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Single cell analysis unveils B cell-dominated immune subtypes
in HNSCC for enhanced prognostic and therapeutic
stratification
Kang Li1, Caihua Zhang1, Ruoxing Zhou1, Maosheng Cheng1, Rongsong Ling 2, Gan Xiong3, Jieyi Ma1, Yan Zhu1, Shuang Chen1,
Jie Chen3✉, Demeng Chen1✉ and Liang Peng4✉

Head and neck squamous cell carcinoma (HNSCC) is characterized by high recurrence or distant metastases rate and the prognosis
is challenging. There is mounting evidence that tumor-infiltrating B cells (TIL-Bs) have a crucial, synergistic role in tumor control.
However, little is known about the role TIL-Bs play in immune microenvironment and the way TIL-Bs affect the outcome of immune
checkpoint blockade. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, the
study identified distinct gene expression patterns in TIL-Bs. HNSCC samples were categorized into TIL-Bs inhibition and TIL-Bs
activation groups using unsupervised clustering. This classification was further validated with TCGA HNSCC data, correlating with
patient prognosis, immune cell infiltration, and response to immunotherapy. We found that the B cells activation group exhibited a
better prognosis, higher immune cell infiltration, and distinct immune checkpoint levels, including elevated PD-L1. A prognostic
model was also developed and validated, highlighting four genes as potential biomarkers for predicting survival outcomes in
HNSCC patients. Overall, this study provides a foundational approach for B cells-based tumor classification in HNSCC, offering
insights into targeted treatment and immunotherapy strategies.
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INTRODUCTION
Head and neck cancers (HNC) consist of a variety of tumors of the
upper respiratory tract and are the seventh most common cancer
worldwide.1,2 And among HNC, head and neck squamous cell
carcinoma (HNSCC) is the most common histologic subtype,
accounting for approximately more than 90%.3 Over the past
decades, multimodal approaches based on surgery, radiotherapy,
and molecular targeted therapy have provided substantial clinical
benefit to patients with HNC. Unfortunately, a high percentage of
patients still end up with recurrence or distant metastases, and
their prognosis remains poor.4–6 And as a first-line treatment for
patients with progressive recurrence or metastasis, immune
checkpoint blockade therapy has revolutionized the treatment
strategy.7,8 Yet in-depth studies are needed regarding how to
optimize the therapy with these agents, such as improving the
overall response rate of patients. Therefore, HNSCC remains an
extremely complex group of diseases and at this stage a better
understanding of the molecular and cellular mechanisms of
HNSCC is needed, which may help to discover new therapeutic
strategies.
The tumor microenvironment (TME) consists of a variety of

immune cells, endothelial cells, and fibroblasts, with which tumor
cells interact continuously during tumor development.9 And there
is growing evidence that the ongoing interaction between tumor

cells and the tumor microenvironment is an important determi-
nant of tumorigenesis, progression, metastasis, and response to
therapy.10,11 For example, in melanoma, higher densities of CD8+

T cells in the tumor core and margin are associated with increased
PD-1 and PD-L1 blockade responses,12 while several subpopula-
tions of CD4+ Th1 cells are also more abundant in CTLA-4-
responsive tumors.13 And in recent studies, intratumoral or
peritumoral B cells have been associated with a positive prognosis
and response to immunotherapy.14–16 These B cells usually form
tertiary lymphoid structures (TLS) that establish a local and
sustained immune response, exerting specific antitumor immune
effects by secreting antibodies that recognize tumor-associated
antigens and enhancing the killing action of T cells and natural
killer cells.14,16 In HNSCC, tumor-infiltrating B lymphocytes (TIBs)
are an important component of TME, indicating their involvement
in the development of HNSCC. Furthermore, it has been shown
that TIBs are associated with better patient survival in HNSCC17

and that B-cell activation is associated with PD-1 blockade.18

These studies suggest that the B-cell population plays a critical
role in antitumor immunity in HNSCC, and therefore it is necessary
to explore the gene expression profile of B cells in HNSCC and its
relationship to patient prognosis and immunotherapy prediction.
Recently, single-cell RNA sequencing (scRNA-seq) technology

has provided an efficient way to obtain high-resolution portraits of

Received: 28 November 2023 Revised: 27 February 2024 Accepted: 28 February 2024

1State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First
Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; 2Institute for Advanced Study, Shenzhen University, Shenzhen, China; 3Hospital of Stomatology, Guangdong
Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China and 4Senior Department of Oncology, The Fifth Medical
Center of PLA General Hospital, Beijing, China
Correspondence: Jie Chen (chenj827@mail.sysu.edu.cn) or Demeng Chen (chendm29@mail.sysu.edu.cn) or Liang Peng (pengliang_301@163.com)
These authors contributed equally: Kang Li, Caihua Zhang, Ruoxing Zhou

www.nature.com/ijosInternational Journal of Oral Science

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-024-00292-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-024-00292-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-024-00292-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-024-00292-1&domain=pdf
http://orcid.org/0000-0002-0402-9818
http://orcid.org/0000-0002-0402-9818
http://orcid.org/0000-0002-0402-9818
http://orcid.org/0000-0002-0402-9818
http://orcid.org/0000-0002-0402-9818
mailto:chenj827@mail.sysu.edu.cn
mailto:chendm29@mail.sysu.edu.cn
mailto:pengliang_301@163.com
www.nature.com/ijos


tumor cell ecosystems from tumors.19,20 More specifically, scRNA-
seq analysis of cell types and cell states of the TME can provide
further information on the molecular characteristics of the disease,
paving the way for personalized immunotherapy. Establishing
tumor subtype typing based on the molecular characteristics of
specific immune cells may be a reliable way to predict the effect of
immunotherapy as well as the prognosis of patients. Here, we
characterized the scRNA-seq dataset of HNSCC regarding B cells
and established two B cell subtypes based on single-cell
expression of differential genes. We characterized both subtypes
at the single-cell level and at the gene level; and verified the
consistency of typing in an additional independent sample cohort.
In addition, we analyzed the differential genes of the two B-cell
subtypes and constructed a B-cell activation gene signature. We
then validated the prognostic value of the B-cell activation gene
signature based on the TCGA database and the GEO database, and
analyzed in depth its relationship with immune infiltration and ICB
response. In addition, we pioneered the application of HNSCC in
combination with Cox proportional hazards model to establish a
prognostic risk prediction model. This study provides support for
the role of B cells in antitumor immunity in HNSCC and provides
new insights into B cell-based tumor classification.

RESULTS
Identification and characterization of B-cell immune classification
in an independent scRNA-seq dataset
After quality control and data filtering, we obtained single-cell
transcriptomes of 105943 immune cells from 26 HNSCC samples
(GSE139324). To identify the major populations and subpopula-
tion compositions of tumor infiltrating immune cells, we
performed clustering using Seurat to identify the major immune
cell types, including NK cells, CD4+ T cells, CD8+ T cells, cycling
T cells, myeloid cells, and B cells (Fig. 1a). Each cell type was
identified based on classical marker genes and literature evidence
(Fig. 1b, c). The immune cell cluster composition in each patient
sample was also shown to observe the state of tumor immune
environment in all samples (Fig. 1d).
To interrogate the functional subpopulation and potential role

of TIL-Bs in HNSCC, cells defined as B cells in the first level of
clustering were selected and re-clustered to identify 15 different B
cell subpopulations (Fig. 1e). Then we used Findallmarkers
function on these 15 B cell clusters to obtain the B cell-
associated differentially expressed genes set (Methods). As a
result, a total of 440 marker genes were found, which were used to
perform a new unsupervised clustering of the HNSCC samples
using ConsensusClusterPlus for feature selection and re-cluster the
25 HNSCC samples (Fig. 1f and Supplementary Fig. 1a). Principal
component analysis also classifies the samples into two groups
based on the geneset, called the B cells activation group and the B
cells inhibition group (Fig. 1g). Samples in these two groups had
the largest difference in the proportion and number of their CD8+

T cells (Supplementary Fig. 1b–d), indicating a possible distinction
in their anti-tumor immunity between these two groups.
Previous data revealed disparities in tumor immunity based on

single-cell sample groupings of B-cell signature genes, therefore
we dissected the discrepancies between the two groups at the
genetic level. As indicated in the volcano map, using log2FC > 1
and P < 0.05 as cut-off thresholds, we identified 43 differentially
expressed genes (21 up-regulated and 22 down-regulated genes)
between the B cell activation and B cell inhibition groups (Fig. 2a).
We defined the 21 upregulated genes as B cell activation gene
signature (BCAGS) and used this signature for the next validation
analysis. Most of the up-regulated genes were associated with
activation of B cells, whereas the down-regulated genes were
associated with inhibition of B cells (Fig. 2a, b). The up-regulated
genes were highly enriched in the regulation of B cell activation, B
cell receptor signaling pathway, and B cell activation pathway,

according to GO function enrichment analysis (Fig. 2c). We then
performed GO function enrichment for DEGs in other immune cell
clusters in these two groups, and found that the upregulated
genes in the B cells activation group facilitated multifunctional
immunological regulation, such as positive regulation of leukocyte
activation, antigen binding, cell killing and immune cell recruit-
ment (Supplementary Fig. 2a–e).
Emerging evidence had demonstrated immune cell function or

communication was skewed in malignancies. However, a global
profile of immune cell communication in HNSCC based on this
grouping approach is largely undefined. To systematically
investigate cell-cell communication in the B-cell activation and
B-cell suppression groups, we used CellChat to conduct an
unbiased analysis of the overall and differential number and
strength of interactions, as well as “ligand-receptor” interactions.
Intriguingly, the strength of cell-cell communication activation
differed between the two groups. As shown, the overall strength
of immune cell interactions increased in the B cells activation
group (Fig. 2d), and T-cell direct interactions were more active
(Supplementary Fig. 2f). And in the ligand-receptor interaction, the
B cells activation group exhibited more CSF, CXCL, and MHC-I
signaling pathway, while CD22, and CD23 was inhibited, indicating
that the B cells activation group improved anti-tumor immunity
through cell-cell intercommunication (Supplementary Fig. 2g).
These cell-cell communication data provide evidence for the
formation of immune cell-cell communication stratification based
on the B-cell signature gene HNSCC classification.

Validation for B-cell classification suggests the consistency in
different scRNA-seq datasets
To further demonstrate the merits of the obtained B-cell signature
genes for classifying HNSCC patients, we collected another HNSCC
single-cell data (GSE164690) as the validation cohort. We selected
tumor-infiltrating immune cell populations and defined them
according to classical markers or evidence from the literature,
including NK cells, CD4+ T cells, CD8+ T cells, myeloid cells, and B
cells (Supplementary Fig. 3a–c). The percentage of immune
population cells is also listed for all 18 patients (Supplementary
Fig. 3d). We also performed unsupervised clustering of these
18 samples using BCAGS obtained previously, using Consensu-
sClusterPlus for feature selection and re-clustering (Fig. 3a).
Consistently, the patients were clustered into two distinct groups
in this cohort (Fig. 3b). Furthermore, in the grouping based on the
B-cell signature gene set, we also observed differences in the
number and proportion of CD4+ T cells, CD8+ T cells, and B cells
between the two groups (Supplementary Fig. 3e, f), which
supports the possibility that there is a gap in anti-tumor immunity
with this classifying approach.
We also verified the consistency of this classifying in the single-

cell cohort at the gene level. Volcano plots show the DEGs in the
transcriptome level between the B cells activation and B cells
inhibition groups, where 29 up-regulated and 101 down-regulated
genes were observed (Fig. 3c). GO function enrichment showed
the upregulated DEGs were significantly enriched in the
immunoglobulin complex, circulating, immunoglobulin receptor
binding, and regulation of B cell activation pathway (Fig. 3d).
Consistent with the previous cohort, the up-regulated genes were
mostly B-cell activation-related genes (Fig. 3e). We also performed
GO function enrichment on the DEGs of other immune cell
populations in these two groups and showed that the upregulated
genes in the B cells activation group mediated multifunctional
immune regulation, such as positive T cell selection, positive
regulation of leukocyte activation, lymphocyte-mediated immu-
nity, and MHC class II protein complex (Supplementary Fig. 4a–e).
The above results suggest that the classifying method is
consistent across different single-cell cohorts.
Furthermore, there was a high degree of consistency for cell-cell

communication in both groups, with enhanced total number and

Single cell analysis unveils B cell-dominated immune subtypes in HNSCC. . .
Li et al.

2

International Journal of Oral Science           (2024) 16:29 



strength of immune cell interactions in B cells activation group
(Supplementary Fig. 4e) and more active direct T-cell population
interactions (Supplementary Fig. 4f). And in ligand-receptor
interaction, the B cells activation group showed more active
CSF, CXCL, and MHC-I signaling pathway, while CD22 was
inhibited, indicating that the B cells activation group improved
anti-tumor immunity through cell-cell interactions (Supplementary
Fig. 4g). These cell-cell communication data provide evidence for

consistency in different single-cell cohorts based on the B-cell
signature gene classifying of HNSCC.

B-cell classification in TCGA HNSCC and association with overall
survival
To verify whether this B-cell signature gene classifying method
applicable to TCGA HNSCC, we performed unsupervised clustering
of RAN-seq expression profiles of 501 patient samples and obtained
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two clusters based on BCAGS (Fig. 4a), and tSNE clustering showed
that the samples divided into two groups (Fig. 4b). As shown in the
volcano plot, 388 upregulated genes and 42 downregulated genes
were identified in the two groups from TCGA HNSCC patients
(Fig. 4c). GO function enrichment analysis for the DEGs in the B cells
activation group were found to be significantly enriched in
lymphocyte activation and immune activation related pathways
(Fig. 4d). We correlated the grouping with clinical information to
explore the prognostic value of this tumor typing. Previous studies
have shown that B cell is associated with improved overall survival in
tumor patients.21,22 In our study, the Kaplan-Meier curve showed
that patients in the B cells activation group had a significant better
survival prognosis (Fig. 4e).
To explore the effect of the classifying method on the

infiltration fraction of immune cells, ssGSEA was used to visualize

the relative abundance of 28 infiltrating immune cell populations.
B cells activation group regions showed a higher abundance of
immune cell infiltration (Fig. 4f and Supplementary Fig. 5a).
Pearson’s correlation study revealed that the abundances of these
two groups were positively related within a local environment
(Supplementary Fig. 5b). Samples from the B cells activation group
in TCGA HNSCC had a higher proportion of tumor-infiltrating
lymphocytes cells (Supplementary Fig. 5c), than the B cells
inhibition group, as estimated by CIBERSORT. Taken together,
our data demonstrated the consistency of such classifying method
both in single-cell and RNA-seq cohort.

B-cell classification accurately predict immunotherapy response
We also assessed the infiltration fraction of stromal and immune
cells in the tumor using the ESTIMATE function and inferred the
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purity of the tumor. Higher immune scores, stromal scores, and
ESTIMATE score in the B cells activation group, lower tumor
purity than in the B cells inhibition group were observed (Fig.
5a–d). Our previous data suggest the presence of a higher
abundance of immune cells in the B cells activation group,
indicating a potential greater susceptibility to immunotherapy.
Meanwhile, we explore the expression profile analysis of typical
immune inhibitory molecules (PD-1, CTLA4, LAG3, BTLA, CD274,
HAVCR2, VSIR, and PDCD1LG2) on the two groups. Patients
within B cells inhibition group showed significant down-
regulated inhibitory receptors (Fig. 5e). To further explore
possible correction between the classification and immunother-
apy response, we calculate the tumor immune dysfunction and
exclusion (TIDE) scores in both groups to assess the potential for
tumor immune evasion and to predict response to immune
response. The results showed B cells activation group had lower
TIDE scores than B cells inhibition group (Fig. 5f). The lower TIDE

score is usually correlated with better ICB therapy. Our results
indicated that patients in the B cells activation group were
possibly sensitive to the ICB therapy.

Four-gene prognostic model development and validation
in HNSCC
Our investigation utilized LASSO regression analysis to optimize
the BCAGS, unveiling a four-gene ensemble (JCHAIN, GZMB,
IGHA1, and PDRX4), fostering the construction of a pivotal
prognostic risk model. Among these, JCHAIN, GZMB, and IGHA1
showed significantly elevated expression in the low-risk group,
while PDRX4 demonstrated notably increased expression in the
high-risk group (Fig. 6a). Subsequently, employing univariate Cox
regression analyses across the TCGA cohorts, we sought to discern
whether the risk score, untethered from conventional clinical
factors, could autonomously prognosticate patient outcomes.
Encouragingly, our findings unveiled the risk score (HR: 1.9; 95%
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CI: 1.2–3) as an autonomous harbinger of OS (Fig. 6b). Notably, KM
and log-rank analyses illuminated the stark divergence in OS
between high and low-risk HNSCC cohorts (Fig. 6c). Moreover, the
efficacy of risk scores in forecasting OS within the TCGA cohort was
conspicuous (AUC for 1-, 3-, 5-, and 10-year OS: 0.622 0, 0.634 2,
0.570 2, and 0.626 3, respectively), showcasing their adeptness in
long-term prognostication (Fig. 6d). To fortify the prognostic
validity of our model, we enlisted a clinical cohort comprising 20
heterogeneous HNSCC patients, aiming to authenticate the

expression patterns of the quartet genes (JCHAIN, GZMB, IGHA1,
and PRDX4). Employing mRNA quantification of these genes via
RT-qPCR, we delineated a precise demarcation between low and
high-risk patients within our clinical cohort based on the genes’
expression levels. Strikingly, the JCHAIN, GZMB, and IGHA1
exhibited markedly escalated expression within the low-risk
category, while PRDX4 showed a notable decrease (Fig. 6e).
Subsequent Kaplan-Meier analysis underscored a significant
correlation between the high risk group and a deteriorated
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prognosis in HNSCC patients (Fig. 6f). Complementary to RT-qPCR,
our investigative stride delved deeper through immunohistochem-
istry (IHC) analysis, unraveling spatial and protein-level insights that
corroborated the expression pattern of these genes within the
high-risk stratum (Figs. 6g, h). This substantiation further bolsters

the nexus between these genes and adverse clinical outcomes.
Remarkably, our experimental results seamlessly aligned with our
constructed risk model, affirming the potential of these four genes
as robust prognostic biomarkers in predicting survival outcomes
among HNSCC patients.
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DISCUSSION
With the in-depth research on tumor immune microenviron-
ment, anti-tumor immunotherapy, which aims to activate
autoimmunity, has received more attention, and become the
fourth treatment method alongside surgery, radiotherapy, and
chemotherapy.23,24 B cells are an important component of
adaptive immunity, and although the focus of tumor immunol-
ogy has been T cells, emerging studies have shown that B cells
infiltration in tumors is associated with better patient survi-
val,17,25 suggesting a great potential for effective activation of B
cell immune function in antitumor immunity. However, studies
on B-cell immune function-based classifying in HNSCC remain
unknown.
The scRNA-seq technique has emerged as an available tool for

analyzing the molecular feature of immune cell infiltration in TME.
In this study, we collected all tumor-infiltrating immune cells from
the HNSCC scRNA-seq data and defined them as CD4+ T cells,
CD8+ T cells, NK cells, circulating T cells, myeloid cells, and B cells.
In addition, we isolated B-cell subpopulations, identified critical
differential expressed gene sets associated with B-cell immune
function activation or suppression, and classified HNSCC patient
samples based on this gene set as B-cell activated group and B-cell
suppressed group, respectively. Similarly, researchers performed
molecular typing of colorectal cancer based on differential
expressed gene, DNA copy number, and gene regulatory net-
works.26 Another study, based on an artificial intelligence learning
framework, classified 10 cell states of tumors with more significant
predictive implications for tumor prognosis.27 Differential
expressed genes between the two typed B cells showed that the
B cells activation group upregulated the expression of genes
associated with B cell activation. Further GO functional analysis
revealed that the upregulated genes were significantly enriched in
pathways such as immune activation in the tumor immune
microenvironment. And our cell-cell communication analyses
predicted an increased interactions between the tumor-
infiltrating immune cells in the B cells activation group. It is also
consistent with the roles B cells play in antitumor immunity, where
they can impede tumor development by secreting immunoglobu-
lins and directly killing cancer cells, as well as promote tumor death
by other immune cells.17,25,28 High activity of macrophage
chemotactic pathways was also detected in plasma cells, for
example, suggesting a potential role of B cells in promoting the
recruitment of macrophages to TME in NPC.29 Of note, we then
validated the classification performance of the B cells DEGs
signature in another cohort of HNSCC single-cell data, demonstrat-
ing the applicability of this approach in different cohorts.
Although in this work, HNSCC classification based on B cells

DEGs was derived from scRNA-seq data, it can be generalized to
any scRNA-seq samples and RNA-seq samples with suitable
expression data. Thus, the typing method based on the B cells
DEGs was employed in TCGA HNSCC cohort. Intriguingly, our
classification method divided patients into groups with
significant OS stratification. This shows that we can classify
HNSCC into two distinct tumor groups based on B cells
infiltration, which aids in HNSCC for various immunotherapies.
Meanwhile, given the prognostic relevance of tumor micro-
environment, we compared the differences in immune infiltra-
tion between the two groups of patients. The results showed
that the proportion of lymphocytes and immune infiltration
score was larger in the B cells activation group of patients,
which is consistent with earlier data.
One of the hallmarks of tumor cells is the ability to adapt or

evade surveillance by the immune system.30–32 The potency of
this ability of tumor cells makes the response to immune
checkpoint inhibitors vary from patients. And the involvement
of B cells in the tumor microenvironment, as an essential part of
the immune system, impacts the fate of the immune response.
Currently, the most extensively utilized predictors of PD-1/PD-L1

inhibitor response are frequently single gene expressions, which
are insufficient to accurately predict ICB results. TIDE is a newly
discovered immunotherapy predictor that has been demonstrated
to outperform other biomarkers or indicators.33–35 We explored
the association between grouping and the TIDE signature to show
that the classification based on B cells DEGs signature may be
employed as a biomarker of immunotherapeutic response. Results
showed that patients in the B cells activation group had lower
TIDE and Dysfunction scores, suggesting that tumors with B cells
activation group had strong immunogenicity to activate immune
cells to detect cancers. Higher typical immune inhibitory receptors
expression in B cells activation group was observed, indicating
decreased anti-tumor immunity in patients.
Previous research has highlighted the effectiveness of gene

signatures in guiding both cancer treatments and prognostic
assessments.36,37 Through the utilization of sophisticated LASSO
and random forest survival models, we identified four robust
genes (JCHAIN, GZMB, IGHA1, and PDRX4) that exhibit significant
potential in predicting overall patient survival, exemplified by the
AUC values. Our innovative predictive model’s meticulous
biomarker assessment enables the stratification of patients based
on risk, thereby facilitating the tailoring of treatment strategies.
This empowers high-risk patients to benefit from vigilant
monitoring, novel interventions, or the opportunity to participate
in clinical trials, while offering low-risk patients the chance to
avoid unnecessary aggressive treatments. The integration of our
model into routine assessments offers a comprehensive outlook
on prognosis, empowering informed decision-making and opti-
mizing treatment modalities to elevate patient outcomes sig-
nificantly. This amalgamation between research findings and
practical applications underscores the transformative potential of
our model in revolutionizing cancer prognosis, ultimately prioritiz-
ing the well-being of patients. Recognizing the imperative
necessity to bridge the gap between research discoveries and
their practical implementation, our aim is to elucidate the effective
integration of our prognostic prediction model into clinical
practice. The reliance on single-cell RNA sequencing data from
the GEO may not fully represent the diverse HNSCC population.
Additionally, the unsupervised clustering approach used for
classifying HNSCC samples could introduce subjective biases.
While validation with TCGA data strengthens the findings, further
external validation is necessary. Moreover, the patient selection
and sample characteristics from GEO and TCGA might affect the
outcomes, and the proposed prognostic model and biomarkers
require validation in broader cohorts. These points highlight the
need for careful interpretation and further research to substantiate
the findings.
In conclusion, we established and validated a B cells DEGs

signature-based HNSCC classification by combined analysis of
single-cell and TCGA HNSCC data, and the classification was
effective in predicting patient prognosis and patient response
to immunotherapy. Our prognostic risk model could provide
guidance for clinical HNSCC classification and immunotherapy.
Our study lays the foundation for tumor infiltration-based
immune cell tumor classification for the precise treatment
of HNSCC.

MATERIALS AND METHODS
Data download
Single-cell transcriptome data from two HNSCC cohorts, GSE139324
and GSE164690, were downloaded from Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) and used to
establish B cell-based HNSCC classification, construct activated B cell
genetic signature and to verify the consistency of HNSCC
classification. We selected these datasets due to their extensive
coverage of B cell clusters, which are essential to the goals of our
research. Our intention in using a variety of samples was to reduce
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possible biases and confirm that our results are applicable across
different patient groups. In addition, to explore the ability of the
activating B cell gene signature to predict clinical prognosis, we
downloaded transcriptomic and clinical data from the TCGA
database for 501 HNSCC patients. We also downloaded information
on HNSCC patient cohorts from the GEO database for further
survival-related genetic screening.

HNSCC patient samples
Twenty patients undergoing surgery at the Oral and Maxillofacial
Surgery Department of the First Affiliated Hospital, Sun Yat-Sen
University, provided HNSCC tumor tissue samples. Consent forms
were signed by all participants before the study. The Institutional
Review Board of Sun Yat-Sen University’s First Affiliated Hospital
approved all patient-related research.

scRNA-seq data processing
We performed scRNA-seq data analysis by using the Seurat 4.0
package in R. Briefly, the Seurat object was created by importing the
sample expression matrixes into R using the Read10X function and
integrated the relevant clinical information. quality control process
involved several steps. Firstly, we chose to retain only those cells
that exhibited gene expression counts ranging from 200 to 10 000.
Furthermore, we filtered out cells with more than 10% of their reads
mapped to the mitochondrial genome, as this can be indicative of
poor cell quality. Additionally, we employed measures to remove
doublets (cells mistakenly identified as a single cell) from each
sample to ensure the purity and accuracy of our dataset. After
quality control, we proceeded to identify highly variable genes
(HVGs) as these genes are often key in distinguishing between
different cell types. We selected the top 2000 HVGs for further
analysis. Using these genes, we performed principal component
analysis (PCA) to reduce the dimensionality of our dataset and to
identify the major axes of variation. Based on the PCA results, we
conducted a cluster analysis using the top 1-20 principal
components. We primarily identified the following major cell types:
B cells, CD4+ T cells, CD8+ T cells, cycling T cells, and myeloid cells.

Acquisition of geneset for Consensus Clustering
To explore the role of B cells in HNSCC, we obtained the
differentially expressed genes set among all identity B cell subsets.
In brief, the Findallmarkers function was applied to identity Bcells-
realated subsets to calculate the differentially expressed genes
(DEGs) from each cell subpopulation with a threshold of
Log2FC > 1, P < 0.05. This geneset which is then used for
consensus clustering contains all possible characteristic genes of
the B-cell subpopulation.

BCAGS identification
To obtain the precise set of characteristic genes representing
B-cell subpopulations, DEGs of B-cell pseudo-bulk were identified
using the “limma” method. 22 genes in DEGs of B cell activation
group (Log2FC > 1, P < 0.05) were selected out for building B cell
activation gene signature (BCAGS).

GO enrichment analysis
To probe BCAGS at the genetic level, Gene ontology (GO)
enrichment analysis of B cell activation group was performed
using the “clusterProfiler” R package. We focused on Homo
sapiens as the selected species and considered biological
processes with a p-value threshold of <0.05. The results of GO
enrichment analysis of B cell activation group showed that the
upregulated genes were enriched in immune cell activation-
related pathways.

ssGSEA
The single-sample gene set enrichment analysis (ssGSEA) was
introduced to quantify the relative infiltration of 28 immune-

related cell types in the tumor microenvironment of two different
subgroups. Feature gene panels for each immune cell type were
obtained from a recent publication. The relative abundance of
each immune cell type was represented by an enrichment score in
ssGSEA analysis. The ssGSEA score was normalized to unity
distribution, for which zero is the minimal and one is the maximal
score for each immune cell type, and the histograms were based
on normalized ssGSEA scores. The bio-similarity of the immune
cell filtration was estimated by multidimensional scaling (MDS)
and a Gaussian fitting model.

CIBERSORT
In this study, CIBERSORT was used to assess differences in the
abundance of immune infiltrates based on BCAGS subgroups in
HNSCC cohorts from the TCGA and GEO databases. The scores of
each immune cell subpopulation were quantified by the
“CIBERSORT” R package based on the transcriptomic data of
HNSCC. All immune cell types in different subgroups were
predicted by the leukocyte signature matrix (LM22) of CIBERSORT.

Cell communication
The “CellChat” R package is used for cell-cell communication
analysis and creates CellChat objects based on two sets (BCSGS
based groups) of gene expression matrixes. The mergeCellChat
function was used to merge the two groups of CellChat objects
and analyze the differences in the number of inferred
interactions and the strength of interactions. And netVisual_-
diffInteraction was utilized to visualize the number of inferred
interactions and the strength of interactions. Cell-cell commu-
nications between the two groups in terms of “secreted
signalling” and “ receptor-ligand” were compared in different
immune cell populations.

Establishment of BCAGS prognostic risk model
To construct a prognostic risk model, TCGA HNSCC cases were
meticulously analyzed. Utilizing the “glmnet” package in R, a
rigorous least absolute shrinkage and selection operator (LASSO)
regression was conducted to identify genes most pertinent to
prognosis within the BCAGS. Subsequently, employing the “forest
plot” package, univariate Cox regression analyses were performed,
defining genes with hazard ratios (HR) > 1 as risk factors and HR < 1
as protective factor. Individualized risk scores were computed for
patients as follows: risk score= h0*e^∑ i= 0nexp () and stratified
survival curves plotted via the Kaplan–Meier method. Uni-cox
analyses further explored the intricate relationship between risk
scores, clinicopathological characteristics, and overall survival (OS)
in HNSCC.

Real-time quantitative PCR
Tissue samples obtained from patients diagnosed with HNSCC
were subjected to RNA extraction using the TRIzol reagent
(ThermoFisher, 15596018). The RNA concentration and purity
were meticulously assessed using the NanoDrop 2000 spectro-
photometer. Subsequently, RNA was reverse transcribed into
complementary DNA (cDNA) utilizing the Vazyme Reverse
Transcription kit (R312-01) following standardized protocols.
Real-time PCR was then performed on 1 μg of cDNA using the
SYBR Green™ Master Mix (AG, AG11701). Technical replicates for
each sample were conducted three times. GAPDH was employed
as the reference gene to accurately quantify the target mRNA
levels. The primer pairs used for Real-time PCR amplification were
as follows:
JCHAIN (forward: 5′-CCAGGATCATCCGTTCTTCCGA-3′; reverse:

5′- CAAATCTGGTTCTCAATGGTGAGG-3′).
GZMB (forward: 5′-CCCTGGGAAAACACTCACACA-3′; reverse: 5′-

GCACAACTCAATGGTACTGTCG-3′).
IGHA1 (forward: 5′-GCAGCATTCGGATTCACATTC-3′; reverse: 5′-

GATGTTCCTGATGTTGTCTCTGG-3′).
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PRDX4 (forward: 5′-CGCTTTTGGCGACAGACTTGAAG-3′; reverse:
5′- CCAAGTCCTCCTTGTCTTCGAG-3′).
GAPDH (forward: 5′-AGATCCCTCCAAAATCAAGTGG-3′; reverse:

5′- GGCAGAGATGATGACCCTTTT-3′).

IHC staining
The tissue specimens were initially fixed in 10% buffered formalin,
preserved in 70% ethanol, followed by embedding in liquid
paraffin, and subjecting to permeabilization treatments at 65 °C.
Then the processed paraffin blocks were finely sectioned into
5 μm slices, deparaffinized in 4 °C ethanol, and rehydrated in
phosphate-buffered saline (PBS) supplemented with 5% bovine
serum albumin (BSA) to prevent non-specific binding. Following
an overnight incubation with primary antibodies JCHAIN (Affinity
Biosciences, DF14810, 1:200), GZMB (Abcam, ab237847, 1:200),
IGHA1 (Abnova, H00003493-W01P, 1:200), and PDRX4 (Affinity
Biosciences, DF6425, 1:200), sections underwent a 30-minute
incubation with HRP-secondary antibodies. Finally, sections were
stained with DAB solution, counterstained with neutral back-
ground reagent, and observed microscopically. Image analysis
software was employed for thorough section analysis and to
obtain IHC score.

Survival analysis
After classifying the HNSCC using the B cell subsets gene
signature, each tumor group was associated with patient overall
survival. Specifically, patient samples from the TCGA and GEO
databases were clustered into two groups, Cluster1 and Cluster2,
using the obtained B cell subsets gene signature consisting of 43
genes, respectively. Kaplan-Meier survival curves for the two
groups were generated by the “survivor” R package, and survival
was considered significant by log-rank test P < 0.05.

Statistical analysis
In this study, the researchers were blinded to clinical annotations in
defining cell types and cell subtypes. Student’s t-test and Wilcoxon
signed-rank test were used to compare differences between
groups, and all statistics were considered statistically different at
P < 0.05. R software (version 4.0.3) was used to perform data
processing and analysis. All parameter settings of the R package
used in this study were default values, except where noted.
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