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Force-induced Caspase-1-dependent pyroptosis regulates
orthodontic tooth movement
Liyuan Chen1, Huajie Yu2, Zixin Li1, Yu Wang 1, Shanshan Jin1, Min Yu1, Lisha Zhu1, Chengye Ding1, Xiaolan Wu1, Tianhao Wu1,
Chunlei Xun1, Yanheng Zhou1, Danqing He1✉ and Yan Liu 1✉

Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and
activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling
process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL
progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that
mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking
or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1−/−

mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on
Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in
compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor
potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.
Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone
remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
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INTRODUCTION
Pyroptosis is a lytic type of programmed cell death, which is initiated
by inflammatory caspases and characterized by gasdermin (GSDM)-
mediated membrane pore-formation and the release of cellular
contents1,2 Pyroptosis could be activated by extracellular or
intracellular stimulation, including pathogen infection, inflammation,
tumorigenesis, and mechanical forces, which play an important role
in maintaining tissue homeostasis and activating the inflammatory
responses.3,4 Depending on different environmental stimuli and
inflammatory caspases, pyroptosis can be divided into canonical and
non-canonical types.5 In canonical pyroptosis, inflammasomes such
as Nod-like receptor protein 3 (NLRP3) activate Caspase-1 to cleave
gasdermin D (GSDMD) and process pro-IL-1β into mature IL-1β.1 In
non-canonical pyroptosis, Caspase-11/4/5 is activated to cleave
GSDMD upon recognition of cytosolic lipopolysaccharide, which is
independent of inflammasomes and Caspase-1.2

Orthodontic tooth movement (OTM) is an aseptic inflammatory
bone remodeling process induced by mechanical force stimula-
tion.6 Under force stimulation, numerous inflammatory cytokines,
chemokines, and increased activation of immune cells were
detected in periodontal tissues.7–9 Periodontal ligament (PDL)
stem/progenitor cells were the main cellular components in the
periodontal tissues, constantly receive force stimuli and contribute
to the inflammatory responses and bone remodeling process
during OTM.10 Our previous studies have reported that the
expressions of inflammatory cytokines, chemokines, and gas

molecules such as hydrogen sulfide were all increased in the
force-stimulated PDL stem/progenitor cells.11–13 In addition, cyclic
stretch could activate NLRP inflammasomes and induce the
release of IL-1β via a Caspase-1-related mechanism in PDL cells
in vitro.14 However, whether and how mechanical force induces
PDL stem/progenitor cell pyroptosis and thus influences OTM and
alveolar bone remodeling remain unknown.
Transient receptor potential (TRP) calcium channel is a classic

mechanosensitive channel contributing to the transduction of
mechano-signals into biological responses in various tissues and
cells.15 TRP subfamily V member 4 (TRPV4) could regulate
mechano-transduction, inflammation activation, and mechanical
force-induced alveolar bone remodeling.16 Previously, we have
found that TRPV4 was involved in the modulation of PDL stem cell
function during OTM both in vivo and in vitro.17 In addition, a
previous study also suggested that TRPV4 could mediate airway
epithelial cell pyroptosis in chronic obstructive pulmonary
disease.18 Therefore, we hypothesize that TRPV4 participates in
force-induced pyroptosis in PDL progenitor cells.
In the present study, we aim to illustrate whether and how

mechanical force induced PDL progenitor cell pyroptosis and
influenced OTM and alveolar bone remodeling. By using OTM
animal models, force-induced human PDL progenitor cells ex-vivo,
and a compressive force loading model in vitro, we found that
mechanical force induced Caspase-1-dependent pyroptosis in PDL
progenitor cells, which contributed to OTM and alveolar bone
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remodeling. This study shed light on a novel mechanism of OTM
and indicated that targeting Caspase-1 might be a promising
approach to accelerate OTM.

RESULTS
Force induces PDL progenitor cell pyroptosis during OTM and
alveolar bone remodeling in vivo
To investigate whether mechanical force-induced pyroptosis reg-
ulates alveolar bone remodeling in vivo, a classic force-induced OTM
and alveolar bone remodeling model was established. Micro-CT
images showed that the OTM distance in rats gradually increased to
(207 ± 17.64) µm, (350 ± 31.62) µm, and (488 ± 36.64) µm after force
loading for 3 d, 7 d, and 14 d (Fig. 1a). CD90 has been widely used as
a marker for characterizing PDL progenitor cells in rats (Kon et al.
2009; Hosoya et al. 2012), as it is expressed in stem/progenitor cells
(Dennis et al. 2007). Immunofluorescence showed that the number
of Caspase-1+CD90+ cells, GSDMD+CD90+ cells, and IL-1β+CD90+

cells was all increased in the compression side of the periodontal
tissues after force loading for 3 d and lasted to 14 d, while force
loading for 7 d triggered the strongest responses (Fig. 1b and
Supplementary Fig. S1). The number of tartrate-resistant acid
phosphatase (TRAP)+ osteoclasts showed a similar trend (Fig. 1c).
However, on the tension side, the expressions of pyroptosis-related
markers did not change compared with the control group
(Supplementary Fig. S2). Moreover, after force stimulation for 7 d,
the periodontal tissues from the mesial side of the first molars were
collected and the expression of pyroptosis-related genes including
Caspase-1, Gsdmd and IL-1β were significantly upregulated (Fig. 1d).

Force-induced pyroptosis modulates OTM and alveolar bone
remodeling in a Caspase-1 depended manner
To further explore the influence of pyroptosis level on OTM, we
enhanced or blocked the pyroptosis level by systemic administra-
tion of the pyroptosis activator Polyphyllin VI (PPVI) or inhibitor
MCC950 in mice respectively (Fig. 2a). After force loading for 7 d,
the OTM distance was increased after PPVI injection and decreased
after MCC950 injection compared with the force group (Fig. 2b).
Concomitantly, after PPVI injection, the force-induced expressions
of Caspase-1, GSDMD and IL-1β were further elevated in the
periodontal tissues, whereas the MCC950 injection partially
reversed the expressions of pyroptosis-related markers compared
with the force group. Moreover, the number of TRAP+ osteoclasts
increased after force application, which was further enhanced by
the PPVI injection and suppressed by the MCC950 injection (Fig. 2c).
Caspase-1 was a key factor to cleave GSDMD in canonical

pyroptosis, therefore we further confirm whether force-induced
pyroptosis requires the activation of Caspase-1 using Caspase-1−/−

mice. After force application for 7d, the OTM distance was
significantly reduced in Caspase-1−/− mice (Fig. 3a). Correspond-
ingly, the expressions of Caspase-1, GSDMD, IL-1β, as well as the
number of TRAP+ osteoclasts were all significantly decreased in
the periodontal tissues of Caspase-1−/− mice compared with WT
mice (Fig. 3b). These data suggest that mechanical force could
induce Caspase-1-dependent pyroptosis, which further contribu-
ted to the OTM and alveolar bone remodeling.
In addition, the Caspase-1 inhibitor Belnacasan (VX765) was also

injected into mice every other day during the force-induced tooth
movement process. After VX765 injection, the tooth movement
distance decreased significantly compared to the Force group
(Fig. 3c). Moreover, the force-induced upregulated expressions of
Caspase-1, GSDMD, and IL-1β were partially reversed, as well as
the number of TRAP+ osteoclasts (Fig. 3d).

Mechanical force induces pyroptosis in human PDL progenitor
cells and influences osteoclastic activity
PDL stem/progenitor cells are the main cells responding to
mechanical force and contributing to OTM, therefore we further

detect whether mechanical force induces pyroptosis in PDL
progenitor cells under force stimuli. Firstly, the expression of
pyroptosis-related markers in ex-vivo h-PDL progenitor cells
isolated from the same patients with or without force loading
were detected (Fig. 4a). The protein expression of pyroptosis-
related markers including NLRP3 inflammasomes, cleaved
Caspase-1 (Cl-Casp-1), GSDMD, cleaved GSDMD (N-GSDMD), as
well as IL-1β and cleaved IL-1β (Cl-IL-1β), were all significantly
increased in h-PDL progenitor cells with force application for 7 d
(hF7d group) (Fig. 4b). The mRNA expressions of pyroptosis-
related genes showed the same trend (Supplementary Fig. S3a).
To verify the relationship between PDL progenitor pyroptosis

and osteoclastic activity, ex-vivo h-PDL progenitor cells with or
without orthodontic force pretreatment were co-cultured with
peripheral blood mononuclear cells (PBMCs). The protein expres-
sion of RANKL significantly enhanced in the hF7d group, whereas
OPG expression remained unchanged (Fig. 4c and Supplementary
Fig. S3b). Correspondingly, the gene expressions of RANKL and
RANKL/OPG ratio were upregulated in the hF7d group (Fig. 4d).
Moreover, the secretion of RANKL also increased detected by
ELISA (Fig. 4e). In addition, the number of TRAP+ osteoclasts
increased significantly in the hF7d group (Fig. 4f), and the mRNA
expression of Cathepsin K (CTSK)) and TRAP also increased
significantly in osteoclasts (Fig. 4g). These data indicated that
mechanical force induced pyroptosis in human ex-vivo PDL
progenitor cells and influenced osteoclastic activity.
In addition, compressive force was further applied to PDL

progenitor cells in vitro. Western blotting revealed that under
1.5 g/cm2 force stimuli, the expression of pyroptosis-related
proteins increased from 3 h and lasted to 24 h, which reached to
the peak at 6 h (Fig. 4h, and Supplementary Fig. S4a). In addition,
under different force stimuli for 6 h, the protein expression of
pyroptosis-related markers increased from 0.5 g/cm2 and reached
to the peak at 1.5 g/cm2 or 2.0 g/cm2. (Fig. 4i and Supplementary
Fig. S4b). Correspondingly, real-time PCR showed the similar
trends (Supplementary Fig. S4c, d). Notably, no significant change
in the Caspase-5 expression was detected after force stimulation,
indicating that force induced the Caspase-1-dependent canonical
type of pyroptosis instead of the noncanonical type (Supplemen-
tary Fig. S4f).
The pyroptotic morphology of swollen and flat cells with

blurred cellular contour and large bubbles were observed in
optical microscope (OM) images. Moreover, scanning electron
microscope (SEM) and transmission electron microscope (TEM)
images showed multiple pores in the membranes of PDL
progenitor cells under 1.0 g/cm2 force stimulation, and more
obvious membrane disruption, cell swelling, and lysis were
observed under 1.5 g/cm2 force stimulation (Fig. 4j and Supple-
mentary Fig. S4e). Overall, these findings revealed that mechanical
force induced pyroptosis in PDL progenitor cells both in vivo and
in vitro.

Regulation of PDL progenitor cell pyroptosis influences
osteoclastic activity
Pyroptosis activator PPVI and inhibitor MCC950 were also utilized
to treat force-loaded PDL progenitor cells in vitro. Western
blotting analysis revealed that force increased the expression
level of pyroptosis-related proteins, including NLRP3, Caspase-1,
Cl-Casp-1, and the downstream GSDMD, N-GSDMD, IL-1β, and Cl-
IL-1β. These protein expression levels were further enhanced after
PPVI application and partially suppressed after MCC950 applica-
tion (Fig. 5a and Supplementary Fig. S5a). Moreover, the
immunofluorescence images also showed that the numbers of
GSDMD+CD90+ cells, Caspase-1+CD90+ cells, and IL-1β+CD90+

cells were all increased after the PPVI application and decreased
after the MCC950 application compared to the Force group
(Fig. 5b). Furthermore, the ratio of RANKL/OPG was upregulated
after PPVI application and downregulated after MCC950
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application compared to the Force group (Fig. 5c and Supple-
mentary Fig. S5b). Real-time PCR also showed the same trend (Fig.
5d). Moreover, ELISA showed that the secretion of RANKL
increased after PPVI application and decreased after MCC950
application compared with the force group (Fig. 5e).
In addition, the Caspase-1 inhibitor Belnacasan (VX765) was

further utilized to treat force-loaded PDL progenitor cells in vitro.
VX765 application reduced the force-induced pyroptosis-related

protein expressions of NLRP3, Caspase-1, Cl-Casp-1, GSDMD, N-
GSDMD, IL-1β, and Cl-IL-1β compared to the Force group (Fig. 6a
and Supplementary Fig. S6a). In addition, the immunofluorescence
images also showed that the numbers of Caspase-1+CD90+ cells,
GSDMD+CD90+ cells, and IL-1β+CD90+ cells were all decreased
after VX765 application compared to the Force group (Fig. 6b).
Moreover, the application of VX765 significantly reversed the
upregulated protein expression of RANKL and RANKL/OPG ratio
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Fig. 1 Mechanical force induces pyroptosis during OTM and alveolar bone remodeling in vivo. a Representative image of micro-CT and
semiquantification analysis of force-induced OTM distance in rats. Scale bar: 1 mm. b Representative immunofluorescence images on the
compression side of distobuccal roots and semiquantification analysis of double-labeled cells. Dashed lines mark the outline of distobuccal
roots. Scale bar: 50 µm. c Representative tartrate-resistant acid phosphatase (TRAP) staining images of distobuccal roots. Scale bar: 200 µm.
Results were presented as mean ± SD. n= 5 biologically independent samples. d Real time-PCR of Caspase-1, Il-1β, and Gsdmd in periodontal
tissues. Results were presented as mean ± SD. n= 3 biologically independent samples. **P < 0.01, ***P < 0.001 versus Con; #P < 0.05, ##P < 0.01,
###P < 0.001 versus F3d; @P < 0.05, @@P < 0.01, @@@P < 0.001 versus F7d. The white arrow represents the direction of the force application.
Large boxed areas show high magnification views of the small boxed areas
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(Fig. 6c and Supplementary Fig. S6b). Similar results were found in
their gene expression levels (Fig. 6d). Moreover, the secretion of
RANKL was also decreased after VX765 application compared with
the force group by ELISA (Fig. 6e). Taken together, these data
suggest that force-induced pyroptosis in PDL progenitor cells
required the activation of Caspase-1, which further contributed to
the osteoclastogenesis.

TRPV4 signaling is involved in force-induced pyroptosis in PDL
progenitor cells
TRPV channels could induce biological cellular responses under
mechanical stimulation. Western blotting and immunofluores-
cence staining showed that the expression of TRPV4 was
enhanced in ex-vivo h-PDL progenitor cells in the hF7d group
(Fig. 7b). In rat OTM models, the number of Caspase-1+TRPV4+

cells and GSDMD+TRPV4+ cells increased from F3d to F7d and
F14d (Fig. 7c and Supplementary Fig. S7). In addition, real-time
PCR of the rat periodontal tissues after force application for 7 d
showed that Trpv4 increased significantly, whereas no significant
difference was detected on Trpv1-3 (Supplementary Fig. S8a).
Moreover, force-induced increased expression of pyroptosis-
related markers was partially suppressed after application of a
TRPV4 inhibitor GSK2193874 (GSK219) (Fig. 7d).
TRPV4 regulates numerous cellular functions through intracel-

lular Ca2+ influx. Therefore, we hypothesized that TRPV4 regulates
PDL progenitor cell pyroptosis through Ca2+ influx, which further
induces reactive oxygen species (ROS) elevation and mitochon-
drial damage. Immunofluorescence staining of Fluo 4 and H2DCF-
DA showed that force increased Ca2+ influx and intracellular ROS
in PDL progenitor cells, which were blocked by the application of
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GSK219 (Fig. 7e). TEM and mito-tracker dyes showed that
mitochondria were swollen and fragmented in force-treated PDL
progenitor cells. After GSK219 application, mitochondrial mor-
phology tended to be normal (Fig. 7e). The functional

consequences of force-induced morphological changes in the
mitochondria including decreased mitochondrial membrane
potential detected by JC-1 and impaired ATP production were
reversed after GSK219 application (Fig. 7e, and Supplementary Fig.
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S8b, c). In sum, these findings demonstrated that TRPV4 signaling
plays an important role in regulating force-induced Caspase-1-
dependent pyroptosis in PDL progenitor cells (Fig. 7a).

DISCUSSION
Pyroptosis plays a vital role in activating inflammatory responses
under mechanical stimuli. However, whether and how force
induces PDL progenitor cell pyroptosis, thereby influencing OTM
and alveolar bone remodeling is unclear. In this study, we revealed
a novel mechanism that mechanical force induced pyroptosis in

periodontal tissues and PDL progenitor cells, which further
promoted OTM and alveolar bone remodeling. The functional
role of the force-induced pyroptosis depended on Caspase-1 and
activated the TRPV4 signaling.
The role of pyroptosis has been primarily studied in phagocytes,

which is initiated by inflammatory caspases and leads to GSDMD-
induced pore formation and cleavage of pro-inflammatory
cytokine IL-1β.19 Recently, pyroptosis was also observed in the
inflammatory-related diseases including arthritis, myocarditis and
bacterial-induced periodontitis.20–22 OTM is an aseptic inflamma-
tory reaction and alveolar bone remodeling process activated by
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mechanical stimuli, characterizing by bone resorption in the
compression side and bone apposition in the tension side.6,9 We
previously found that during OTM, various inflammatory cyto-
kines, chemokines, and the activations of immune cells were
detected.7,8 However, the underlying mechanism has not been
explored. In this study, we revealed that mechanical force could
induce Caspase-1-dependent pyroptosis in PDL progenitor cells,
which contributes to OTM and alveolar bone remodeling. Previous
studies have found that cyclic stretch could induce pyroptosis in
PDL cells.14,23 Consistent with the previous findings, the present
study shows a novel finding that mechanical force could induce
pyroptosis in PDL progenitor cells, which contributes to OTM and
alveolar bone remodeling. Nevertheless, the activation of osteo-
clastic activity by pyroptosis may influence root resorption, which
needs further investigation in future studies.
Depending on different environmental stimuli, pyroptosis can

be divided into canonical and non-canonical types. In canonical
pyroptosis, NLRP3 inflammasomes bind to Caspase-1 and activate
Cleaved-Casp-1 to cleave GSDMD and execute pyroptosis via
pore-forming activity.2 In non-canonical pyroptosis, Caspase-11/4/
5 was activated to cleave GSDMD upon recognition of cytosolic
lipopolysaccharide (LPS), which is independent of inflammasomes
and Caspase-1.24 Force-induced OTM was an aseptic inflammatory

reaction, which was different from LPS-induced inflammatory
process.9 In this study, we confirmed that force-induced
pyroptosis required the activation of Caspase-1. Caspase-1−/−

mice showed reduced expressions of pyroptosis markers and
decreased number of TRAP+ osteoclasts compared with WT mice.
Consistently, blocking the Caspase-1 level by the application of
Caspase-1 inhibitor VX765 also decreased the expressions of
pyroptosis-related markers in PDL progenitor cells and the ratio of
RANKL/OPG compared with the force group. These results suggest
that Caspase-1-dependent pyroptosis contribute to force-induced
OTM and alveolar bone remodeling.
So far, how mechanical force induced pyroptosis remains

unclear. TRPV4, a typical mechanosensitive channel, is associated
with force-induced alveolar bone remodeling processes.16,17 Our
previous study found that TRPV4 was activated in force-induced
PDL progenitor cells, which contributed to the modulation of PDL
progenitor cells function and regulated alveolar bone remodel-
ing.17 Interestingly, TRPV4 was recently reported to be involved in
some pyroptosis-related diseases.18 In this study, we showed that
TRPV4 activation under mechanical force contributed to the
induction of Caspase-1-dependent canonical pyroptosis in PDL
progenitor cells. Inhibiting TRPV4 could suppress the expressions
of pyroptosis-related markers, decrease force-induced Ca2+ influx,
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suppresse ROS expression, and reverse the repression of
mitochondrial membrane potential and mitochondrial damage
induced by force.
The phenomenon that the pyroptosis genes remain upregu-

lated in ex vivo PDL progenitor cells is very interesting. Previous
studies have found that external stimulus including stress,
nutrients and pathogens could trigger transcriptional memory in
many cells, which was defined as a phenomenon that transient
gene activation by a variety of external signals results in a
heritable primed state that is maintained in the absence of active
transcription.25 Our previous study has also demonstrated that
mechanical force in vivo could change the characteristics of rat
primary PDL progenitor cells including promoting their prolifera-
tion, pro-inflammatory cytokine expression and immunoregula-
tion.17 In this study, increased expressions of pyroptosis related
markers were detected in ex-vivo human PDL progenitor cells with
force stimuli, which is consistent with the previous findings. The
mechanism of how the PDL progenitor cells possess stimulus
memory needs our further exploration.
In summary, these data indicate that mechanical force induces

Caspase-1-dependent pyroptosis in PDL progenitor cells in rat,

mice and human models. This Caspase-1-dependent pyroptosis
contributes to OTM and alveolar bone remodeling (Fig. 8). This
study provides a novel insight into the modulation of osteoclas-
togenesis under mechanical stimuli. It suggests that targeting
Caspase-1-dependent pyroptosis may be a promising strategy to
accelerate OTM.

MATERIALS AND METHODS
Animals and orthodontic force treatment
6–8-week-old Male Sprague Dawley rats (body weight of
200–250 g) and C57BL/6N mice were obtained from Weitong
Lihua Experimental Animal Center (China), and Caspase-1−/−

mice were generated by Viewsolid Biotech (Beijing, China). They
were housed in controlled animal facilities with a temperature of
(23 ± 2) °C, a humidity of 40% to 65%, and a 12/12 h light/dark
cycle. Animals were fed with a standard laboratory diet and
allowed ad libitum access to drinking water. All animals were
maintained in specific pathogen-free (SPF) cages randomly and
fed a normal diet. The animal number in each group (n= 3–6) is
estimated according to our pre-experiment.12 Humane care was
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Fig. 6 Regulation of Caspase-1 influences RANKL/OPG expression in PDL progenitor cells in vitro. a Western blotting of pyroptosis-related
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provided to each animal during the experiments according to
the criteria outlined in the Guide for the Care and Use of
Laboratory Animals published by the National Institutes of
Health. Six- to eight-week-old male Sprague-Dawley rats, C57BL/
6 N mice, and Caspase-1−/− mice were used in the study. All the

protocols were approved by the Peking University Ethical
Committee (LA2013-92). The study conforms to the ARRIVE
guidelines.
Mechanical force was applied to rats or mice as previously

described.26 Briefly, in rats, nickel-titanium coil springs of 0.2 mm
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in wire size, 1 mm in diameter, and 4mm in length (Smart
Technology) were ligated between the maxillary right first molar
and the maxillary incisors to provide 50–60 g force for 3 d, 7 d and
14 d.7,27 The maxillary left first molar without force application
served as the control. Five rats were used at each time point.
Another 3 rats received force application for 7 d, and the
periodontal tissues including the alveolar bone and periodontal
ligament of the mesial side of the maxillary first molars were
collected for the detection of gene expressions.
In mice, nickel-titanium coil springs with the same size and

1mm in length were ligated in a similar way to provide 20–30 g
force for 7 d.12,28,29 The contralateral first molar served as control.
Mice were randomly divided into four groups as follows: (i) Force:
force loading and 0.9% NaCl treatment every two days; (ii)
Force+ PPVI: force loading and pyroptosis activator Polyphyllin VI
(PPVI, S9302, Selleck) treatment (5 mg/kg every two days); (iii)
Force+MCC950: force loading and pyroptosis inhibitor MCC950
(S7809, Selleck) treatment (20 mg/kg every two days); (iv) Control:
the group without force loading and treatment. Drugs were
injected intraperitoneally (i.p.).30,31 Each group comprised 5 mice.
In addition, force was also applied to the Caspase-1−/− mice for 7d
to compare the difference of OTM and alveolar bone remodeling
with the wild-type mice (n= 5).
After OTM, the animals were sacrificed and the maxillae were

harvested for micro-CT scanning and histological staining. For
histological staining, consecutive horizontal sections (4 μm) were
obtained from the middle to apical third of each maxillary first
molar. The sections from similar position of the roots were used
for histological study.

Micro-CT scanning and measurement of orthodontic tooth
movement (OTM) distance
The animals were sacrificed by overdose of pentobarbital sodium,
and the maxillae were harvested, fixed in 4% paraformaldehyde
(PFA), and scanned by micro-CT system (Inveon MMCT, Berlin,
Germany) at 80 kV, 500 µA, and an image voxel size of 18 µm.
Mimics 13.1 software (Materialise, Leuven, Belgium) was used for
3D image reconstruction and segmentation. The distance of OTM
was measured from the occlusal view of the maxillae in 3D images
using a modified method described previously.7 Briefly, the
distance between the midpoint of the first molar distal-marginal

ridge and the midpoint of the second molar mesial-marginal ridge
was measured by a trained researcher who was blinded to the
group assignment. The average of the three measurements was
calculated as the tooth movement distance.

Tartrate-resistant acid phosphatase (TRAP) staining
TRAP staining was utilized to detect the number of osteoclasts
using an acid phosphatase kit (387A-1KT; Sigma) according to the
manufacturer’s protocol. The number of TRAP-positive multi-
nucleated (>3 nuclei) osteoclasts in five visual fields at 20×
magnification in each well was counted. The final results came
from the average of 5 independent tests. In histological sections,
the number of TRAP-positive multinucleated (>3 nuclei) osteo-
clasts in five visual fields at 40× magnification in each histological
section was counted. The final results came from the average of 5
independent tests.

Immunohistochemical staining, immunofluorescence staining
For immunohistochemical staining, after mice sacrifice, the
trimmed maxillae were fixed in 4% PFA for 24 h. After decalcifying
in ethylenediaminetetraacetic acid for 4 weeks, the tissues were
embedded in paraffin. 4-μm consecutive horizontal sections were
obtained from the middle to apical third of the roots, and sections
from the similar positions were chosen. Immunohistochemistry
was performed with a two-step detection kit (Zhongshan Golden
Bridge Biotechnology, Beijing, China) as previously described.7

Primary antibodies included anti-GSDMD (1:200; AF4012, Affinity),
anti-Caspase-1 (1:200; AF5418, Affinity), and anti-IL-1β (1:200;
AF5103, Affinity). Histological changes in stained tissues were
observed using an optical microscope (Olympus, Japan). The
positive staining cells were counted in five different slides from
each sample.
Immunofluorescence staining was performed as previously

described.32 The sections were incubated with primary antibodies
including anti-CD90 (1:200; ab225, Abcam), anti-GSDMD (1:200;
AF4012, Affinity), anti-Caspase-1 (1:200; AF5418, Affinity), anti-IL-
1β (1:200; AF5103, Affinity) to observe the numbers of Caspase-
1+CD90+ cells, GSDMD+CD90+ cells, and IL-1β+CD90+ cells in the
compression side of the periodontal tissues after force loading;
antibodies including anti-TRPV4 (1:200; ab39260, Abcam), anti-
GSDMD (1:200; SC-393581, Santa Cruz), anti-Caspase-1 (1:200; SC-
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Fig. 8 Schematic showing force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells via TRPV4 signaling, ultimately contributing
to the activation of osteoclastogenesis and alveolar bone remodeling
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392736, Santa Cruz) were used to observe the numbers of
Caspase-1+TRPV4+ cells and GSDMD+TRPV4+ cells in the
compression side of the periodontal tissues after force loading.
Then, sections were incubated with fluorescein isothiocyanate-
conjugated or tetramethylrhodamine isothiocyanate-conjugated
secondary antibodies (1:200; Zhongshan Golden Bridge Biotech-
nology, Beijing, China). Nuclei were counterstained with 4′,6-
diamidino-2-phenylindole (DAPI, P0131, Beyotime). Confocal
images were processed with LSM 5 Release 4.2 software after
acquisition by a laser-scanning microscope (LSM510; Zeiss,
Germany). The cells double-stained by red and green immuno-
fluorescence were calculated. The positively double-stained cells
were counted in five different slides from each sample. The final
results came from the average of 5 independent samples.

Human PDL (h-PDL) progenitor cell isolation ex vivo
The volunteers planning to extract four premolars due to
orthodontic treatment demands were included. The h-PDL
progenitor cells were isolated from the upper premolars of
receiving orthodontic force for 7 d (hF7d) representing active
force stimulus.33 The h-PDL progenitor cells from the lower
premolars without force loading from the same patient served as
controls. Six teeth of three patients were isolated in each group
(n= 3). The clinical procedures were approved by Peking
University Ethical Committee (PKUSSIRB-201311103) and informed
consent was signed by the patients. Briefly, the periodontal
ligament scraped from the root surface of the premolars with or
without force stimuli were digested in a mixture of 3 mg/mL type I
collagenase (Worthington Biochem, USA) and 4mg/mL dispase II
(Roche, Germany) for 1 h at 37 °C. The single cell suspensions were
obtained and used for cell culture with a-MEM medium
(Invitrogen, USA) with 20% fetal bovine serum (Gibco, USA) and
1% Penicillin/Streptomycin (Gibco, USA). When the single cell
suspensions adhered to the wall for 3 days, the primary cells were
digested and cultivated on the six-well plate for further
experiments.

Mechanical loading and treatments on human PDL progenitor
cells in vitro
Human PDL progenitor cells were isolated as previously described
and were identified following previous protocols,34 which used at
passage 4. Compressive force loading was provided by glass layers
and 50mL plastic tube caps containing weighed metal balls as
previously described.35,36 1.5 g/cm2 compressive force was applied
to PDL progenitor cells for different time points (3–24 h), and
different compressive force (0.5–2.0 g/cm2) was applied to PDL
progenitor cells for 6 h. In addition, after being subjected to
1.0 g/cm2 and 1.5 g/cm2 compressive force for 6 h, PDL progenitor
cells were collected for further experiments of optical microscope
(OM, Olympus, Japan), scanning electron microscope (SEM) and
transmission electron microscope (TEM).
To confirm the influence of pyroptosis under mechanical

stimuli, pyroptosis activator PPVI (4 μmol/L), pyroptosis inhibitor
MCC950 (10 μmol/L) and Caspase-1 inhibitor Belnacasan (VX765,
20 μM, S2228, Selleck) were added to PDL progenitor cells for 18 h
in advance, then 1.5 g/cm2 force was applied to PDL progenitor
cells for 6 h.31,37 In addition, TRPV4 inhibitor GSK219 (10 mmol/L,
Selleck) were applied to PDL progenitor cells for 1 h and then
stimulated with force loading (1.5 g/cm2, 6 h).17 PDL progenitor
cells without force-loaded and drug treatment served as controls.

Co-culture of PBMCs and PDL progenitor cells
H-PBMCs were selected from peripheral blood. The h-PDL
progenitor cells of passage 1 (5 × 103 cells per mL) with or
without orthodontic force stimuli were seeded into 24-well plates
to co-cultured with h-PBMCs (1 × 106 cells per mL). Macrophage
colony-stimulating factor (MCS-F, 30 ng/mL) and soluble receptor
activator of nuclear factor–κB ligand (sRANKL, 50 ng/mL) were

added to the cultured medium. After co-culturing for 14 days, cells
were fixed and stained with an acid phosphatase kit (387A-1KT;
Sigma) for tartrate-resistant acid phosphatase (TRAP) staining.

Immunocytofluorescense staining
Immunocytofluorescense staining was performed according to a
previously described method.11 Briefly, cells were fixed in 4%
paraformaldehyde and permeabilized with 0.1% Triton X-100 at
room temperature for 10min. Next, the cells were incubated with
5% Bovine Serum Albumin (BSA) at room temperature for 1 h,
followed by incubation with anti-CD90 (1:200; SC-53456, Santa Cruz),
anti-TRPV4 (1:200; ab39260, Abcam), anti-GSDMD (1:200; AF4012,
Affinity), anti-Caspase-1 (1:200; AF5418, Affinity), and anti-IL-1β
(1:200; AF5103, Affinity) at 4 °C overnight. After thoroughly washed,
the cells were then incubated with fluorescein isothiocyanate-
conjugated or tetramethylrhodamine isothiocyanate-conjugated
secondary antibodies (1:200; Zhongshan Golden Bridge Biotechnol-
ogy, Beijing, China) in the dark at room temperature for 1 h. Nuclei
were counterstained with DAPI (P0131, Beyotime, China). Confocal
microscopic images were processed with LSM 5 Release 4.2 software
after acquisition by a laser-scanning microscope (LSM510; Zeiss,
Germany). The positively stained cells were counted in five different
slides from each sample.

Quantitative real-time polymerase chain reaction (PCR)
The rat periodontal tissues included the alveolar bone and
periodontal ligament were separated from the mesial side of first
molars. Tissues were collected in 1.5 mL EP tube with 1 mL TRizol
reagent (Invitrogen, Carlsbad, CA), and smashed for 5 min. Then
tissues were centrifuged and the supernatant was collected. For
PDL pregenitors in vitro, they were washed by PBS and added
TRizol reagent. Total RNA was extracted from cultured cells or
periodontal tissues with TRizol reagent (Invitrogen, Carlsbad, CA)
following the manufacturer’s protocol. 2 μg of RNA was reverse
transcribed into complementary first-strand cDNA using cDNA
synthesis kits (Takara Bio, Inc., Otsu, Japan). Then real-time
Polymerase Chain Reaction (PCR) was performed using the
FastStart Universal SYBR Green master kit (Roche) on an Applied
Biosystems 7500 real-time PCR System (Life Technologies Cor-
poration, United States) to determine the relative mRNA expres-
sion level. Fold changes of target genes were calculated with ΔCT
method using GAPDH or β-actin as a reference control. The
sequences of primers were designed by Primer Premier 5.0 soft-
ware and were listed as follows:
Human:
GAPDH sence/antisence: 5′- TGCCACTCAGAAGACTGTGG-3′/5′- T
TCAGCTCTGGGATGACCTT-3′.
NLRP3 sence/antisence:5′-CCACAAGATCGTGAGAAAACCC-3′/5′-
CGGTCCTATGTGCTCGTCA-3′
Caspase-1 sence/antisence:5′- CGTTCCATGGGTGAAGGTACA-3′/
5′- TGCCCCTTTCGGAATAACGG-3′
GSDMD sence/antisence:5′-GTGTGTCAACCTGTCTATCAAGG-3′/
5′- CATGGCATCGTAGAAGTGGAAG-3′
IL-1β sence/antisence:5′- TTCGACACATGGGATAACGAGG-3′/5′- T
TTTTGCTGTGAGTCCCGGAG-3′
RANKL sence/antisence:5′- ATCAGAGCAGAGAAAGCGATG-3′/5′-
GACTCACTTTATGGGAACCAG-3′
OPG sence/antisence:5′- TTGAAATGGCAGTTGATTCCTTT -3′/5′- T
ATCCTCTTTCTCAGGGTGCTTG-3′
CTSK sence/antisence:5′-ATCCGGACTGTGACGAGTTG -3′/5′-AT
TTGGGAGCAGCTGGGATG-3′
TRAP sence/antisence: 5′-ACTACCAGAAACGAGTGGGAA-3′/5′-G
CATCTGTTCTCGGAAAACCT-3′
Rat:
β-actin sence/antisence:5′- TGACAGGATGCAGAAGGAGA-3′/5′- T
AGAGCCACCAATCCACACA-3′
Nlrp3 sence/antisence:5′- TCACGTCTTGAAGCCACATCC-3′/5′- G
AAGCAAAGTTCCTCCAGACAG-3
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Caspase-1:5′- GTGGTTCCCTCAAGTTTTGC-3′/5′-CCGACTCTCCG
AGAAAGATG-3′
Gsdmd sence/antisence:5′- CCAACATCTCAGGGCCCCAT-3′/5′-TG
GCAAGTTTCTGCCCTGGA-3′
Il-1β sence/antisence:5′- CACCTCTCAAGCAGAGCACAG-3′/5′- GG
GTTCCATGGTGAAGTCAAC-3′
Trpv1 sence/antisence:5′-GCCGCTGAACCGACTC-3′/5′-CCCATCT
GCTGGAAAC-3′
Trpv2 sence/antisence:5′- CGCCATTGAGAAGAGGAGTC-3′/5′- GC
TTACCACATCCCACTGCT-3′
Trpv3 sence/antisence:5′- GCGTGGAGGAGTTGGTAGAG-3′/5′- CT
CTGTGTACTCGGCGTTGA-3′
Trpv4 sence/antisence:5′- CAGGTGGGGAGGCTTTT-3′/5′- GCGG
CTGCTTCTCTATG-3′

Western blotting
Western blottings were performed as previously described.17

Cells were lysed with RIPA buffer (Thermo Fisher Scientific) and
the total proteins were harvested. A Pierce BCA protein assay kit
(Thermo Fisher Scientific) was used to perform the protein
quantification. Total protein (30 μg) was separated by 10%
SDS–polyacrylamide gel and then transferred onto a polyviny-
lidene difluoride (PVDF) membrane (Millipore). After being
blocked in 5% BSA for 1 h at room temperature, the membranes
were incubated overnight at 4 °C with primary antibodies
including GAPDH (1:5 000, AF7021, Affinity), NLRP3 (1:1 000,
PA5-79740, Thermo Fisher), Caspase-1 (1:500, AF5418, Affinity),
Cl-Casp-1 (1:300, AF4005, Affinity), GSDMD and N-GSDMD
(1:500, AF4012, Affinity), IL-1β (1:500, AF5103, Affinity), Cl-IL-1β
(1:300, AF4006, Affinity), RANKL (1:500, AF0313, Affinity), OPG
(1:500, DF6824, Affinity), TRPV4 (1:1 000, ab39260, Abcam). The
blots were then incubated with a horseradish peroxidase-
conjugated secondary antibody (1:5 000; Zhongshan Golden
Bridge Biotechnology, Beijing, China). The membranes were
washed three times with 0.1% TBS Tween (P9416, Sigma-
Aldrich). The bands were detected using enhanced chemilumi-
nescence (34577, Thermo Fisher Scientific), and BioMax film
(Kodak, Rochester, New York, USA) was used to detect the
immunoreactive proteins. The relative density of at least three
independent results was measured by Image J software. All the
western blotting results were the average of 3 independent
experiments.

Enzyme-linked immunosorbent assay (ELISA)
RANKL and IL-1β concentrations in culture supernatants were
detected by ELISA (mlbio, China) following the manufacturer’s
instructions. The results were determined by comparing the
samples to the standard curve generated by the kit. All samples
and standards were assayed in triplicate.

Scanning electron microscopy (SEM) and transmission electron
microscopy (TEM)
For SEM, the PDL pregenitor samples were pre-fixed in 2.5%
glutaraldehyde in PBS (pH 7.4) at 4 °C for 12 h and washed with
PBS three times. The samples were dehydrated in a graded
series of ethanol solutions and critical-point dried, and then
sputter-coated with gold for 2 min at 20 mA. The PDL
pregenitor samples were observed using SEM (Hitachi S-4800,
Japan) at 10 kV.
For TEM, PDL pregenitors were harvested, washed three times

with PBS, and fixed in 2.5% glutaraldehyde for 2 days at 4 °C. PDL
pregenitors were post-fixed in 1% osmium tetroxide for 2 h. After
they were dehydrated using a graded series of ethanol solutions,
the samples were embedded in Embed-812 resin and cut into
ultrathin sections (70 nm thick). The ultrathin sections were
installed on a copper wire and stained with dioxyuranium acetate
and lead citrate. These sections were examined with TEM (JEM-
100CX, Japan) at 100 kV.

Ca2+ influx measurement
The calcium-regulated fluorescent intracellular calcium indicator,
Fluo-4 acetoxymethyl ester form (Fluo-4 AM, F8500, Solarbio,
China) was used to monitor real-time elevations of intracellular
calcium following force stimuli and the inhibition of TRPV4,
according to the manufacturer’s instructions. Briefly, PDL prege-
nitors of different groups (Control, Force, Force+GSK219) were
loaded with 4 × 10−4 mol/L Fluo-4 AM fluorescent dye diluted 1/
200 in Ca2+ free Hank’s buffered salt solution (HBSS) for 60min at
room temperature. After this period, cells were washed two times
with HBSS and further incubated with 300 µL of HBSS for 60 min.
Cells were stained with Hoechst 33342 (C1027, Beyotime, China) in
the dark for 20 min. Then, Fluo-4 AM positive cells were
photographed by confocal microscopy (LSM510; Zeiss, Germany),
and the images were processed using LSM 5 Release 4.2 software.

Measurement of intracellular reactive oxygen species (ROS)
The content of intracellular ROS was detected by the H2DCF-DA
fluorescence probe (Beyotime, China) according to the manufac-
turer’s instructions. After that PDL pregenitors of different groups
(Control, Force, Force+GSK219) were incubated with 10 mM
DCFH-DA for 20 min at 37 °C in the dark, PDL pregenitors were
washed twice with serum-free medium and resuspended with
a-MEM medium including Hoechst 33342 (C1027, Beyotime,
China). The intracellular ROS was assessed at 488/525 nm using
fluorescent microscopy (Leica, Germany) and analyzed by Image-
Pro Plus 6.0 software (Media Cybernetics, MD, USA).

Mitochondrial morphology detection and mitochondrial
membrane potential (Δψm)
Mitochondrial morphology was detected by Mito-tracker dyes.
Mitochondria were labeled with the MitoTracker Red (C1049B,
Beyotime, China) for 30min in the dark. The mitochondrial
morphology was photographed by a confocal microscope
(LSM510; Zeiss, Germany).
The Δψm was analyzed using the fluorescent probe JC-1 assay

kit (C2003S, Beyotime, China) according to the manufacturer’s
instructions. JC-1 exhibits red fluorescence aggregates in the
mitochondrial matrix in normal cells. When the Δψm is reduced,
monomeric JC-1 displays green fluorescence. Therefore, the rate
of green/red fluorescence was used to represent the Δψm in each
cell sample. PDL pregenitors of different groups (Control, Force,
and Force + GSK219) were cultured on the coverslips in 12-well
plates and loaded with JC-1 (1:400 dilution) at 37 °C for 20 min.
The images were observed and captured under a fluorescence
microscope (Leica, Germany).

Adenosine triphosphate (ATP) Assay
ATP levels were measured using the ATP bioluminescence
detection kit (S0026, Beyotime, China). Briefly, PDL pregenitors
were lysed with a lysis buffer supplied with the kit and centrifuged
at 12 000 × g for 5 min at 4 °C. The supernatant was collected for
ATP detection. The protein concentration of the supernatant was
measured using the BCA Protein Assay Kit (P0012S, Beyotime,
China). Furthermore, 100 µL supernatant with 100 µL ATP detec-
tion buffer was measured using a microplate reader (EnSpire,
USA). The standard solution was diluted in gradient to obtain the
standard curve (1 nmol/L-1 µmol/L). Then, ATP levels were
calculated according to standard curves and normalized according
to standard protein concentrations.

Statistical analysis
Statistical analysis was performed with GraphPad Prism 9.0 soft-
ware. Data were presented as mean ± standard deviation (SD).
Statistical differences between two groups were assessed by a
two-tailed independent Student’s t test, and statistical differences
among three and more groups were assessed by one-way analysis
of variance (ANOVA). Tukey’s multiple-comparison test was used
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for the post hoc comparison of ANOVA. A p-value less than 0.05
represented statistically significant.
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