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Digital pathology-based artificial intelligence models for
differential diagnosis and prognosis of sporadic odontogenic
keratocysts
Xinjia Cai1, Heyu Zhang2, Yanjin Wang3, Jianyun Zhang1,4✉ and Tiejun Li1,4✉

Odontogenic keratocyst (OKC) is a common jaw cyst with a high recurrence rate. OKC combined with basal cell carcinoma as well as
skeletal and other developmental abnormalities is thought to be associated with Gorlin syndrome. Moreover, OKC needs to be
differentiated from orthokeratinized odontogenic cyst and other jaw cysts. Because of the different prognosis, differential diagnosis
of several cysts can contribute to clinical management. We collected 519 cases, comprising a total of 2 157 hematoxylin and eosin-
stained images, to develop digital pathology-based artificial intelligence (AI) models for the diagnosis and prognosis of OKC. The
Inception_v3 neural network was utilized to train and test models developed from patch-level images. Finally, whole slide image-
level AI models were developed by integrating deep learning-generated pathology features with several machine learning
algorithms. The AI models showed great performance in the diagnosis (AUC= 0.935, 95% CI: 0.898–0.973) and prognosis
(AUC= 0.840, 95%CI: 0.751–0.930) of OKC. The advantages of multiple slides model for integrating of histopathological information
are demonstrated through a comparison with the single slide model. Furthermore, the study investigates the correlation between
AI features generated by deep learning and pathological findings, highlighting the interpretative potential of AI models in the
pathology. Here, we have developed the robust diagnostic and prognostic models for OKC. The AI model that is based on digital
pathology shows promise potential for applications in odontogenic diseases of the jaw.
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INTRODUCTION
Odontogenic keratocyst (OKC) is a cyst that is primarily located in
the mandible and mostly affects males in their second and third
decades of life.1–3 Its occurrence accounts for around 12% of all
cysts in the jaw, making it the third most common cystic
condition.4 The histological features of OKC are a palisading basal
cell layer, basophilic nuclei of the basal cells distal to the basement
membrane and a corrugated superficial stratum corneum.3

Treatment methods for OKC comprise enucleation, marsupializa-
tion, curettage, resection, among others.3 It has been reported
that OKC has a high recurrence rate of ~14%–20%.1,5,6 The
occurrence of multiple OKCs is frequently linked to Gorlin
syndrome (GS, also recognized as nevoid basal cell carcinoma
syndrome).2,7 GS is an unusual autosomal dominant disorder that
manifests in various clinical features such as basal cell carcinoma,
OKCs, palmar dyskeratosis, and plantar depression.7 It arises from
mutations in the PTCH gene and abnormalities in sonic hedgehog
signal, which result in the proliferation of tumor cells.7 Therefore,
OKCs have been categorized as sporadic OKC and GS-associated
OKC, whereby the latter exhibits a significantly higher rate of
recurrence compared to sporadic OKC.5,6,8 Orthokeratinized
odontogenic cyst (OOC) is a rare type of developmental cyst that
makes up around 10% of what was previously classified as OKCs

but have now been recognized as a separate entity.9 OOCs have
unique clinical features that set them apart from OKCs, including
the absence of PTCH1 mutation and a lack of tendency to
recur.10,11 It has been identified that large lesions of OOC may
exhibit comparable radiographic traits to those of OKC.10

However, OOC presents distinctive and diagnostic features
morphologically. The lining of OOC comprises mostly of thin
and uniform stratified squamous epithelium and the basal layer
cells were flattened or cuboidal in shape.10 Additionally, the
palisading basal cells with reverse nuclear polarity and detach-
ment of the lining epithelium from the fibrous capsule, which are
the histopathological features of OKC, were infrequently observed
in OOC.5,10 The rates of recurrence differ significantly between
OKC, OOC, and GS. Therefore, it is imperative to recognize the
three diseases for their early identification and management.
The higher intrinsic growth potential of OKC compared to other

types of odontogenic cysts is a key feature that may also
contribute to its higher propensity for postoperative recurrence.2

Studies have investigated various clinical, imaging, histological,
and molecular pathological aspects of risk factors that may be
associated with OKC recurrence, but there is still a lack of clinically
applicable models that are sufficient to assess the recurrence
potential of OKC.6,12–16 Histopathological examination of tissue
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slides is vital for diagnosing OKC. Histopathological slides typically
contain hundreds of thousands of cells and artificial intelligence
(AI)-assisted analyses of these samples can provide invaluable
scientific and medical information.17 Recently, an increasing
number of studies have employed AI-based image analysis
techniques to evaluate routine histological slides.18–30 This offers
significant potential for disease research, as AI algorithms can
support the decision-making of clinicians and pathologists by
analyzing numerous digitized histological slides to derive relevant
scientific and clinical insights.17,31 In addition, AI systems broaden
the scope of information that can be derived from histopathology
slides. AI enables the identification of differential diagnoses and
prediction of prognoses based on histopathological images of
hematoxylin and eosin (H&E) stained disease samples.32

In this study, we developed two AI systems for constructing
diagnostic and prognostic models of OKC using deep learning
algorithms. The models exhibited excellent performance on the
testing dataset, providing evidence for the potential contribution
of AI in the clinical application.

RESULTS
The flowchart for the cohorts used in this study is shown in Fig. 1.
The samples were divided into a training cohort, which
constituted 70% of the dataset, and a testing cohort, which
constituted the remaining 30%, in this study. Fivefold cross-
validation was carried out within the training cohort. Additionally,
we boosted the algorithm’s efficacy by using the Grid-Search
algorithm to identify the optimal set of parameters.

t-SNE visualization and cross-validation
In the development of the diagnostic model, which included a
scenario for three-class classification, the feature dimensionality
was limited to a single decimal place. Additionally, we included
the predicted labels exclusively as histogram features, resulting in
the derivation of a feature set. To understand how patch-level
features aggregated into WSI-level representations, we employed
the t-SNE algorithm (Fig. 2a). Interestingly, clear differentiation was
observed among three groups of OKC, OOC, and GS when plotted
in a two-dimensional space. The Grid-Search algorithm was used
to determine the optimal model parameters for which parameter
tuning was conducted through fivefold cross-validation. Supple-
mentary Fig. 1A depicts the results of our cross-validation on the
training dataset, which indicated good performances for all.

Diagnostic model efficiency
We evaluated the accuracy of the pathology model in region
identification by using patch-level ROC curves to compare and
characterize the models. Supplementary Table 1 presents the AUC
for the model. The patch-level AUC for diagnosing OKC, OCC, and
GS in the testing cohort was 0.757 (95% CI: 0.755–0.758, Fig. 2b),
0.866 (95%CI: 0.865–0.867), and 0.474 (95%CI: 0.472–0.477),
respectively. To further assess the model performance, we visually
evaluated the aggregation of patches into WSI. We acquired
predicted labels and probability heatmaps to aid in this
assessment. From the results, it is clear that the feature modeling
achieved a noteworthy improvement after aggregation through
both the BoW and PLH processes. This shows the considerable
effectiveness of our feature aggregation logic.

543 cases
(OKC: n = 412, OOC: n = 97, GC: n = 34)

519 cases
(OKC: n = 400, OOC: n = 90, GC: n = 29)

Artificial intelligence model for
diagnosis of OKC (2 157 WSIs)

Artificial intelligence model for
prognosis of OKC (1 688 WSIs)

Evaluation of model performances

Artificial intelligence model for
prognosis of OKC (400 WSIs)

Training set: n = 363

Testing set: n = 156

Training set: n = 280

Testing set: n = 120

Training set: n = 280

Testing set: n = 120

Exclusion of unclear H&E staining (n = 24)

Fig. 1 The flowchart for the cohorts used in this study. A total of 543 cases, encompassing OKC, OOC, and GS, were obtained. Of these, 24
cases were excluded due to unclear or faded H&E staining. The remaining 519 cases, along with a total of 2 157 H&E-stained slides, were then
randomly assigned to the training and testing cohorts. The training cohort comprised 363 cases, while the testing cohort had 156 cases. Four
hundred cases of OKC were randomly assigned into two groups: the training cohort (280 cases) and the testing cohort (120 cases), in order to
develop a prognostic model of OKC using a ratio of 7:3
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Among all the machine learning methods tested, the SVM
algorithm demonstrated the most precise classification outcomes
by combining the micro and macro AUCs in the testing cohort
(Supplementary Fig. 2). The diagnostic AUC for OKC, OOC, and GS
in the testing dataset was 0.935 (95% CI: 0.898–0.973, Fig. 2c),
0.989 (95%CI: 0.976–1.000), 0.811 (95%CI: 0.664–0.959), respec-
tively. Furthermore, we generated confusion matrices for both the
training and testing datasets to visually interpret the model
classification performance (Supplementary Fig. 1B and Fig. 2d).
From the results, it is apparent that there is a tendency for OKC
and GS to be confused, while OCC is commonly identified as OCC.
Grad-CAM generates maps that display the localization of

classes by visualizing the gradients flowing into the final
convolutional layer of the network. This preserves spatial
information that is specific to the class. Notably, it does not need
any modifications to the model architecture or extra training.
Supplementary Fig. 3 illustrates the use of Grad-CAM in displaying
the activation of the last convolutional layer for diagnostic class
evaluation. This transparent depiction highlights the input image
regions that significantly contribute to the prediction, thus
providing valuable insights into the decision-making process of

the model. As shown in Fig. 3, the probably and prediction
heatmap of the diagnostic model clearly indicates that our
pathology model achieves a high level of accuracy when assessing
region tiles.

Prognostic model efficiency
In developing the prognostic model for the recurrence of OKC, we
retained two decimal places and integrated both predicted labels
and probabilities into the PLH and BoW processes. We performed
hyperparameter tuning on the training set using 5-fold cross-
validation and the Grid-Search algorithm. The results of this cross-
validation are presented in Supplementary Fig. 4A, all of which
demonstrate good performance. In the patch-level model for
predicting OKC recurrence, the Inception_v3 model displays
moderate performance with AUC values of 0.675 (95% CI:
0.674–0.676) for the training dataset and 0.663 (95% CI:
0.661–0.666) for the testing dataset, as illustrated in Fig. 4a.
In addition, we evaluated the aggregation of patches into WSI

levels to assess the performance of the models. There were better
performances of all machine learning models on the training and
test datasets (Table 1), and the SVM model (0.840, 95%
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Fig. 2 Diagnostic model evaluation. a The t-SNE algorithm among three groups of odontogenic keratocyst (OKC), orthokeratinized
odontogenic cyst (OOC), and Gorlin syndrome (GS) plotted in a two-dimensional space; b The patch-level AUC for diagnosing OKC, OCC, and
GS in the testing cohort; c The WSI-level AUC for OKC, OOC, and GS in the testing dataset; d Confusion matrices for the testing datasets to
visually interpret the model classification performance
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CI: 0.751–0.930) and ExtraTrees model (0.825, 95% CI: 0.727–0.924)
showed great efficiency on the test dataset (Fig. 4b). This
demonstrates that the WSI level leads to better prediction
performance compared to the patch level predictions. As shown
in Supplementary Fig. 5, decision curve analyses showed good
clinical benefit, especially in the ExtraTrees model and the
LightGBM model.
Simultaneously, we also aggregated information from a single

slide of individual patients. When we aggregated these features
and reapplied machine learning algorithms, there were significant
differences in performance. Compared to the results at the patch-
level, all single-slide WSI-level models showed better performance
on the training dataset (Table 1), while only the SVM (AUC= 0.699,
95% CI: 0.572–0.826) and random forest (AUC= 0.692, 95% CI:
0.567–0.817) models showed improvement after aggregation at
the single slide WSI-level on the testing dataset (Fig. 4c). As shown
in Supplementary Fig. 6, the decision curve analyses demon-
strated lower clinical benefit in all machine learning models of
single slice WSI-level than at the multiple slides WSI-level.
To validate the difference between using multiple slides and a

single slide, we compared these two SVM models. While the
single-slide model demonstrated higher performance compared
to multiple-slides model on the training dataset (Supplementary
Fig. 4B), it significantly underperformed on the testing dataset
(Fig. 4d). We also compared the two different AUC values using
the DeLong test, resulting in P= 0.002 and P < 0.001 for the
training and testing datasets, respectively. These P values are both
less than 0.05, indicating a statistically significant difference in
performance improvement. We suspect that the difference arises
from the fact that, during feature aggregation, a single slice has
less data to express its performance, potentially leading to

overfitting on the training dataset and poorer performance on
the testing dataset.

Artificial intelligence features associated with pathological
findings
A total of 206 pathology features were generated by Inception_v3
in the prognostic model (Supplementary Table 2). We analyzed
the correlation between pathology features generated by the
artificial intelligence model and the pathological findings
observed on H&E-stained slides in 400 cases of OKC. The
pathological findings, such as daughter cysts, active epithelial
proliferation, inflammation, unilocular/ multilocular, basal cell lace-
like proliferation is shown in Supplementary Table 3. Among all AI
features, 97 features were correlated with daughter cysts
(P < 0.05). “Hist_-0.39”, “bow_039”, “bow_017”, “bow_046”, and
“hist_-0.46” were the pathology features most correlated with
daughter cysts. Eighteen features were correlated with active
epithelial proliferation (P < 0.05). “Bow_09”, “hist_-0.9”, “bow_094”,
“hist_-0.94”, and “hist_-0.85” were the pathology features most
correlated with active epithelial proliferation. 53 features were
correlated with inflammation (P < 0.05). “Bow_004”, “hist_-0.04”,
“bow_003”, “hist_-0.03”, and “hist_-0.18” were the pathology
features most correlated with inflammation. 90 features were
correlated with unilocular/ multilocular (P < 0.05). “Bow_001”,
“hist_-0.01”, “bow_005”, “bow_088”, and “hist_-0.88” were the
pathology features most correlated with unilocular/multilocular.
Only four features were correlated with basal cell lace-like
proliferation: “hist_-0.73” (P= 0.025), “hist_-0.78” (P= 0.027),
“bow_073” (P= 0.027), and “bow_078” (P= 0.028). The pathology
features most correlated with these pathological findings are
shown in Fig. 5.
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DISCUSSION
OKC is a cystic lesion of the jaws that is considered benign. However,
its high potential for proliferation results in a tendency to recur after
surgery, indicating the necessity of its clinical management and
regular follow-up.2 GS is recognized as a rare syndrome that is
consisted of OKCs, multiple basal cell carcinomas, medulloblastoma,
and a variety of skeletal and developmental abnormalities.7 GS
exhibits a considerably greater inclination for recurrence after
treatment when compared to sporadic OKC; hence, they cannot be
regarded simply as the same entity.5,6 However, there was no
significant difference between sporadic OKC and GS among
mutations in the PTCH1, proliferating markers such as proliferating
cell nuclear antigen (PCNA), Ki-67, and p53 expression, as well as
broad-spectrum transcriptomic features.33–36 And so far, there is no
clear method of identification when there was no clinical
manifestations except OKC at the early stage of GS. OOC is a
relatively uncommon odontogenic developmental cyst, and was
previously classified as belonging to OKC. However, it needs to be
differentiated from OKC because OOC lacks the PTCH1mutation and
exhibits distinct histological characteristics and biological behavior,
particularly its absence of recurrence following surgery.9–11

Computational pathology involves using deep learning meth-
ods and algorithms to analyze histopathological images.37 Due to

the advancements in AI, there has been a surge in innovation in
digital pathology. This ranges from automating routine diagnostic
tasks to uncovering new prognostic and predictive biomarkers
from histomorphology.18–21,38,39 Although pathologists are able to
diagnose diseases through the examination of tissue samples and
offer prognostic information by typing and grading the disease,
the decision-making process heavily relies on complex visual
features that require extensive training and skills.37 The prolonged
training duration and escalated workload in histopathology raise
concerns. In order to overcome these challenges, it is crucial to
develop novel computational tools that can assist pathologists in
carrying out routine diagnostic duties and thereby ease their
onerous workload whilst potentially revealing fresh perspectives
to bolster precision medicine.37 Moreover, the diagnostic effi-
ciency of AI surpassed that of pathologists to a noteworthy extent.
AI is capable of processing over 250 million images per day, which
can be particularly beneficial in clinical management for heavily
burdened diagnostic tasks and in areas with a shortage of
pathologists.40 AI system utilizes deep learning methodologies to
scrutinize WSIs, with the aim of forming algorithms that can
undertake standard diagnostic procedures. This involves con-
structing models that meticulously examine tissue morphology in
order to predict diagnoses or assess prognoses.17,31,32,37
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Fig. 4 Prognostic model evaluation. a the patch-level AUC for the prognostic model in the training and testing cohort; b the multiple slides
WSI-level AUC for the prognostic model in the testing cohort; c the single slide WSI-level AUC for the prognostic model in the testing cohort;
d the comparison between multiple-slide and single-slide SVM model on the testing dataset
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The research has been carried out to differentiate between OKC
and periapical cyst via machine learning recognition of computed
tomography (CT) images and achieved 84.6%–96.0% accuracy with
higher diagnostic accuracy for CT images compared to dental
panoramic radiography.41,42 Interestingly, the Bouligand–Minkowski
fractal descriptors using H&E staining histological slides even
provided 100% accuracy rates.43 The differential diagnosis of OKC
and ameloblastoma via deep learning recognition of CT images
achieved identification accuracy of 84.6%–92.5%.44,45 Frydenlund
et al. implemented an automated epithelial segmentation algorithm
for H&E staining digital images to identify various cysts, including
OKC, dentigerous cysts, lateral periodontal cysts, and glandular
odontogenic cysts, subsequently realizing 90%–95% accuracy.46 The
remarkable performance of AI model in identifying jaw cysts like
OKC with periapical cysts and ameloblastoma could be attributed to
the substantial disparities in their pathological and radiological
features. However, when unable to detect typical GS attributes, such
as basal cell carcinoma and palmar dyskeratosis, the differentiation
of sporadic OKC and GS becomes complicated. A recent AI study
only achieved an accuracy of only 68% to the differential
diagnosis.43 It has been suggested that large lesions of OOC may
be parallel to OKC radiologically, whereas common histopathological
characteristics of OKC, including palisading basal cells and reverse
nuclear polarity have not been identified.10 However, there is a lack
of efficient and robust pathomics AI models for distinguishing
between sporadic OKC, OOC, and GS rapidly. Therefore, it is
imperative to develop digital pathology-based AI for identification of
various types of jaw cysts. To the best of our knowledge, this is the
first study to develop an objective diagnostic model to differentiate
OKC from OCC and GS, using the largest sample size of OKC cohort
currently available. The workflow of the AI model construction is
shown in Fig. 6. The model presented high AUC of 0.935 (95% CI:

0.898–0.973), indicating accurate diagnosis of OKC from other
diseases. Moreover, the results of the confusion matrix highlighted a
greater differentiation between OKC and OCC in comparison with
GS. The relationship between OKC and GS is strengthened by
numerous correlations, such as similar PTCH1 mutations and gene
expression profiles, resulting in the confusion tendency.34,36,47

Due to the high recurrence rate of OKC, research has been
directed towards identifying risk factors that may contribute to OKC
recurrence. Although there have been reports of an increased
proliferative potential in OKCs carrying PTCH1 truncation-causing
mutations, it has been found that the expression of COX-2, bcl-2,
PCNA, and p53 were not linked to OKC recurrence.12,15 Additionally,
the inflammatory pathological phenotype of OKC did not affect
proliferative potential, and clinical, radiological, and histopathologi-
cal parameters may only be potentially associated with OKC
recurrence.5,13,14,16 Consequently, there is still a lack of a recognized
model for the assessment of OKC recurrence. Here, we collected a
substantial OKC cohort sample with an average follow-up duration
of 3.6 years. The AI system-designed recurrence model for OKC
demonstrates promising model performance (AUC= 0.840, 95% CI:
0.751–0.930) and application potential. We also analyzed the
performance of the multi-slide fusion model and the single-slide
model for recurrence assessment. The findings indicated that the
multi-slide model performs significantly better than the single-slide
model (AUC= 0.699, 95% CI: 0.572–0.826) on the testing dataset. As
OKCs are typically surgically resected specimens with large cyst
volumes, deep learning on a single slide may not capture
representative information of the entire case, resulting in inadequate
prognostic evaluations. For large-volume samples, such as cysts and
tumors, a multi-slide fusion model needs to be performed to enable
the AI system acquiring more learning information and incorporate
it into the model construction. Furthermore, the correlation between

Table 1. WSI level performances for prognostic model of odontogenic keratocysts

Model WSI Cohort AUC 95% CI Accuracy Sensitivity Specificity

SVM Multi Training 0.943 0.905–0.982 0.914 0.864 0.924

Testing 0.840 0.751–0.930 0.675 0.929 0.642

Single Training 0.979 0.952–1.000 0.979 0.955 0.983

Testing 0.699 0.572–0.826 0.658 0.714 0.657

Random forest Multi Training 0.958 0.930–0.986 0.929 0.886 0.936

Testing 0.811 0.707–0.914 0.683 0.857 0.667

Single Training 0.947 0.917–0.977 0.893 0.841 0.903

Testing 0.692 0.567–0.817 0.650 0.786 0.638

ExtraTrees Multi Training 0.940 0.902–0.977 0.854 0.909 0.843

Tesingt 0.825 0.727–0.924 0.708 0.857 0.689

Single Training 0.941 0.908–0.973 0.886 0.841 0.894

Testing 0.656 0.531–0.782 0.475 0.929 0.419

XGBoost Multi Training 0.973 0.951–0.995 0.932 0.932 0.932

Testing 0.787 0.667–0.907 0.642 0.929 0.610

Single Training 0.973 0.955–0.991 0.907 0.932 0.903

Testing 0.629 0.477–0.780 0.617 0.714 0.610

LightGBM Multi Training 0.959 0.935–0.983 0.911 0.886 0.915

Testing 0.819 0.725–0.913 0.692 0.857 0.683

Single Training 0.933 0.901–0.966 0.829 0.886 0.818

Testing 0.598 0.442–0.755 0.600 0.714 0.596

MLP Multi Training 0.922 0.882–0.963 0.875 0.841 0.881

Testing 0.798 0.689–0.907 0.617 0.929 0.575

Single Training 0.961 0.934–0.989 0.907 0.886 0.911

Testing 0.613 0.485–0.741 0.483 0.857 0.434

WSI whole slide image, SVM support vector machines, LightGBM light gradient boosting machine, MLP multilayer perceptron
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AI-generated pathology features and pathological findings, such as
daughter cysts, active epithelial proliferation, inflammation, uni-
locular/multilocular, basal cell lace-like proliferation was analyzed.
Multiple AI features correlated significantly with pathological
findings, indicating the interpretability of AI models based on digital
pathology.
However, there are several limitations in this study. First, it solely

investigated a single-center sample, and a multi-center cohort
should be taken into account in the future to validate the model
performance. Second, this study collected a retrospective cohort,
and the prospective design would strengthen the findings of the
study. Additionally, AI models are not static and must evolve in the
future as algorithms are developed for AI-assisted healthcare
systems. For example, the chat generative pre-trained transformer
(ChatGPT) has potential for integration into healthcare systems
assisted by artificial intelligence.
In summary, we developed the diagnostic and prognostic

models for OKC through digital pathology-based artificial intelli-
gence. Our AI models have demonstrated satisfactory perfor-
mance in the testing cohort. Hence, the use of AI systems for
clinical management of OKC can be considered in the future.

MATERIALS AND METHODS
Data collection
The flowchart for the cohorts used in this study is shown in Fig. 1. A
total of 543 cases, encompassing OKC, OOC, and GS, were obtained
from Peking University Hospital of Stomatology between 2000 and
2020. Of these, 24 cases were excluded due to unclear or faded H&E

staining. The remaining 519 cases, along with a total of 2 157 H&E-
stained slides, were then randomly assigned to the training and
testing cohorts. The training cohort comprised 363 cases, while the
testing cohort had 156 cases. This division was made in a 7:3 ratio
to facilitate the development of the diagnostic model (Supplemen-
tary Table 4). Four hundred cases of OKC were randomly assigned
into two groups: the training cohort (280 cases) and the testing
cohort (120 cases), in order to develop a prognostic model of OKC
using a ratio of 7:3. The baseline data of the prognostic model and
diagnostic model were shown in Supplementary Tables 3 and 4. All
H&E-stained slides were scanned using a NanoZoomer for digital
whole slide imaging (WSI) and then exported to NDPI by NDPView2
software. The Institutional Ethics Board of Peking University
Hospital of Stomatology approved this study.

Data processing
To address the significant issue of managing extensive digitally
processed images, we have implemented a systematic pre-
processing strategy. This has involved segmenting WSIs into
smaller 512 × 512 pixels tiles, resulting in over 2.5 million patches.
The non-overlapping partitioning approach adhered strictly to a
resolution of 0.5 μm/pixel. Our main objective during this process
was to secure high-quality data. To achieve this objective, we
utilized a white background removal tool of OnekeyAI platform
that is based on deep learning models.
In addition, we applied the Macenko method to normalize the

color of small tiles. Moreover, we employed Z-score normalization
on the RGB channels to obtain a standard normal distribution of
image intensities, which served as input for our model. During
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Fig. 5 Artificial intelligence features associated with pathological findings. The correlation between pathology features generated by the AI
model and the pathological findings observed on H&E-stained slides in 400 cases of OKC was analyzed. Among all AI features, “hist_-0.39”,
“bow_039”, “bow_017”, “bow_046”, “hist_-0.46”, “hist_−0.28”, “hist_−0.3”, “bow_028”, “bow_03”, and “hist_−0.17” were the pathology features
most correlated with daughter cysts. “Bow_09”, “hist_-0.9”, “bow_094”, “hist_−0.94”, “hist_-0.85”, “bow_085”, “hist_−0.72”, “bow_072”, “hist_−0.88”,
and “bow_088” were the pathology features most correlated with active epithelial proliferation. “Bow_004”, “hist_-0.04”, “bow_003”, “hist_-0.03”,
“hist_-0.18”, “bow_005”, “bow_002”, “hist_−0.05”, “hist_−0.02”, and “bow_006” were the pathology features most correlated with inflammation.
“Bow_001”, “hist_−0.01”, “bow_005”, “bow_088”, “hist_-0.88”, “hist_−0.56”, “bow_002”, “hist_−0.02”, “hist_−0.05”, and “bow_017” were the
pathology features most correlated with unilocular/multilocular. Only four features were correlated with basal cell lace-like proliferation:
“hist_-0.73” (P= 0.025), “hist_-0.78” (P= 0.027), “bow_073” (P= 0.027), and “bow_078” (P= 0.028)
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training process, we employed online data augmentations, such as
randomly flipping horizontally and vertically. Nevertheless, during
testing process, we solely utilized normalization.

Deep learning training
Our deep learning process comprised two tiers of predictions:
patch-level and WSI-level predictions. Considering the images’
significant size and diversity, we started by segmenting the WSIs
into smaller patches. Subsequently, we utilized a multi-instance
learning algorithm to consolidate the patch likelihoods, leading to
the WSI-level prediction. As the diagnostic model and prognostic
model have different purposes, we replicated comparable
measures to model the information for these two discrete tasks.
For patch-level predictions, we evaluated the efficacy of the

widely recognized neural network, Inception_v3. This convolu-
tional neural network has displayed significant outcomes in the
ImageNet classification contest. We aimed to establish the

probability of each patch receiving the label corresponding to
the respective WSI to which it pertained.
To improve the model’s ability to generalize across heteroge-

neous cohorts, we implemented transfer learning. This entailed
initializing the model’s parameters with pretrained weights from the
ImageNet dataset, while retaining the patch-level discriminators’
weights. Afterward, we fine-tuned the entire model using a limited
dataset (training set with 363 samples) that had been specifically
weakly annotated for our task. By utilizing transfer learning, we
successfully utilized the knowledge obtained from ImageNet and
tailored it to suit the requirements of our classification problem.
To improve generalization, we meticulously set the learning rate

using the cosine decay learning rate algorithm in this study. The
learning rate is presented as follows:

ηtask�spec
t ¼ ηimin þ

1
2

ηimax � ηimin

� �
1þ cos

Tcur
T i

π

� �� �
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ηimin ¼ 0, ηimax ¼ 0:01, T i ¼ 8 represent the minimum learning
rate, the maximum learning rate, and the number of iteration
epochs, respectively. The use of a relatively small Ti is justified by
our vast dataset, which comprises over 2.5 million training
patches. We also utilize transfer learning algorithms to ensure
optimal model fitting. As the backbone component already
includes pre-trained parameters, fine-tuning is imperative for
effective transfer. Therefore, we fine-tune the backbone compo-
nent parameters when Tcur ¼ 1

2 T i . Furthermore, the learning rate
for the backbone component is defined as follows:

ηbackbonet ¼
0 if Tcur � 1

2 Ti

ηimin þ 1
2 ηimax � ηimin

� �
1þ cos Tcur

T i
π

� �� �
if Tcur> 1

2 Ti

8<
:

Other hyperparameter configurations are as follows: optimizer
—SGD, loss function—softmax cross-entropy, with a batch size of
128. We use the Gridsearch algorithm to search for classical model
parameters such as n_estimator and max_depth. In practice, our
n_estimator is searched from 10 to 50 with a compensation of 5.
max_depth is searched for 2, 3, 4, and 5 to form 40 corresponding
search models.

Multi-instance learning for WSI fusion
After the training of our deep learning model, we carried out label
predictions and their respective probabilities for all patches. A
classifier was then used to aggregate these patch probabilities,
resulting in a WSI-level prediction. To collect the patch likelihoods,
we made use of two different machine-learning methods:
Patch Likelihood Histogram (PLH) pipeline: In this approach, we

used a histogram to represent the distribution of patch likelihoods
within the WSI. By discretizing the likelihoods and retaining only
one decimal place in the development of diagnostic model, and
two decimal places in the development of prognostic model, we
effectively captured the distribution of likelihoods, which served
as a representation of the WSI.
Bag of Words (BoW) pipeline: Building on both histogram-based

and vocabulary-based techniques, the BoW pipeline utilized a
term frequency-inverse document frequency (TF-IDF) mapping for
every patch, which resulted in TF-IDF feature vectors that
represented the WSIs. These feature vectors were subsequently
employed for training conventional machine learning classifiers to
predict the status in each WSI.
By deploying two independent pipelines, we successfully

amalgamated the initially dispersed patch-level predictions,
producing WSI-level features. These features furnish significant
information for subsequent analytical operations.

Signature building
In this study, final patient representations were constructed utilizing
patch-level predictions, probability histograms, and TF-IDF features in
combination. Initially, a t test statistical analysis was carried out to
pinpoint statistically significant pathology features with the purpose
of refining the feature selection process for both diagnostic model
and prognostic model. Then we utilized machine learning algorithms,
such as support vector machines (SVM), tree-based models, such as
random forests and extremely randomized trees (ExtraTrees),
extreme Gradient Boosting (XGBoost), and light gradient boosting
machine (LightGBM), as well as multilayer perceptron (MLP), to
develop our models. Each model is explained in further detail below:
Random forest is an integrated learning technique that generates

predictions by constructing and merging numerous decision trees.
The number of trees in the forest is defined by the parameter of
n_estimatores, while max_depth determines the maximum depth of
the tree. Additionally, the minimum number of samples required to
split the internal nodes is defined by the min_samples_split.
XGBoost is an optimized distributed gradient boosting library

that implements state-of-the-art gradient boosting algorithms.

The model’s learning and optimization procedures can be
regulated by means of parameters such as n_estimatores,
max_depth and min_child_weight.
LightGBM is another gradient-boosting framework that employs

decision trees as a base learner. The maximum depth of each tree
is controlled by max_depth and n_estimatores to regulate the
number of learners.
ExtraTrees is a variation of random forest with an increased

degree of freedom to explore the parameter space more
effectively during the training process. The parameters are similar
to those used in random forest.
SVM uses the RBF kernel function, while the other parameters

are kept as default. MLP is a fully connected 3-layer perceptron,
comprises 128, 64, and 32 hidden nodes, respectively. All of these
models employ an implementation of scikit-learn, a widely used
machine learning library in Python data science.

Model evaluation
To validate the accuracy of the pathology model in region
identification, we carried out a comprehensive assessment using
receiver operating characteristic (ROC) curves at patch level. The
aggregation of patches into WSI was visualized for performance
evaluation, which included predicted labels and probability
heatmaps for the patches. For the diagnostic model, we utilized
both micro and macro area under the curve (AUC) metrics to
achieve a holistic evaluation of the model performance. Addition-
ally, we employed the “One vs. Others” strategy to evaluate the
AUC for each prediction class. Confusion matrices were also
utilized to assess the model performance. For the prognostic
model, we used AUC as the performance metric and calculating
sensitivity and specificity. Furthermore, we compared the perfor-
mance of single-slice and multi-slices fusion models using Delong’s
test to measure significance. The study employed a range of
software tools, including ITK SNAP v.3.8.0, and custom Python code
written in Python v.3.7.12. Python packages used in the analysis
included Pandas v.1.2.4, NumPy v.1.20.2, PyTorch v.1.8.0, Onekey
v.2.2.3, OpenSlide v.1.2.0, Seaborn v.0.11.1, Matplotlib v.3.4.2, SciPy
v.1.7.3, scikit-learn v.1.0.2, PyRadiomics v.3.0.
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