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Spatial transcriptomics reveals that metabolic characteristics
define the tumor immunosuppression microenvironment via
iCAF transformation in oral squamous cell carcinoma
Zheqi Liu1,2, Zhen Zhang1, Yu Zhang 1, Wenkai Zhou1, Xu Zhang1, Canbang Peng3, Tong Ji2, Xin Zou 4,5, Zhiyuan Zhang1,6✉ and
Zhenhu Ren1,6✉

Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell
carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship
between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial
transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through
SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism,
and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β
expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication
analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells
to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the
transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and
increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive
microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA
bulk data, and highlights potential targets for therapy.
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INTRODUCTION
Oral squamous cell carcinoma (OSCC) is the most common
malignant tumor of the head and neck region, accounting for
more than 90% of head and neck cancer.1,2 Patients usually
experience difficulties in chewing, speaking, and breathing after
surgery, and the 5-year survival rate is low in late-stage patients.
Risk factors for OSCC include tobacco and/or alcohol consump-
tion, areca chewing, and unhealthy oral hygiene, which lead to
chronic local inflammation caused by physical, chemical, or
biological factors. Although studies have revealed a series of
molecular events associated with the disease, a comprehensive
understanding of the spatial characteristics and interactions within
the tumor microenvironment (TME) is still lacking.
Carcinogenesis relies on a series of events involved in cell

metabolism reprogramming and TME reshaping. Cancers in the
head and neck regions exhibit significant hypoxic features3

resulting from microvascular malformation and rapid proliferation.
Single-cell transcriptomics has shown the TME subclusters in
detail4,5 and explained their roles in altering the immune status.6,7

However, the association between metabolic activity and TME

conversion (including function and recruitment/infiltration)
remains unclear. It is suggested that hypoxia-driven metabolism
reprogramming would lead to tumor immune escape, with the
malfunction of pro-inflammatory factors and stabilization of co-
inhibitory factors. As a result, the tumor microenvironment is
spatially distinct based on their hypoxia-related metabolic
activities, the compositions and inter-cell communications are
supposed to be differed due to the metabolic background of the
regions.
In the current study, the spatial transcriptomic (ST) technique of

the 10× Visium platform was applied to three OSCC samples and
their adjacent normal tissues, cell type proportions were
computed with both our own and publicly available OSCC
single-cell sequencing data by Spotlight. By distinguishing the
spatial clusters using their metabolic status, it was observed that
regions under different metabolic status exhibits distinct cell
composition and cell-cell communications. A complex trajectory
involving cancer cells, cancer-associated fibroblasts (CAFs), and
regulatory T cells (Tregs) has been identified. Through bioinfor-
matics and correlation analyses, we found that the transcription
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factors, ligands, receptors, and target genes involved in this
process synergistically to promote immune suppression and
cancer progression. These findings highlight potential targets for
combined therapy with immune checkpoint blockade (ICB) to
improve treatment outcomes. In summary, our study has explored
the spatial relationship between cancer regional metabolism and
the TME in OSCC. Our results shed light on the underlying
mechanisms of OSCC development and have important implica-
tions for clinical practice, particularly in the treatment of this
disease.

RESULTS
Spatial clustering of oral squamous cell carcinoma tissue samples
After quality control screening, 20,195 tissue spots of six samples
from three patients were sequenced (Table S1). Integrated
clustering analysis of ST data from all tissue spots revealed seven
distinct clusters (Fig. S1A). Spatial clustering analysis was
performed, and each tissue sample was divided into four spatial
clusters using the BayesSpace package8 (Fig. 1a). Based on the
results of spatial clustering, expression characteristics of unsuper-
vised clustering (Fig. S1C), and histological morphological
information of hematoxylin and eosin (H&E)-stained slides (Fig.
S1D), we divided tissues into epithelial and stromal regions (Fig.
1b). The distribution of epithelial and stromal spots in tumor and
normal tissues is shown in Fig. S1B.

Metabolic heterogeneity affects the TME
To analyze the proportion of cells in each spot in the spatial
dataset, we utilized two sets of single-cell data: one set of single-
cell sequencing data, named SC data, obtained from clinical oral
squamous cell carcinoma tissue samples using the 10X Genomics
platform, and another set of OSCC single-cell data from Puram, S.
V, et al. (GSE103322,4) named Cell data. Our single-cell data
underwent processing with Seurat’s standard single-cell pipeline,
and cell-type labeling was performed with various cell markers
(Fig. S2A). Subsequently, we used the SPOTlight9 algorithm to
deconvolute the spatial groups’ spots with the two sets of single-

cell data as a reference to obtain the proportion of cells in each
spot (Fig. 2a, Supplementary Materials). To evaluate the metabolic
activity of each spot, we selected five metabolism-related path-
ways, including glycolysis, pentose phosphate, oxidative phos-
phorylation, glutamate/glutamine metabolism, and hypoxia, to
explore the metabolic status of the OSCC samples. Using the
scMetabolism10 we calculated the metabolic scores of the five
pathways and reflected them onto tissue slides (Fig. S3A–E).
Furthermore, we calculated the mean metabolic scores of the five
pathways as the metabolic signature, which represents the
metabolic activity of each spot in the tissues (Fig. S3F). The total
spots were clustered into three categories: hypermetabolic,
normal metabolic, and hypometabolic (Fig. 2b). By mapping the
three clusters onto tissue slides and comparing the results of
spatial clustering, we found that the hypermetabolic region was in
the epithelial region (Fig. 2c), which was consistent with the
hypermetabolic state of epithelial cells in tumor tissues. The cell
type with the highest proportion in each spot was set as the main
cell type, and the proportion of different cell types in different
metabolic regions was computed. By calculating the proportion of
different cell types, we found that the proportion of T cells (Cell
data) and CD4 T cells (SC data) increased with the boosting of
metabolic activity (Fig. 3a–c). We also performed immunofluores-
cence (IF) and found that the proportion of T cells (CD3) was
dominate in regions with over-expressed LDHA and HIF1α (Fig.
3d). These results suggest that changes in metabolic activity status
in tumor tissues affect the composition of the TME in OSCC,
particularly the proportion of CD4 T cells.

Tregs are enriched in the hypermetabolic regions
Cell-cell communication is the primary mechanism of interaction
between different cells in the TME. We used CellPhoneDB11 to
analyze cell-cell interactions in different metabolic regions of the
tumor tissue. Compared to hypometabolic regions, we found that
the communication counts between fibroblasts and CD4 T cells,
and between epithelial and fibroblast cells in hypermetabolic
regions were significantly higher (Fig. 4a, b, red and blue boxes).
Since we observed a change in the proportion of CD4 T cells in
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Fig. 1 Spatial clustering of oral squamous cell carcinoma tissue samples. a Spatial clustering of BayesSpace was used to identify distinct
regions within the tissue samples, and each sample was analyzed independently. b Based on the Bayes clusters, unsupervised clustering was
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hypermetabolic regions, we focused on studying the CD4 T cells
first.
NicheNet12 was adopted to evaluate ligand activity from sender

cells (fibroblasts) and potential target genes in CD4 T cells. We
found that 12 and 18 top-ranked ligands were predicted in Cell
data SC data, respectively (Table S2). After taking the intersection
of the ligands list, 7 overlapped ligands were identified (Fig. 4c).
We then extracted the matrix of ligands-targets genes of T cells
(CD4 T cells) in Cell data and SC data (Tables S3 and S4) and
performed the intersection operation to obtain 7 overlapped
target genes (Fig. 4d).
With the AddModuleScore function of Seurat, we mapped this 7

genes panel onto ST data. The results showed that in tumor
samples and tumor-infiltrating CD4 T cells, these genes were
significantly over-expressed in hypermetabolic regions (Fig. 5a, b).
To determine the precise T cell lineage associated with these genes,
we mapped it onto the SC data and found that the panel was
highly expressed in regulatory T cells (Tregs) (Fig. 5c). Immuno-
fluorescence (IF) also confirmed the colocalization of Tregs (CD4,
FOXP3) and high metabolic regions (LDHA High, HIF1A High) (Fig. 5d).

Fibroblast derived CXCL12 recruits Tregs to hypermetabolic
regions
Cell infiltration in tumors is mainly driven by chemokines. We
performed functional enrichment analysis of predicted ligands
and found that several biological processes related to T cell or
lymphocyte migration were among the top 10 enriched items (Fig.
6a, red box). CXCL12 was a common chemokine found in both
datasets (Fig. 6b, c). Tregs in the SC data were further divided into
4 clusters (Fig. 7a). Although the main receptors of CXCL12 are

ACKR3 and CXCR4, ACKR3 had no expression in Tregs according to
the single-cell analysis (Fig. S4A), so we focused on CXCR4
expression. Cluster 2 of Tregs had the highest expression of CXCR4
and the 7-gene target panel identified from the ST data (Figs. 3d &
7b). Tregs are known to secrete TGF-β, which creates an
immunosuppressive environment in tumors. We examined the
expression of cytokines secreted by T cells and found that only
TGF-β (TGFB1) expression increased in both hypermetabolic and
hypometabolic regions (Fig. S4B, S4C). In addition, TGFB1 had the
highest expression in Cluster 2 of Tregs in the SC data (Fig. 7c).
Finally, we confirmed the co-localization of CXCL12 and high
metabolic regions (LDHA High, HIF1α High) through immunofluor-
escence, supporting the conclusion that a cluster of Tregs is
recruited by CXCL12 in the hypermetabolic regions in OSCC
(Fig. 7d).

Cancer-derived lactate induces iCAFs to express CXCL12
The up-stream cell communication is the talks between epithelial
cells and fibroblasts (Fig. 4a, b). Based on the metabolism activities
of OSCC hypermetabolic region, cancer cells mainly obtain energy
through aerobic glycolysis (known as the Warburg effect),
producing lactic acid as the main metabolite. Immune and
stromal cells in the TME uptake lactate for energy production.13–15

Previous studies have suggested that inflammatory cancer-
associated fibroblasts (iCAFs) have relatively high expression of
pyruvate carboxylase genes13 and can regulate the TME by
secreting cytokines such as CXCL12,16,17 which was shown to be
an important chemokine in recruiting Tregs in our previous results.
To conduct in vitro cell experiments, we cultured CAF cells and

cancer cells (HN6 cell line) with the same number of cells under
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the environment of high and low glucose culture medium, and
detected the content of lactate secreted in the supernatant. The
results suggested that lactate secretion of HN6 cells increased
significantly in the high-glucose environment, and lactate content
was decreased in the supernatant of CAFs (Fig. S5A).These results
suggest that cancer cells can produce a large amount of lactate
under high glucose environment, while CAF cells are lactic acid
consuming cells and lack the ability of lactate production.
We extracted fibroblast data from the SC data and divided it into

4 clusters (Fig. 8a). Cluster 0 had the highest expression of CXCL12
and iCAF markers (PDGFRA and RGS5) among the 4 clusters (Fig. 8b).
We then identified the specific marker genes for Cluster 0 (Fig. 8c)
and mapped these genes to ST spots defined as fibroblast in both
the Cell data and SC data (Fig. 8d). The expression of the Cluster 0
panel was consistent with the metabolic activity in ST data (Fig. 9a).
We also analyzed the metabolic activity of pyruvate metabolism

and the citric acid cycle in our ST data using the scMetabolism.
The results showed that pyruvate metabolism activity gradually
increased with an increase in overall metabolic activity (Fig. 9b).
Additionally, the monocarboxylate transporter MCT1 (SLC16A1),
which plays a key role in lactate transport, was highly expressed in
the hypermetabolic regions (Fig. S5B).
Similarly, we extracted target genes corresponding to over-

lapped ligands from epithelial cells in both datasets using the
Nichenet results, and performed KEGG functional enrichment
analysis of these target genes. The results showed that multiple
signaling pathways were activated in fibroblast that were
communicating with epithelial cells (Fig. 9c). Previous studies
have shown that the PI3K-Akt pathway can regulate HIF1A and
further regulate the transcriptional expression of downstream
genes.18–20 HIF1A has also been confirmed to be an upstream
transcriptional regulator of CXCL12.21,22 We analyzed the

expression of tumor-infiltrating fibroblasts in the ST data and
found that HIF1A expression was increased in fibroblasts in
hypermetabolic regions (Fig. 9d), and there was a significant
correlation between HIF1A and CXCL12 expression (Fig. 9e).
To validate these findings, we performed in vitro experiments.

After primary culture of 2 CAF cell lines (CAF1 and CAF2)from
OSCC patients, sodium lactate was added to cells, and gene
expression was measured after 72 h. The expression of CXCL12 in
CAF1 was much higher than that in CAF2, and that the expression
of iCAF markers (PDGFRA, RGS5), HIF1A and CXCL12 were up-
regulated after lactate treatment. The increase of these marker in
CAF1 was larger than CAF2 according to the fold change value
(Fig. 9f). Immunofluorescence staining shows the co-localization of
iCAF (PDGFRA and IL-6),CXCL12 and hypermetabolic regions
(LDHA) in OSCC (Fig. 9g).
In summary, lactate secreted by cancer cells can promote the

transformation of fibroblasts into iCAFs and the expression of
CXCL12, possibly via the PI3K-Akt-HIF1A axis.

Cancer cell-iCAF-Treg recruitment in hypermetabolic OSCC
We utilized RNA-seq data from The Cancer Genome Atlas (TCGA) to
validate our ST results for OSCC. Using the scMetabolism algorithm,
we assessed the metabolic pathway scores of 128 OSCC samples and
calculated the mean of five pathway scores to obtain the metabolism
score, as in the ST data. The median metabolism score was used as
the cutoff value to classify all samples into high and low metabolic
groups (Fig. 10a). Using gene sets from the Bindea study,23 we
calculated the immune cell infiltration of each sample by ssGSEA, and
the infiltration of CAF was calculated using MCPCounter (Fig. S5C). By
comparing the high- and low-metabolism groups, we found that the
proportion of infiltrating Tregs in the high-metabolic group was
significantly higher than that in the low-metabolic group. The key
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molecules identified in the ST data analysis, such as CXCL12, HIF1A,
and SLC16A1, were also significantly upregulated in the high-
metabolic samples (Fig. 10b). iCAF markers RGS5 and PDGFRA also
showed higher expression in the high metabolic samples (Fig. S5D).
Correlation analysis further revealed strong positive correlations
between SLC16A1 and HIF1A, HIF1A and CXCL12, CAF infiltration and
CXCL12, CXCL12 and Treg infiltration (Fig. 11a). The above results
suggest a biological positive correlation between enhanced lactate
utilization and increased expression of HIF1A, CXCL12, and CAF
infiltration, as well as increased Treg infiltration. The iCAF markers
RGS5 and PDGFRA also showed strong positive correlation with
HIF1A and CXCL12 in OSCC samples (Fig. S5E). Additionally, we used
TIDE24,25 to estimate the response of TCGA oral cancer samples to
immune checkpoint blockade (ICB) therapy (Supplementary materi-
als). Comparing the results showed that the metabolism scores of
ICB-responder samples were significantly increased, and correspond-
ingly, the expression of CXCL12, HIF1A, and SLC16A1 was higher than
that in non-responder samples (Fig. 11b). These findings suggest the
existence of a phenomenon of lactate utilization (SLC16A1)/iCAF/
HIF1A/CXCL12/Treg chemotaxis in hypermetabolic samples in OSCC,
resulting in immune suppression in the TME (Fig. 11c).

DISCUSSION
Low levels of molecular oxygen are frequently observed in primary
tumor subregions, with the highest hypoxia scores found in
squamous cell tumors, particularly in the case of HNSCC.3 An anoxic

status leads to harsh metabolic and physical microenvironments,
including imbalanced regulation of cancer cells, fibroblasts, and
various immune cells. A tumorigenic cascade is mediated by HIF-1α-
related signaling, which leads to a microenvironment beneficial for
glycolysis and lactic acid production.26 However, there is a lack of
studies on the relationship between regional metabolic hetero-
geneity and corresponding immune cell activities. Via the application
of spatial transcriptomic technology and downstream data analysis,
the TME of oral cancer tissue spots were distinguished by hypoxia
metabolic scores. The hypermetabolic regions were dominated by
epithelial tissues, and the composition of immune cells, including the
ratio of T cells, B cells, and macrophages, varied significantly.
Based on the findings of inter-cell communication, predicted

target gene enrichment, and differential expression of cytokines, it
was discovered that TGF-β was over-secreted in hypermetabolic
regions by Tregs. Furthermore, the proportion of TGF-β-secreting
T cells was found to be significantly increased in these areas. It is
widely acknowledged that the elimination of lactic acid by cancer
cells during glycolysis is a primary inducer of tumor-infiltrating
Tregs,27 which strongly suppress antitumor cytotoxicity.28 The
current study proposes that Treg infiltration in OSCC is not merely
regulated by lactic acid but also by chemotaxis, which was also
validated by the Multiple fluorescence staining.
Our results indicate that fibroblasts play a crucial role in recruiting

Tregs to hypermetabolic regions through the interaction of CXCL12-
ACKR3.CXCL12 upregulation has been reported to be one of the
representative events of iCAF,22 which was validated by our data.
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Fibroblasts require lactic acid to promote the transformation to
CAF,13 the overexpression of MCT1, activation of PI3K-AKT, and
MAPK signaling pathways explain this process (Fig. S4A, F).
Meanwhile, the over-reactive transcription factor HIF1α in CAFs of
the hypermetabolic region promotes the transcription of down-
stream CXCL12,29 assisting the recruitment of Tregs and reshaping
the TME for the purpose of immunosuppression.30,31

Hypoxia metabolism is a key factors that affect cellular expression
reprogramming and TME reshaping by directly or indirectly
regulating the expression of immune checkpoints and cytokine
secretion.26 In the current study, the metabolism score from the bulk
RNA sequencing data was significantly associated with the propor-
tion of immune cells; it also proved to be valuable in the assessment
of ICB responses. The high and low metabolic groups differed in the
expression of key molecules, such as CXCL12, HIF1A, and SLC16A1.

CONCLUSION
In the current study, the intratumorally metabolic heterogeneity of
oral cancer was spatially investigated for the first time, and the

relationship between hypermetabolic regions and local immune
suppression was interpreted. The coordinate axis of cancer cells
(lactate)/MCT1 (transformation from fibroblast to iCAF)/secretion
of CXCL12 (promoting transcription by HIF1A)/Treg recruitment
(CXCL12-ACKR3)/TGF-β1 secretion (tumor immune suppression
microenvironment) was discovered by spatial transcriptomics and
validated by immune fluorescence staining and bulk RNA-
sequencing data of OSCC. However, clinical correlation analysis
was limited by the sample size, and the annotation of CD4+ T cell
lineage did not achieve the optimal resolution due to the limited
features captured. Future research with more comprehensive data
and validations using in vitro and in vivo assays is warranted.

MATERIALS AND METHODS
Sample collection
The study was approved by the Ethics Committee of the Ninth
People’s Hospital, Shanghai Jiao Tong University School of
Medicine (SH9H-2020-TK10-1). Fresh tumor and normal mucosa
tissues were collected from patients with OSCC undergoing
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surgical resection in Shanghai Ninth People’s Hospital. All patients
were untreated with chemo- or radiotherapy prior to surgery. All
diagnoses were verified by an experienced histologist. Written
informed consent was obtained from each patient. The clinical
characteristics of the patients, including age, sex, stage, histolo-
gical grade, and smoking status, are shown in Table 1.

Sample preparation and data generation
For spatial transcriptome, the surgically resected tissues were
immediately placed in an OCT-filled mold and snap-frozen in
isopentane and liquid nitrogen. Cryosections were stored at
−80 °C until use. Five to ten pieces of 5 µm-thick slices were taken,
and RNA was extracted and immediately analyzed using the
RNeasy Mini Kit (#74104; Qiagen, Hilden Germany). An RNA
integrity number greater than seven was considered a qualified
sample. The Visium Spatial Tissue Optimization slide was used to
optimize the permeabilization conditions for the tumor and
normal tissues, according to the 10× Visium spatial tissue
optimization protocol. For cryosectioning, the samples were
equilibrated to −20 °C. Blocks were trimmed to less than
6.5 mm× 6.5 mm before sectioning directly onto the Visium
Spatial Tissue Optimization slide. The final optimized permeabi-
lization time was 6–30min for different tissue blocks. Once
optimal conditions were established, three cryosections per
patient were cut at a thickness of 10 μm onto spatial slides and
immediately processed.
The 10× Visium spatial gene expression protocol was followed.

The sectioned slides were stored at −20 °C for 30 min, whereas the
sectioned slides for staining were incubated in hematoxylin
(#BCCC7207, SIGMA) for 10 min, bluing buffer (#091824, Dako) for
2 min, and eosin (#17372-87-1, Merck) diluted 1:9 in Tris-base for
1 min. The slides were washed with RNAse- and DNAse-free water
after each staining step. Thereafter, the slides were scanned at 40×
magnification under a microscope (Leica DMI8 and CS2).
The slides were inserted into slide cassettes to separate tissue

sections into individual reaction chambers. The permeabilization
enzyme from the 10× Visium Gene Expression Kit (PN-1000184) was
added to the tissue on the gene expression slide for the appropriate
time according to the tissue optimization step. After incubation, the
permeabilization enzyme was removed and the wells were washed
with 0.1× SSC (#SLCF2892, SIGMA) before reverse transcription (RT)
on the PCR instrument. After RT, the wells were washed with 0.1×
SSC. Then, 75 μL 0.08M KOH was added to each well for 5min at
25 °C before adding the Second Strand Mix in a 10× Visium Gene
expression Kit (PN-1000184) to the slide to generate the second
strand. Thereafter, 0.08mol/L KOH (diluted from stock) was added to
each well for 10min at 25 °C. qPCR was used to quantify the cDNA
yield. Based on the Cq value, the double-stranded DNA was
sequenced using PCR. Briefly, the library was prepared, followed by
fragmentation, end repair, A-tailing, ligation, and index PCR. The
libraries were sequenced on the Illumina NovaSeq platform and the
resulting data were processed using SpaceRanger v1.1.0 (10×
Genomics, Pleasanton, CA, USA) with manual alignment of fiducial
markers and manual tissue identification.
For single cell transcriptome, tissue sample was temporarily

stored in ice-cold storage buffer (RPMI 1640+ 0.04% BSA) before
being washed twice with storage buffer and cut into

approximately 0.5 mm3 pieces. These pieces were incubated in a
fresh enzyme mixture at 37 °C for 30–60min and filtered using a
40 μm cell strainer. After centrifugation (4 °C, 300 g for 5 min), an
equal volume of 1X Red Blood Cell Lysis Buffer (MACS, 130-094-
183) was added to the cell pellets and maintained at 4 °C for
10min before centrifugation (4 °C, 300 g for 5 min). The cells were
then washed and resuspended in RPMI 1640. cDNA libraries were
constructed using the 10×Genomics Chromium Next GEM Single
Cell 3ʹ Reagent Kits v3.1 (1000268) following the manufacturer’s
instructions, and sequencing was performed on the Illumina Nova
6000 PE150 platform. The Cell Ranger software pipeline (version
3.1.0) provided by 10×Genomics was used to demultiplex cellular
barcodes, map reads to the genome and transcriptome using the
STAR aligner, and down-sample reads as required to generate
normalized aggregate data across samples, producing a matrix of
gene counts versus cells.

Spatial transcriptomics data processing
The quality control of all 20 661 spatial spots is shown in Table S1.
The gene-spot matrices generated after the ST data processing from
the ST and Visium samples were analyzed with the ‘Seurat’ package
v4.1.132 in R v4.1.0. Normalization across spots was performed with
the ‘SCTransform’ function. All data from the six samples were
combined using the ‘FindIntegrationAnchors’ function. Dimension-
ality reduction and clustering were performed with principal
component analysis (PCA) using the ‘RunPCA’ function. Integration
with GSE103322 and cell labeling was performed using the
‘FindTransferAnchors’ function. DEG analysis was performed using
the ‘FindAllMarkers’ function. Functional enrichment analysis
including Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis was performed using the ‘clusterPro-
filer’ package.33 Metabolism signature enrichment analysis for spots
of ST data was performed using the scMetabolism algorithm,10

which required count data for calculation (the hypoxia gene sets are
shown in the supplementary data). K-means was used to cluster
groups according to the metabolic signatures in spots, and three
clusters were generated.

Single cell transcriptomics data processing
The UMI count matrix was preprocessed using the Seurat R
package (version 4.1.2) to eliminate low-quality cells. A specific set
of criteria was applied to filter cells, including: (1) removal of cells
whose UMI/gene numbers were outside the mean value +/−
2-fold of standard deviations, based on the assumption of a
Gaussian distribution for UMI/gene numbers for each cell, and (2)
exclusion of cells with a percentage of mitochondrial RNA UMIs
(i.e., the proportion of UMIs mapped to mitochondrial genes)
greater than 10%. Following the application of these QC criteria, a
total of 6628 single cells were retained for downstream analyses.
Normalization of the counts was performed using the SCTrans-
form function in Seurat.

Cell lines and cell cultures
Cancer associated fibroblasts (CAFs) were isolated from tumor
tissues of OSCC patients underwent radical surgery. The cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM;
Gibco-BRL, USA) supplemented with 10% fetal bovine serum

Table 1. Clinical characters of three patients

Data Type Patients ID Age Gender Pathological T Stage Pathological N Stage Histological Grade Smoking

Spatial P1 85 Female T1 N0 I No

P2 44 Male T2 N0 II No

P3 41 Male T2 N2 I Yes

Single cell P8 49 Female T2 N1 I No
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(FBS; Gibco-BRL), penicillin (100 units per mL), and streptomycin
(100 μg/mL) at 37 °C in a humidified 5% CO2 atmosphere.

Multiple immunofluorescences staining and analysis
To avoid non-specific staining of antibodies from the same
species, multiple immunofluorescence staining was performed
using the TSA Plus kit based on tyramine signal amplification
technics according to the manufacturer’s instructions. Sponta-
neous fluorescence was removed from paraffin sections using a
tissue spontaneous fluorescence quencher immediately after
antigen retrieval. All tissue slices were scanned by a Pannoramic
Scanner using Pannoramic DESK, P-MIDI, and P250 (3D HISTECH,
Hungary). Detailed information on commercial kits and antibodies
can be found in the key resources table.

TCGA bulk RNA-seq data acquisition and processing
Gene expression data, including read counts and fragments per
kilobase of transcript per million mapped reads (FPKM), and the
corresponding clinical information of patients with oral tongue
SCC (OSCC, 128 cases) were downloaded from the HNSC projects
of TCGA database (https://genome-cancer.ucsc.edu/). Patients
diagnosed with OSCC and those with complete follow-up data
were included. The FPKM data were transformed into transcripts
per million (TPM) reads for further analyses. The metabolism
signature enrichment analysis for each sample was calculated
using the same method as for the ST data. The prediction of
response to immune checkpoint blockade therapy was calculated
using the online tool TIDE (http://tide.dfci.harvard.edu).24 Detailed
prediction results are listed in Supplementary Materials.

Analysis of immune infiltration
The analysis of the immune infiltration in TCGA OSCC was
conducted using MCPcounter, and the single sample Gene Set
Enrichment Analysis (ssGSEA) method was performed using the
GSVA package (http://www.bioconductor.org/packages/release/
bioc/html/GSVA.html) in R. Based on the signature genes reported
in the literature 23,34 the relative enrichment score of all immune
cells was calculated based on the gene expression profile deduced
for each tumor sample.

Cell-cell interactions
CellPhoneDB,11 a curated database of ligands, receptors, and their
subunit interactions, was used to identify ligand–receptor inter-
actions in the tumor samples of the three patients. Following
identification of different cell types in our ST data, we followed the
recommended protocol for preparation of input files and
performed cell–cell interactions using the “statistical_analysis”
function in CellPhoneDB v2.0. A functional understanding of
cell–cell communication requires knowledge of the influence of
these ligand–receptor interactions on target gene expression.
NicheNet12 can predict which ligands influence the expression in
another cell, the target genes affected by each ligand, and the
signaling mediators that may be involved. Thus, to evaluate
functional changes in receptor cells, NicheNet was chosen for the
prediction of target genes in receptor cells. The visualization of the
results from CellPhoneDB and NicheNet was performed using
‘ktplots’ and ‘ggplot2’ R packages.

RNA extraction and RT-qPCR
Total RNA was extracted using TRIzol (Invitrogen, CA, United
States). An equal amount of RNA was reverse- transcribed using
the HiScript II Q RT Supermix and was quantified by qPCR using
SYBR Green (Bimake). The primer sequences are shown in
Supplementary Material.

Statistical analysis and data visualization
All statistical analyses were performed using R v4.1.2. Gene
expression between the two groups was compared using Wilcoxon

rank-sum tests. Statistical significance was set at P < 0.05. The data
were visualized using the ‘ggplot2’ and ‘ggsci’ packages.

ACKNOWLEDGEMENTS
This study was supported by the Natural Science Foundation of China (82002851),
funding of postdoctoral of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, fundamental research program funding of Ninth
People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine
(JYZZ180), funding of academician workstation in Hainan, Shanghai Anticancer
Association EYAS PROJECT (SACA-CY21A01). We would like to thank Accuramed
Technology (Shanghai) Limited (https://www.accuramed.com/) and Helixlife Informa-
tion Technology Co., Ltd (Shanghai) (https://www.helixlife.cn/) for the technical
supports of the spatial transcriptomic sequencing.

AUTHOR CONTRIBUTIONS
Z.R. and Z.Z. designed the study. Z.L. and Z.Z. contributed equally to this work. W.Z.,
X.Z., and C.P. collected all the tissue samples. Z.L., Z.Z., Y.Z., T.J., and X.Z. performed
the measurements and data analysis. Z.L., Z.Z., and Z.R. wrote the manuscript. All
authors have read and critically revised the manuscript.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41368-023-00267-8.

Competing interests: The authors declare no competing interests.

REFERENCES
1. Ren, Z. H., Hu, C. Y., He, H. R., Li, Y. J. & Lyu, J. Global and regional burdens of oral

cancer from 1990 to 2017: Results from the global burden of disease study.
Cancer Commun. (Lond.) 40, 81–92 (2020).

2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer
J. Clin. 72, 7–33 (2022).

3. Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat.
Genet. 51, 308–318 (2019).

4. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic
tumor ecosystems in head and neck cancer. Cell 171, 1611–1624 (2017).

5. Cillo, A. R. et al. Immune landscape of viral- and carcinogen-driven head and neck
cancer. Immunity 52, 183–199 (2020).

6. Obradovic, A. et al. Immunostimulatory cancer-associated fibroblast subpopula-
tions can predict immunotherapy response in head and neck cancer. Clin. Cancer
Res. 28, 2094–2109 (2022).

7. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early
responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935
(2022).

8. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat.
Biotechnol. 39, 1375–1384 (2021).

9. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF
regression to deconvolute spatial transcriptomics spots with single-cell tran-
scriptomes. Nucleic Acids Res. 49, e50 (2021).

10. Wu, Y. et al. Spatiotemporal immune landscape of colorectal cancer liver
metastasis at single-cell level. Cancer Discov. 12, 134–153 (2022).

11. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB:
inferring cell-cell communication from combined expression of multi-subunit
ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

12. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular commu-
nication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

13. Schwörer, S. et al. Fibroblast pyruvate carboxylase is required for collagen pro-
duction in the tumour microenvironment. Nat. Metab. 3, 1484–1499 (2021).

14. Quinn, W. J. 3rd et al. Lactate Limits T Cell Proliferation via the NAD(H) Redox
State. Cell Rep. 33, 108500 (2020).

15. Angelin, A. et al. Foxp3 Reprograms T Cell metabolism to function in low-glucose,
high-lactate environments. Cell Metab. 25, 1282–1293 (2017).

16. Li, X. et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated
fibroblast subgroup associated with poor clinical outcomes in patients with
gastric cancer. Theranostics 12, 620–638 (2022).

17. Costa, A. et al. Fibroblast Heterogeneity and Immunosuppressive Environment in
Human Breast Cancer. Cancer Cell 33, 463–479 (2018).

18. Dong, S. et al. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-
induced metabolic reprogramming to impart 5-fluorouracil resistance in color-
ectal cancer. J. Exp. Clin. Cancer Res. 41, 15 (2022).

Spatial transcriptomics reveals that metabolic characteristics define the. . .
Liu et al.

11

International Journal of Oral Science            (2024) 16:9 

https://genome-cancer.ucsc.edu/
http://tide.dfci.harvard.edu
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
https://www.accuramed.com/
https://www.helixlife.cn/
https://doi.org/10.1038/s41368-023-00267-8


19. Pan, T. et al. Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in poly-
morphonuclear neutrophils during sepsis. Crit. Care 26, 29 (2022).

20. Zhang, T. et al. Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer
cells: Combined administration of Polydatin and 2-Deoxy-d-glucose. J. Cell Mol.
Med. 23, 3711–3723 (2019).

21. Janssens, R., Struyf, S. & Proost, P. The unique structural and functional features of
CXCL12. Cell Mol. Immunol. 15, 299–311 (2018).

22. Santiago, B. et al. CXCL12 gene expression is upregulated by hypoxia and growth
arrest but not by inflammatory cytokines in rheumatoid synovial fibroblasts.
Cytokine 53, 184–190 (2011).

23. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the
immune landscape in human cancer. Immunity 39, 782–795 (2013).

24. Fu, J. et al. Large-scale public data reuse to model immunotherapy response and
resistance. Genome Med. 12, 21 (2020).

25. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer
immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

26. Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor micro-
environment. Mol. Cancer 18, 157 (2019).

27. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by
lactic acid. Nature 591, 645–651 (2021).

28. Wang, D. et al. Targeting EZH2 Reprograms Intratumoral Regulatory T Cells to
Enhance Cancer Immunity. Cell Rep. 23, 3262–3274 (2018).

29. Korbecki, J. et al. The Effect of Hypoxia on the Expression of CXC Chemokines and
CXC Chemokine Receptors-A Review of Literature. Int. J. Mol. Sci. 22, https://
doi.org/10.3390/ijms22020843 (2021).

30. Smit, M. J. et al. The CXCL12/CXCR4/ACKR3 Axis in the Tumor Microenvironment:
Signaling, Crosstalk, and Therapeutic Targeting. Annu. Rev. Pharmacol. Toxicol. 61,
541–563 (2021).

31. Dürr, C. et al. CXCL12 mediates immunosuppression in the lymphoma micro-
environment after allogeneic transplantation of hematopoietic cells. Cancer Res.
70, 10170–10181 (2010).

32. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184,
3573–3587 (2021).

33. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics 16, 284–287 (2012).

34. Charoentong, P. et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of Response to Checkpoint
Blockade. Cell Rep. 18, 248–262 (2017).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Spatial transcriptomics reveals that metabolic characteristics define the. . .
Liu et al.

12

International Journal of Oral Science            (2024) 16:9 

https://doi.org/10.3390/ijms22020843
https://doi.org/10.3390/ijms22020843
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
	Introduction
	Results
	Spatial clustering of oral squamous cell carcinoma tissue samples
	Metabolic heterogeneity affects the�TME
	Tregs are enriched in the hypermetabolic regions
	Fibroblast derived CXCL12 recruits Tregs to hypermetabolic regions
	Cancer-derived lactate induces iCAFs to express�CXCL12
	Cancer cell-iCAF-Treg recruitment in hypermetabolic�OSCC

	Discussion
	Conclusion
	Materials and methods
	Sample collection
	Sample preparation and data generation
	Spatial transcriptomics data processing
	Single cell transcriptomics data processing
	Cell lines and cell cultures
	Multiple immunofluorescences staining and analysis
	TCGA bulk RNA-seq data acquisition and processing
	Analysis of immune infiltration
	Cell-cell interactions
	RNA extraction and RT-qPCR
	Statistical analysis and data visualization

	Acknowledgements
	Author contributions
	ADDITIONAL INFORMATION
	References




