active and passive smoking. Arch Environ Health. 1987;42:272–9.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Grady SJ, Casey GD. Occurrence and distribution of methyl tert-butyl ether and other volatile organic compounds in drinking water in the Northeast and Mid-Atlantic regions of the United States, 1993–1998. U.S. Geological Survey and Office of Ground Water and Drinking Water, U.S. Environmental Protection Agency; 2001. Contract No.: 00-4228.

  18. 18.

    López E, Schuhmacher M, Domingo JL. Human health risks of petroleum-contaminated groundwater. Environ Sci Pollut Res. 2008;15:278–88.

    Article  CAS  Google Scholar 

  19. 19.

    Arnold SM, Angerer J, Boogaard PJ, Hughes MF, O’Lone RB, Robison SH, et al. The use of biomonitoring data in exposure and human health risk assessment: benzene case study. Crit Rev Toxicol. 2013;43:119–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Pierce CH, Chen YL, Hurtle WR, Morgan MS. Exponential modeling, washout curve reconstruction, and estimation of half-life of toluene and its metabolites. J Toxicol Environ Health-Part A. 2004;67:1131–58.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    ATSDR. Toxicological Profile for Benzene. Agency for Toxic Substances and Disease Registry; 2007.

  22. 22.

    ATSDR. Toxicological Profile for Xylene. Agency for Toxic Substances and Disease Registry; 2007.

  23. 23.

    ATSDR. Toxicological Profile for Ethylbenzene. Agency for Toxic Substances and Disease Registry; 2010.

  24. 24.

    ATSDR. Toxicological Profile for Toluene. Agency for Toxic Substances and Disease Registry; 2015.

  25. 25.

    Churchill JE, Ashley DL, Kaye WE. Recent chemical exposures and blood volatile organic compound levels in a large population-based sample. Arch Environ Health: Int J. 2001;56:157–66.

    Article  CAS  Google Scholar 

  26. 26.

    Uddin MS, Blount BC, Lewin MD, Potula V, Ragin AD, Dearwent SM. Comparison of blood volatile organic compound levels in residents of Calcasieu and Lafayette Parishes, LA, with US reference ranges. J Expo Sci Environ Epidemiol. 2014;24:602–7.

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Kwok R, Engel L, Miller A, Blair A, Curry M, Jackson II W, et al. The GuLF STUDY: a prospective study of persons involved in the Deepwater Horizon oil spill response and clean-up. Environ Health Perspect. 2017;125:570–578

  28. 28.

    Blount BC, Kobelski RJ, McElprang DO, Ashley DL, Morrow JC, Chambers DM, et al. Quantification of 31 volatile organic compounds in whole blood using solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr B. 2006;832: 292–301.

    Article  CAS  Google Scholar 

  29. 29.

    Centers for Disease Control and Prevention (CDC). Laboratory Method: Volatile Organic Compounds (VOCs) in whole blood. Emergency Response and Air Toxicants Branch Division of Laboratory Sciences, National Center for Environmental Health. https://wwwn.cdc.gov/nchs/data/nhanes/2005-2006/labmethods/vocwb_d_met_volatile-organic-compounds.pdf.

  30. 30.

    Chambers DM, McElprang DO, Waterhouse MG, Blount BC. An improved approach for accurate quantitation of benzene, toluene, ethylbenzene, xylene, and styrene in blood. Anal Chem. 2006;78: 5375–83.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    CDC. 2007–2008 National Health and Nutrition Examination Survey. National Center for Health Statistics 2015. National Center for Health Statistics. https://www.cdc.gov/nchs/nhanes/nhanes2007-2008/questionnaires07_08.htm.

  32. 32.

    Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS). National Health and Nutrition Examination SurveyData. 4 Oct 2017; Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2017.

  33. 33.

    Williams R, Rea A, Vette A, Croghan C, Whitaker D, Stevens C, et al. The design and field implementation of the Detroit Exposure and Aerosol Research Study. J Expo Sci Environ Epidemiol. 2009;19:643–59.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Chambers DM, Blount BC, McElprang DO, Waterhouse MG, Morrow JC. Picogram measurement of volatile n-alkanes (n-hexane through n-dodecane) in blood using solid-phase microextraction to assess nonoccupational petroleum-based fuel exposure. Anal Chem. 2008;80:4666–74.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Chambers DM, McElprang DO, Mauldin JP, Hughes TM, Blount BC. Identification and elimination of polysiloxane curing agent interference encountered in the quantification of low-picogram per milliliter methyl tert-butyl ether in blood by solid-phase microextraction headspace analysis. Anal Chem. 2005;77:2912–9.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Jia C, Ward KD, Mzayek F, Relyea G. Blood 2,5-dimethyfuran as a sensitive and specific biomarker for cigarette smoking. Biomarkers. 2014;19:457–62.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Chambers DM, Ocariz JM, McGuirk MF, Blount BC. Impact of cigarette smoking on volatile organic compound (VOC) blood levels in the U.S. population: NHANES 2003-2004. Environ Int. 2011;37:1321–8.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, et al. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environ Health Perspect. 2004;112: 1691–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Whitcomb BW, Schisterman EF. Assays with lower detection limits: implications for epidemiological investigations. Paediatr Perinat Epidemiol. 2008;22:597–602.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Jia C, Batterman S, Godwin C. VOCs in industrial, urban and suburban neighborhoods—Part 2: Factors affecting indoor and outdoor concentrations. Atmos Environ. 2008;42:2101–16.

    Article  CAS  Google Scholar 

  41. 41.

    Sexton K, Adgate JL, Church TR, Ashley DL, Needham LL, Ramachandran G, et al. Children’s exposure to volatile organic compounds as determined by longitudinal measurements in blood. Environ Health Perspect. 2004;113:342–9.

    Article  PubMed Central  CAS  Google Scholar 

  42. 42.

    Wallace LA, Pellizzari ED, Hartwell TD, Sparacino C, Whitmore R, Sheldon L, et al. The TEAM study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota. Environ Res. 1987;43:290–307.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Wheeler AJ, Wong SL, Khoury C, Zhu J. Predictors of indoor BTEX concentrations in Canadian residences. Health Rep. 2013;24:11.

    PubMed  Google Scholar 

  44. 44.

    Fan AZ, Prescott MR, Zhao G, Gotway CA, Galea S. Individual and community-level determinants of mental and physical health after the deepwater horizon oil spill: findings from the gulf States population survey. J Behav Health Serv Res. 2015;42:23–41.

    Article  PubMed  Google Scholar 

  45. 45.

    McCoy MA, Salerno JA, (eds). Assessing the Effects of the Gulf of Mexico Oil Spill on Human Health. New Orleans, LA: National Academy of Sciences; 2010.

    Google Scholar 

  46. 46.

    Simon-Friedt BR, Howard JL, Wilson MJ, Gauthe D, Bogen D, Nguyen D, et al. Louisiana residents’ self-reported lack of information following the Deepwater Horizon oil spill: Effects on seafood consumption and risk perception. J Environ Manag. 2016;180:526–37.

    Article  Google Scholar 

  47. 47.

    Wilson MJ, Frickel S, Nguyen D, Bui T, Echsner S, Simon BR, et al. A targeted health risk assessment following the Deepwater Horizon oil spill: polycyclic aromatic hydrocarbon exposure in Vietnamese-American shrimp consumers. Environ Health Perspect. 2015;123:152–9.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159:702–6.

    Article  PubMed  Google Scholar 

  49. 49.

    Chambers DM, Ocariz JM, McGuirk MF, Blount BC. Impact of cigarette smoking on Volatile Organic Compound (VOC) blood levels in the U.S. Population: NHANES 2003–2004. Environ Int. 2011;37:1321–8.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Census Bureau urban-rural classification 2016. U.S. Census Bureau. https://www.census.gov/geo/reference/urban-rural.html.

  51. 51.

    Sammarco PW, Kolian SR, Warby RA, Bouldin JL, Subra WA, Porter SA. Concentrations in human blood of petroleum hydrocarbons associated with the BP/deepwater horizon oil spill, Gulf of Mexico. Arch Toxicol. 2016;90:829–37.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Batterman SSF-C, Li S, Mukherjee B, Jia C. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data. Boston, MA: Health Effects Institute; 2014.

    Google Scholar 

  53. 53.

    Wu XM, Fan ZT, Zhu X, Jung KH, Ohman-Strickland P, Weisel CP, et al. Exposures to volatile organic compounds (VOCs) and associated health risks of socio-economically disadvantaged population in a “hot spot” in Camden, New Jersey. Atmos Environ. 2012;57:72–9.

    Article  CAS  Google Scholar 

  54. 54.

    ATSDR. Interaction profile for: benzene, toluene, ethylbenzene, and xylenes (BTEX). Agency for Toxic Substances and Disease Registry; 2004.

  55. 55.

    Boberg E, Lessner L, Carpenter DO. The role of residence near hazardous waste sites containing benzene in the development of hematologic cancers in upstate New York. Int J Occup Med Environ Health. 2011;24:327–38.

    Article  PubMed  Google Scholar 

  56. 56.

    Gorber CS, Schofield-Hurwitz S, Hardt J, Levasseur G, Tremblay M. The accuracy of self-reported smoking: a systematic review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine Tob Res. 2009;11:12–24.

    Article  Google Scholar 

  57. 57.

    Lioy PJ, Fan ZH, Zhang J, Georgopoulos P, Wang S, Ohman-Strickland P, et al. Personal and ambient exposures to air toxics in Camden, New Jersey. Boston, MA: Health Effects Institute. 2011;160:3–127

  58. 58.

    Zabiegala B, Urbanowicz M, Namiesnik J, Gorecki T. Spatial and seasonal patterns of benzene, toluene, ethylbenzene, and xylenes in the Gdansk, Poland and surrounding areas determined using radiello passive samplers. J Environ Qual. 2010;39:896–906.

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Atari DO, Luginaah IN, Gorey K, Xu X, Fung K. Associations between self-reported odour annoyance and volatile organic compounds in ‘Chemical Valley’, Sarnia, Ontario. Environ Monit Assess. 2013;185:4537–49.

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Soto-Garcia L, Ashley WJ, Bregg S, Walier D, LeBouf R, Hopke PK, et al. VOCs emissions from multiple wood pellet types and concentrations in indoor air. Energy Fuels 2015;29:150911132333008.

  61. 61.

    Wolkoff P. How to measure and evaluate volatile organic compound emissions from building products. A perspective. Sci Total Environ. 1999;227:197–213.

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Yamada H. Contribution of evaporative emissions from gasoline vehicles toward total VOC emissions in Japan. Sci Total Environ. 2013;449:143–9.

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Harrison RMD-SJ, Baker SJ, Aquilina N, Meddings C, Harrad S, Matthews I, Vardoulakis S. HRA measurement and modeling of exposure to selected air toxics for health effects studies and verification by biomarkers. Boston, MA: Health Effects Institute; 2009.

  64. 64.

    Jia C, Batterman SA, Relyea GE. Variability of indoor and outdoor VOC measurements: an analysis using variance components. Environ Pollut. 2012;169:152–9.

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    IARC. IARC monographs on the evaluation of carcinogenic risks to humans: benzene. Lyon, France: International Agency for Research on Cancer (IARC); 2012.

    Google Scholar 

  66. 66.

    Rappaport SM, Kim S, Lan Q, Vermeulen R, Waidyanatha S, Zhang L, et al. Evidence that humans metabolize benzene via two pathways. Environ Health Perspect. 2009;117:946–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. 67.

    Hays SM, Pyatt DW, Kirman CR, Aylward LL. Biomonitoring equivalents for benzene. Regul Toxicol Pharmacol. 2012;62:62–73.

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    Pierce C, Chen Y, Hurtle W, Morgan M. Exponential modeling, washout curve reconstruction, and estimation of half-life of toluene and its metabolites. J Toxicol Environ Health Part A. 2004;67:1131–58.

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Paustenbach D, Galbraith D Biomonitoring and biomarkers: exposure assessment will never be the same. Environ Health Perspect. 2006;114:1143-9.

Download references

Acknowledgements

We thank Julianne Payne, Audra Hodges, and Mark Bodkin for data management on this project.

Funding

This work was funded by the NIH Common Fund and the Intramural Program of the NIH, National Institute of Environmental Health Sciences (Z01 ES 102945).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dale P. Sandler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Werder, E.J., Gam, K.B., Engel, L.S. et al. Predictors of blood volatile organic compound levels in Gulf coast residents. J Expo Sci Environ Epidemiol 28, 358–370 (2018). https://doi.org/10.1038/s41370-017-0010-0

Download citation

Keywords

  • Biomonitoring
  • Volatile organic compounds
  • Personal exposure

Further reading

Search

Quick links