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Neuroimaging and artificial intelligence for assessment of
chronic painful temporomandibular disorders—a
comprehensive review
Mayank Shrivastava1 and Liang Ye2✉

Chronic Painful Temporomandibular Disorders (TMD) are challenging to diagnose and manage due to their complexity and lack of
understanding of brain mechanism. In the past few decades’ neural mechanisms of pain regulation and perception have been
clarified by neuroimaging research. Advances in the neuroimaging have bridged the gap between brain activity and the subjective
experience of pain. Neuroimaging has also made strides toward separating the neural mechanisms underlying the chronic painful
TMD. Recently, Artificial Intelligence (AI) is transforming various sectors by automating tasks that previously required humans’
intelligence to complete. AI has started to contribute to the recognition, assessment, and understanding of painful TMD. The
application of AI and neuroimaging in understanding the pathophysiology and diagnosis of chronic painful TMD are still in its early
stages. The objective of the present review is to identify the contemporary neuroimaging approaches such as structural, functional,
and molecular techniques that have been used to investigate the brain of chronic painful TMD individuals. Furthermore, this review
guides practitioners on relevant aspects of AI and how AI and neuroimaging methods can revolutionize our understanding on the
mechanisms of painful TMD and aid in both diagnosis and management to enhance patient outcomes.
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INTRODUCTION
Pain is a multidimensional experience which involves sensory-
discriminative, affective- motivational, and cognitive-evaluative
components.1,2 Chronic pain exerts an enormous personal and
economic burden with prevalence ranges between 11% and
40%.3,4 The rising rates of depression, anxiety, changes in work
demands, life styles and behavior, obesity, sleep problems,
genetics, and increased symptom awareness could all be the
factors driving this increase.2 Chronic pain directly impacts
individuals physiological and psychological states and can occur
as a result of neuroplastic remodeling on various levels of nervous
system, ranging from synaptic plasticity to reorganization of large
scale neural networks which can lead to maintenance of pain even
in the absence of nociceptive inputs.5

Individuals with chronic pain are typically diagnosed with one
or more regional or widespread central pain conditions such as
fibromyalgia, chronic pelvic pain, back pain, headaches, chronic
fatigue syndrome, and temporomandibular disorders (TMD).6 TMD
are cluster of musculoskeletal conditions which affect masticatory
muscles and temporomandibular joint and/or associated struc-
tures.7 It afflicts ~10%–15% of the population at a clinically
significant level, with symptoms severe enough to warrant a
medical attention.8 Epidemiological studies have shown that TMD
affects 5-12% of general population, with “Orofacial Pain
Prospective Evaluation and Risk Assessment Study (OPPERA)”
reporting an annual incidence of 3.9% in adults.9,10 Etiology of
TMD are multifactorial involving both biomechanical and

biopsychosocial factors. It is hypothesized dynamic interaction
between peripheral and central nervous system contributes to the
development of chronic painful TMD.11–13 Besides this other
mechanism contributes to development and perpetuation of pain
are abnormal autonomic functions, neuroendocrine system and
triggers such as psychosocial stressors and emotional or physical
trauma.14,15 TMD are difficult to diagnose and mange due to
complexity of the disorder and limited understanding on under-
lying mechanisms. Furthermore, the factors that contributes to
development and maintenance of chronic painful TMD are not
fully elucidated. To investigate this, over the last decades
researchers have been exploring how brain shapes in chronic
painful TMD.16–20

Neuroimaging techniques, for instance functional and structural
MRI methods have been widely used separately or combined to
explore brain alterations in patients with chronic pain including
TMD. To some extent neuroimaging investigations have disen-
tangle the neural mechanism underlying chronic painful TMD.21–23

According to the previous investigations, somatosensory, limbic
system and associative brain structures are considered to be
involved in the pain system. These areas have been linked to
number of characteristics of pain evaluation and experience
including anticipation, affective processing of pain and anti-
nociception. Accumulating evidence on painful TMD patients have
revealed structural and functional changes in the pain related
network including ascending trigeminal-thalamo-cortical pathway,
lateral (sensory- discriminative areas) and medial systems
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(affective-cognitive and evaluative areas), antinociceptive path-
way, salience network and default mode network (DMN) and
motor system.23 However, the application of neuroimaging in
identifying the patterns of altered brain function, structure and
chemistry in individuals with chronic painful TMD is still in its
development. Furthermore, there is a paucity of clinical research
data on applications of neuroimaging methods in individuals with
chronic painful TMD making it challenging in identifying
diagnostic and prognostic brain markers in individuals with TMD.
Over the last few decades informatics approaches, such as

artificial intelligence (AI), have been called to help to address these
challenges. AI is enabling early diagnosis, prediction, and
treatment of chronic pain disorders that compromise brain health
by advancing clinical translational imaging in particular neuroima-
ging.24,25 (Fig. 1). Machine learning (ML) and Deep learning (DL)
which use artificial neural networks inspired by neuronal
architectures are two class of AI, that have received extensive
research.24 An increasing number of AI algorithms are being used
in patient diagnosis, particularly for identifying and categorizing
lesions like skin malignancy, brain tumors and dental diseases. For
the diagnosis of painful TMD, a range of AI algorithms have
recently been applied to imaging and non-imaging data.25–27

However, studies on the use of AI algorithms in patients with
orofacial pain disorders specifically involving TMD are limited.26,27

Furthermore, the conclusion drawn from the previous studies on
the use of AI and neuroimaging are limited by its specific research

condition, including study design, approach of neuroimaging data
analysis, disease subtypes, input data used for diagnosis, and
outcomes measures for performance evaluation.
Therefore, main objective of this review is to familiarize

investigators with the neuroimaging methods available for
exploring chronic painful TMD as well as to highlight the
neuroimaging studies that reveal structural and functional
changes in the brain associated with painful TMD. It also discusses
on how AI can be used to quantify TMD, identify brain patterns
based on the neuroimaging data and enhance our understanding
on unraveling the mechanism that contributes to pain
chronification.

NEUROIMAGING METHODS
Neuroimaging can be broadly characterized as structural
imaging which aims to visualize the anatomy of central nervous
system (CNS) and functional imaging which captures the brain
neurophysiological or metabolic process. To date, TMD have
been studied using different functional, structural and neuro-
chemical imaging techniques such as fMRI, proton magnetic
resonance spectroscopy (H-MRS) and arterial spin labeling (ASL)
and positron emission tomography (PET). Additionally, electro-
encephalography (EEG) and magnetoencephalography (MEG)
have shed light on how brain reacts to nociceptive stimuli20

(Table 1).

Chronic pain include
central pain conditions
such as Temporo-
mandibular Disorders
(TMD)

Interaction between
peripheral and central
nervous system contributes
to the development of
chronic pain

Structural and functional
neuroimaging methods
revealed alterations in pain
related network in patients
with TMD

Depression, Anxiety, Sleep
problems, trauma,
changes in work
demands, life style and
behaviors, genetics,
hormonal, and
biomechanical factors
contribute to TMD

AI algorithms are used for image
analysis and TMD quantification
to facilitate diagnosis and
support clinical decision

Artificial Intelligence (AI)
including machine learning and
deep learning enabling early
diagnosis, prediction and
treatment of Painful TMD

Chronic
pain

Chronic Painful TMD

Neuroimaging and Artificial Intelligence

Fig. 1 Overview of relationship between temporomandibular disorders, neuroimaging and AI
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The most commonly used modality for studying painful TMD is
fMRI that measure and analyze so called BOLD (Blood oxygen level
dependence) effect. BOLD effect indicates changes in oxyhemo-
globin deoxyhemoglobin ratio driven by increase in regional
blood flow and volume that corresponds to the increase in brain
activity. However, BOLD signal is merely an indirect neural activity,
and it is still unclear how excitatory and inhibitory neural activity
influences the bold signal.5 Additional approaches of BOLD fMRI
are the task related conventional method used to reveal brain
regions that are functionally involved in specific tasks such as
painful stimuli or stimulus evoked pain such as allodynia. Other
approach known as default mode state, or the resting state
network (RSN) used to explore functionally segregation of brain
regions or network and has become a preferred method for
determining neuronal activity by assessing functional connectivity
(Fc) in the brain.5 The fMRI BOLD technique is extremely useful in
acute painful conditions and experimental pain where there are
brief episodes of pain followed by brief episodes of pain free
periods, resulting in rapidly changing hemodynamic response.28

However, monitoring of responses to changes in chronic painful
TMD is not well served by this technique.
For chronic painful TMD conditions, an alternative fMRI

technique utilizing arterial spin labeling. (ASL) is more appro-
priate. ASL uses water in arterial blood as a freely diffusible
tracer to measure perfusion non-invasively.29,30 In contrast to
BOLD signal which represent changes in blood flow, vascular
volume and oxygen metabolism, this method enables the
determination of regional cerebral blood flow (rCBF) as a
surrogate marker of neural activity. Generally, these techniques
asses both basal neuronal activity and evoked stimuli/task
paradigms. The basal neuronal activity refers to metabolic
activity of brain tissue occur when a person is awake and not
focused on any particular task or experiment. While evoked
parameters take measurements of brain activity patterns during
administration of stimuli or performance of a particular
task.5,29–31

In additional to fMRI, structural brain imaging is used to
investigate the alterations in anatomic structures in individuals
with painful TMD.32,33 Structural neuroimaging is based on high
resolution T-1 weighted images which are specifically tailored to
delineating the boundary of gray and white matter. It can also be
used to assess global measures such as whole brain volume, gray
and white matter volume as well as regional features such as
cortical thickness and voxel-based parameters such as gray or
white matter values, interpreted as regional gray/white matter
density to volume.5,34,35 Additionally, non- invasive measurements
of the molecular constituents of in vivo tissue can also be
performed. Diffusion tensor imaging (DTI) is another method that
can be used in study of chronic pain. DTI measures the white
matter by measuring the diffusion of water in the brain such as
fractional anisotropic (FA) and mean diffusivity (MD) interpreted as
a marker of white matter integrity. DTI can also be used to perform
tactography or three-dimensional modeling of neural tracts which
can subsequently be used to determine the connections of
remote brain regions, providing a structural connectivity
marker.36,37

While fMRI and sMRI are based on radio frequencies of protons
within water molecules, magnetic resonance spectroscopy (H-
MRS) used in majority of human imaging studies detects radio
frequencies of protons binds to carbon atoms that is organic
compounds. This approach enables the quantification of several
metabolites/compounds which are assumed to reflect the specific
features of neuronal or astrocyte integrity and metabolism.38

Typically metabolites such as glutamate (Glu), glutamine (Gln),
N-Acetyl Aspartate (NAA), choline (Cho), total creatine (tCr),
myoinositol (MI) and lactate are measured.13

Over the past few years, much progress has been made in all
three areas functional, structural and neurochemical. Since, ASL
allows for quantification of regional blood flow and detects
regional neural activity and connectivity, future studies may use
combination of ASL and BOLD imaging. The combination of these
methods enables to better understand how brain activity and

Table 1. Different neuroimaging methods used to study brain

Summary of neuroimaging methods discussed in the review

Neuroimaging
methods

Nature of activity measured Strengths Limitations

fMRI BOLD Detect activity in the brain as determined by
oxyhemoglobin and deoxyhemoglobin.

High Spatial resolution, Non-invasive,
can measure cognitive process

Indirect measure of neural
activity, use of artificial stimulus
may not reflect pain.

fMRI-ASL Technique use arterial water as an endogenous
tracer to measure cerebral blood flow.

Task or pain stimulus not needed
/representative of ongoing clinical pain.

Indirect measure of neural activity

MRI-DTI Measures diffusion of water in the brain Increase understanding of neural
networks

Data artifacts, Limited resolution

MRI-Structural Structural information delineate the body of
white and gray matter using voxel-based
parameters.

Provide excellent structural information,
Measures assessment of diseases of
overtime.

High costs

H-MRS Measures proton bind-organic compound,
Provide metabolic activity.

Easy metabolite identification Low sensitivity and resolution

PET Measures cerebral blood flow, glucose
metabolism, oxygen uptake using
radionuclides.

Measures cerebral metabolism, ligands
and drug binding, Receptor mapping

Expensive, use radio-tracer,
technical complexity.

EEG Direct recoding of electrical changes of brain
activity associated with cognitive task and
behavior.

Comparatively lower cost, signals
generate direct from neural activity,
non-invasive.

Use of artificial stimulus many do
not reflect clinical pain.

MEG Event related potential detected by magnetic
field.

Signals generated directly from neural
activity, Good spatial resolution.

Expensive, Needs a magnetic
shielded room.

fMRI functional magnetic resonance imaging, BOLD blood oxygen level dependent, ASL arterial spin labeling, MRI–DTI magnetic resonance imaging–diffusion
tensor imaging, H-MRS proton- magnetic resonance spectroscopy, PET positron emission tomography, EEG electroencephalography, MEG
magnetoencephalography
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vascular responses interact which is of particular importance as
neural activity cannot be measured directly by using MRI
techniques. Similarly, T1 T2 mapping and magnetization transfer
ratio MTR provide more in-depth interpretation of voxel-based
parameters and helpful in revealing additional facets of altered
microstructure in chronic pain conditions.5 Moreover, GABA
quantification has been a step forward for H-MRS, enabling for
an accurate measurement of the most significant inhibitory
neurotransmitter providing indirect evidence of neuronal
excitability.39

PAIN NETWORK
There is no pain center in the brain but instead a complex network
of brain regions called as pain matrix are assessed using functional
imaging.40 Generally, the primary and secondary somatosensory
cortex (S1 and S2), insular cortex (IC), anterior cingulate cortex
(ACC), the prefrontal cortices (pFC) and the thalamus are the
principal part of this pain network. The location of thalamic nuclei
is used to infer the nomenclature of the pain system. The lateral
system of thalamus project to posterior insula and primary and
secondary somatosensory cortex (S1 and S2) which are thought to
reflect sensory-discriminative component of pain. While the
medial thalamus system which sends signals to limbic structures
such as anterior cingulate cortex (ACC), anterior insular cortex and
frontal structures represent the affective and motivational
component.41 These areas are thought of as a multi-sensory
integrations site and they have been linked to various aspects of
pain related experiences, including anticipatory pain, emotional
pain processing and anti-nociception. Therefore, the somatosen-
sory, limbic and associative brain regions are thought to be
involved in the pain system.42–44 Additionally, the pain system
related to TMD also involve the trigeminal nerve root, trigeminal
ganglion (TG), spinal tract subnucleus caudalis (spVc), thalamus
and somatosensory cortex.45 Further, motor and premotor areas
and dorsolateral prefrontal cortex (dLPFC) have also been shown
to be activated by pain stimuli but these areas are less consistent
and it is unclear whether they represent epiphenomenon such as
pain-evoked movements, or movement suppression or top down
modulation (periaqueductal gray-raphe [PAG] magnus pathway)
respectively or directly related to pain perception.5,20

In the context of chronic painful TMD other brain areas such as
nucleus accumbens, the hippocampus, the frontopolar regions,
amygdala, inferior parietal lobe, superior temporal gyrus, and
parietal association cortices have all been found to correlate with
particular aspects of pain perception.21,42,45 It has been proposed
that this network is specific to pain perception decoding discrete
elements of pain such as pain intensity and unpleasantness.
Additionally, pain matrix activation has also been found in
response to many salient and behavioral stimuli. Based on these
studies have suggested that different chronic pain disorders seem
to be characterized by unique functional and structural brain
signatures and the presence of an individualized pain mechanism
rather than a rigid pain system. (Fig. 2).

NEUROIMAGING STUDIES IN PAINFUL TMD
This section will provide an overview of MRI neuroimaging studies
that reveal structural and functional changes in the brain
associated with chronic painful TMD. (Table 2).

Structural neuroimaging methods in TMD
Structural neuroimaging methods have investigated peripheral
and central changes in chronic painful TMD. In a study a
decreased trigeminal nerve fiber density, axonal diameter and
myelination as well as micro-structural alterations observed in
chronic painful TMD.46 The investigators, also observed a
decreased gray matter volume (GMV) and an increase in rCBF in

the ipsilateral spinal sub nucleus caudalis (SpVc) which processes
nociceptive input of the TMD patients. They hypothesized that
reduction in GMV reflect neuronal loss, while the elevated blood
flow in SpVc could be a compensatory response of increased
neural activity or hyper excitability due to nociceptive pathways
which is critical for the altered perception and maintenance of
pain in TMD.47 Some studies used DTI which provide measure of
water diffusion such as FA and MD to investigate structural
alterations in brain stem focusing on the SpVc and TMD pain-
processing pathways. Wilcox et al. demonstrated a significant
increase in MD in the ipsilateral trigeminal nucleus, and trigeminal
tract within the pons and PAG.48 Another DTI study, found lower
FA in the brain stem white matter along the ascending
nociceptive pathways coursing through the thalamus and tracts
projecting to sensorimotor cortex, confirming abnormal peripheral
input from trigeminal nerve.49

In addition to peripheral and brain stem changes, principal
brain regions thalamus and S1 also play crucial role in the
thalamocortical pathway related to TMD pain. In a study the
duration of painful TMD was found to be positively correlated with
alterations in thalamus GMV.50 It is hypothesized that this occurs
as a result of persistent trigeminal nociceptive input, which
promotesTMD hyperalgesia by facilitating trigeminal sensory
information from thalamus to S1. Furthermore, structural MRI
studies of S1 changes in painful TMD have demonstrated less
consistent findings with different studies reporting decreased
GMV, increased cortical thickness or no change. This disparity may
be due to differences in pain duration as well as the impact of
medication.51

Gustin et al., used multiple MRI modalities (ts-fMRI, DTI and ALS)
to determine whether S1 reorganization occur in painful TMD or
not. No functional reorganization in the S1 of TMD patients as well
as no significant differences in FA and cBF within the S1 are
noticed compared to healthy controls. However, the authors did
not investigate the changes in other critical areas as the SpVc and
thalamus. Therefore, further studies focusing simultaneously on
the SpVc, thalamus and S1 are required to resolve the issue of
inconsistencies of S1 changes in TMD patients.52

Despite some discrepancies in the literature, the structural and
functional findings support the involvement of abnormal of
medial pain system in nociceptive processing, demonstrating
emotional sensory signals associated with TMD pain. Younger
et al., evaluated female patients with myofascial pain in their study
and observed an increased GMV in the anterior insula and a
negative correlation between self-reported pain and GMV in
pregenual ACC and posterior cingulate cortex (PCC).32 Similarly
studies investigated painful TMD patients’ functional connectivity
(Fc) between insula and cingulate cortex and MCC. Zhang et al.
revealed a decreased homogeneity in insula in female patients
with synovitis compared to healthy controls.53 While Ischesco
revealed enhanced Fc between insula and pregenual ACC in
resting state.54 In both studies Fc is negatively correlated with
subjective pain intensity. This implies that patient with higher
connectivity reported lower pain suggesting compensatory brain
changes to control pain.

Functional neuroimaging methods in TMD
Functional neuroimaging methods have investigated central
changes in chronic painful TMD. Default mode network (DMN) is
a group of functionally interconnected brain regions that get
activated during mind wandering and not involved in any specific
task and becomes correspondingly deactivated during goal-
oriented tasks has been studied in previous studies.55 Studies
suggested that dysfunction of DMN may be related to cognitive
and behavioral deficits observed in patients with chronic painful
TMD55. In TMD patients, Weissman-fogel et al. observed task-
evoked activity in the PCC and medial prefrontal cortex as well as
functional disconnections throughout the DMN. The increased
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activation of PCC may reflect increased spontaneous pain in TMD
patients as cognitive activities with emotional interference elicited
more emotional effects on patients than control.56

Moreover, Kuyci et al. linked dysfunctional DMN with pain
rumination in TMD and observed improved Fc between mPFC and
other DMN networks (retrosplenial cortex, PCC/precuneus and
portion of visual cortex). This suggested that individuals with high
pain rumination had particularly enhanced Fc.57 In addition, the
positive correlation observed between pain rumination and Fc of
medial prefrontal cortex (mPFC), thalamus and PAG which
regulate endogenous pain modulation.58 Since, healthy controls
had no such correlations it has been suggested that the extent to
which chronic painful TMD alters the normal function of these
circuits may be determined by how much patients ruminate.
Thereby highlighting the crucial role of pain related cognition in
TMD-related brain changes. As most study detected static Fc,
recently another study examined static and dynamic Fc as well as
brain regions with structural abnormalities in patients with chronic
painful TMD. The research group identified a decreased cortical
thickness in right sensorimotor cortex and decreased volume in
left putamen and associated reduced dynamic Fc with anterior

midcingulate cortex and alterations in emotion processing and
regulation regions for instance decreased volume/surface area in
the left posterior superior temporal gyrus and increased dynamic
Fc with precuneus in TMD patients.59 Since the structural and
functional abnormalities in brain regions implicated in sensor-
imotor and emotional functions the above discussed study
provided evidence for the biopsychosocial model of TMD and
facilitated our understanding of the mechanism underlying TMD.
In other study researchers also concluded that TMD patients who
have negative emotions may have dysfunction within the reward
system as well as painful TMD patients may have dysregulated
spontaneous activity and Fc in the DMN, sensorimotor network
and pain related regions, fronto-striatal-limbic circuits
respectively.60

Furthermore, cingulo-frontal regions, amygdala, and hypotha-
lamus have all been shown to be involved in chronic painful TMD.
Patients with TMD often show cognitive abnormality. Increased
rCBF observed in TMD patients in the ACC, dLPFC, and precuneus
(Pcu) areas of brain associated with cognitive and affective
activities.61 Chronic pain has also been shown to induce
attentional biases and attentional manipulation can modulate

RM

PB

AMG

Thalamus

S2

SPL

S1

M1
SMA

PCC

dACC

dIPFC

Pre-SMA

Insula

BG

PAG

The sensory-discriminative component of pain involves lateral system of thalamus project to
posterior insula and primary and secondary somatosensory cortex (S1 and S2).

The affective and motivational component involves medical thalamus system which sends signals to
limbic structures such as anterior cingulate cortex (ACC), anterior insular cortex and frontal
structures.

Pain Network also include motor and premotor areas, dorsolateral prefrontal cortex (dLPFC),
periaqueductal gray-raphe [PAG] magnus pathway)

Depending on the type of neuroimaging method, psychological states and type of pain these areas
varies.

Fig. 2 Brain regions and pain network involved in chronic temporomandibular disorders. AMG amygdala, BG basal ganglia, dACC dorsal
anterior cingulate cortex, dLPFC dorsolateral prefrontal cortex, M1 primary motor area, PB para brachial, PCC posterior cingulated cortex, PAG
periaqueductal gray, pre-SMA part of supplemental motor area, RM raphe magnus, S1 and S2 primary and secondary cortex, SMA supplemental
motor area, SPL superior parietal lobe area
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the perception of pain.62 In a study TMD patients showed slower
task responses, with reduced Fc between two pairs of brain
regions such as aMCC- dlPFC and pgACC-Amygdala.32 Reduced
connections between these two pairs of structures in TMD
patients may indicate a chronic pain influence on attentional
(aMCC-dlPFC) and emotional network (pgACC-Amygdala) result-
ing in attenuated and un synchronized recruitment of attention
processing areas and consequently slower response.63,64 In
another study, cortical thickness was measured in TMD patients.
Researchers reported that TMD patients had thicker cortex in the
frontal pole and ventrolateral prefrontal cortex (vlPFC) compared
with control and cortical thickness in ventromedial prefrontal
cortex (vmPFC) which is part of orbit-frontal-cortex is positively
correlated with neuroticism scores in TMD patients.50 This finding
in conjunction with neuroticism suggests that higher level of

distress or anxiety in TMD patients are linked to changes in the
vmPFC, which may result from or contribute to a decreased brain
capacity for pain control.23,65 Since there is positive association
between ADHD and occurrence of painful TMD symptoms a
recent study has investigated brain dynamics and observed
alteration in Fc within DMN and sensorimotor regions.66,67

There are studies which have revealed changes in motor system
including primary motor cortex (M1), supplementary motor areas
(SMA) and striatum in patients with painful TMD.68,69 It is observed
that persistent pain can inhibit protective movement and impair
motor performance due to maladaptive neuroplasticity in motor
cortex. Wessman-Fogel et al., observed enhanced activity in M1
and SMA areas in TMD patients during cognitive interference
Stroop task which may be due to compensatory mechanism to
recruit more motor areas to meet demand of motor performance

Table 2. Summary of major neuroimaging MRI studies on TMD

Studies Analysis method and modality Major findings

Wilcox et al. 46,48 3D T1 and DTI, VBM FA and MD Regional GMV decrease in medullary dorsal horn with MD increase in
patients with TMD. MD changes in the region of PAG and nucleus raphe
magnus. Decrease FA in root entry zone of trigeminal nerve, SpVc and
ventral trigeminal thalamic tract

Moayedi et al. 49,50 3D T1 and DTI, Cortical thickness, VBM FA and
MD

In TMD patients increased cortical thickness noted in S1 and PFC. GMV in
sensory thalamus positively correlated to TMD duration. TMD had GMV loss,
but TMD duration was not correlated to GMV. Positive correlations between
orbitofrontal cortex and Neuroticism. Decreased FA in right and left
trigeminal tracts. Widespread microstructure alterations of white matter
tracts related to sensory, motor and cognitive pain function. FA correlated
with TMD characteristics.

Gustin et al. 51,52 3D T1, ts-fMRI, DTI and ASL and Whole brain
VBM, Brain activation, FA and rCBF

VBM revealed no changes in GMV in TMD. No functional reorganization in
the S1 of TMD patients and in rCBF of TMD patients

Younger et al. 32 3D T1and whole brain VBM No overall difference in GMV between TMD and HC. Increased GMV in limbic
regions such as posterior putamen, globus pallidus, and anterior IC. Self-
reported pain severity was associated with increased GMV in pgACC and
PCC

Zhang et al. 53 rs-fMRI- FC voxel wise Decreased regional homogeneity in right anterior IC. Decreased positive FC
between right anterior IC and MCC

Ichesco et al.54 rs-fMRI and ts-fMRI and FC voxel wise Increased Fc between left anterior IC and pgACC during both resting and
applied pressure state. Negative correlation between functional connectivity
and clinical pain intensity

Weissman-Fogel
et al. 56

ts-fMRI and brain activation and ROI-wise FC Increased task-evoked responses in brain areas implicated in attention
(lateral prefrontal, inferior parietal), emotional processes (amygdala and
pgACC), motor planning and performance and activations of the DMN

Kucyi et al. 57 rs-fMRI and FC voxel wise Increased mPFC FC with other DMN networks, including PCC/Pcu,
retrosplenial and areas within visual cortex. Pain rumination scores are
positively correlated to mPFC FC with the PCC/Pcu, retrosplenial, medal
thalamus and PAG

Yin et al. 59 fMRI Structural abnormalities and static and
dynamic Fc

Decreased cortical thickness in the right sensorimotor cortex, Decreased
volume in the left putamen and associated reduced dynamic FC with the
anterior midcingulate cortex and alterations in emotion processing and
regulation regions including decreased volume/surface area in the left
posterior superior temporal gyrus and associated increased dynamic FC

Youssef et al. 61 ASL, CBF and brain stem blood flow TMD patients had increased CBF in regions associated with higher order
cognitive and emotional functions

He et al. 68 rs-fMRI and FC voxel wise Decreased fractional amplitude of low frequency fluctuation in left
precentral gyrus, SMA and striatum

Salomons et al. 69 3D T1 and DTI and VBM, FA and MD Magnitude of self-related helplessness correlated with cortical thickness in
SMA and MCC, regions implicated in cognitive aspects of motor behavior

Gerstner et al. 70,74 MRS Metabolite level Left-insular Gln levels were related to reported pain, left insular NAA levels
positively correlated with pain symptom duration. Left insular NAA and Cho
levels higher at baseline

Harfeldt et al. 71 MRS Metabolite level Only tCr levels was higher in TMD than controls

Harris et al. 75 MRS Metabolite level Increased level of glutamine in the IC

Data from the published studies13,23,32,46–75
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and planning.56 Additionally, chronic pain can result in learned
helplessness, a maladaptive response characterized by decreased
motor escape behavior and deficit in motivation and learning.
Salomons et al. reported no significant group difference between
cortical thickness of SMA nor correlation with pain characteristics
such as self-reported helplessness in TMD patients.69 In addition to
M1 and SMA, the striatum has also been implicated in the motor
response to pain in TMD. The striatum receives input from cortical
regions and thalamic nuclei and sends output to other basal
ganglia structures serving as a critical site where cognitive, motor
and limbic signals from other brain regions overlap or integrated.
Studies on TMD patients observed an increased GMV in putamen,
globus pallidus and striatum relative to control.70 This suggest
behavioral response preparation to nociceptive stimuli.

Magnetic resonance spectroscopy in TMD
Several studies have shown that painful TMD is associated with
changes in the brain metabolism. It is observed that NAA is a
marker of neuronal health and density, Cho is related to increased
cell numbers, membrane synthesis and membrane break down.
tCr is considered as an important metabolite of cell energy and
metabolism. Glutamine (Gln) is metabolite of glutamate (Glu),
together they participate in complex metabolic process and
intercellular communication involving neurons and astrocytes.71,72

MI is primarily present in glial cells and plays an important role in
osmoregulation.It is observed that few of these neurochemicals
can be used to assess the underlying mechanism of TMD
pain.72–74 In a study, Gerstner et al., found a negative correlation
between Gln levels in the left insula and pain in TMD patients
while NAA and Cho levels in the left posterior insula were
increased compared to healthy controls. In this study NAA levels
were positively correlated with the duration of pain. As NAA is
considered as measure of neuronal health and synaptic integrity, it
has been postulated that a time dependent neuronal growth
occurs in response to TMD pain.75 Similarly, a state of neuroin-
flammation and cellular hyperactivity that has been postulated to
be associated with chronic pain may also be indicated by the
elevated tCr levels in the posterior insula in TMD patients, since tCr
can be considered of as a measure of cell energetics.71 Harris et al.
demonstrated in the context of chronic pain that patients with
fibromyalgia had increased glutamine level in the IC and that
variations in posterior insular glutamate corresponds with
variations in both experimental pain thresholds and clinical pain.75

These findings provide new evidence about the involvement of
the neurochemicals as a measure in the neurobiology of under-
lying TMD. It is also a further step towards understanding and
accepting that this measure can be used to assess the orofacial
pain mechanism.76,77 However, need to be further tested for
replicability and validity. Since TMD encompasses painful condi-
tions of muscle, joint and associated structures, the large
variability in diseases characteristics of patient groups precludes
drawing firm conclusion about brain changes in TMD with a
specific type and pain origin. Also, the paucity of large sample
sizes and variety of methodological approaches limit the process
of synthesizing findings to draw broad generalizations.

ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF TMD
Due to multifactorial etiology, comorbid conditions and various
symptoms presentation diagnosis of the TMD is challenging.
Therefore, for diagnosis of TMD a detailed history, and clinical
examination and imaging is required. AI has been recently
deployed to detect and quantify TMD.78 In order to emulate the
human decision making and reasoning process AI aims to encode
intelligence into machines by learning from experiences and
adapting to changes in the environment. In past few years various
studies have used AI to enhance clinical judgment and facilitate
diagnosis.26,78–82 The foundation of AI is machine learning which is

concerned with algorithms that are capable of learning complex
tasks and developing predicting models through sample data.
Similarly, deep learning is class of artificial neural networks (ANN)
that eliminate the need of feature engineering by trying to learn
the optimal set of features from data.25,83–85 (Fig. 3).
In last decade, there is growing interest in developing data-

driven, actionable strategies that can personalized assessments,
diagnosis, prognosis and treatments of individuals with painful
TMD.
So far, the Diagnostic Criteria for Temporomandibular Disorders

(DC-TMD) is the widely accepted criteria used by the clinicians and
researchers.9 It comprises of two axes, Axis-I and Axis-II, which
include diagnostic standards for differentiating painful TMD and
intra-articular disorders and assessing jaw function, behavioral and
psychosocial factors. However, for a few intra-articular disorders
DC-TMD has limitations in terms of diagnostic accuracy. For
instance, disc displacement with and without reduction and
locking demonstrate low sensitivity (0.34-0.54). Similarly, degen-
erative joint diseases demonstrate low sensitivity and specificity of
0.55 and 0.61 respectively. Further the inter-examiner reliability is
low for disc displacement and degenerative joint diseases (DJD.9

Often use of screening tools to determine patient’s symptoms are
time consuming and place a burden on clinicians to predict the
outcome. Hence, investigators have used AI to analyze TMD data
to improve diagnostic accuracy, patient monitoring and develop
new protocols.25,86 (Table 3).
There are studies that used machine learning to address painful

TMD disorders.25,86–88 Researchers observed DJD, osteoporosis,
disc displacements with and without reduction and found
heterogenous sensitivities and specificities.87–90 Some studies also
used deep learning algorithms and image data to diagnose DJD
using CBCT images.78,79 Lee et al. developed an automated
diagnostic tool for detecting DJD.78 Kim et al. used panoramic
imaging data which had poor sensitivity and reliability in
detecting DJD. Although panoramic is not a standard imaging,
AI model demonstrate sensitivity and specificity of 0.54 and 0.94
for diagnosing bony abnormality.91 A few studies used machine
learning methods to examine correlations between the biomar-
kers and condylar changes to increase diagnostic sensitivity.89–93

Additionally, for analyzing condylar shape alterations in DJD, CBCT
image data and AI models were used. The AI model demonstrate
accuracy of 80-90% indicating high reliability which is similar to
the previous studies.94–97

For diagnosis of disc disorders MRI imaging are most frequently
used. Bas et al. used clinical symptoms and diagnosis to predict
the subtype of disc disorders using artificial neural network and
observed varied diagnostic accuracy.86 The above studies used AI
to support clinicians in diagnosing TMDs using various type of
data for instance diagnostic images, health records and biomar-
kers which may contribute to increase diagnostic accuracy.
However, in TMD accuracy of developed model greatly varies
one due to complex spectrum disease and two depending on the
data used, size and algorithms used for developing the model.
Several other evidence suggested that AI could improve pain

recognition and facilitate the use of clinical documents with pain
assessment information to identify pain automatically. Computa-
tional tools may detect patients pain status from clinical
documentations automatically but not real time pain.83 Also these
tools do not have capability to detect specific quality of pain the
area which needs further research. AI could also facilitate pain
prediction and improve clinical decision support. It has been
shown that ML approach can be used to identify key questions in
pain questionnaire to predict pain persistence with relative high
accuracy.98 Further research is essential to investigate this model
and test this approach in more patients and different types of
pain. Additionally, AI-based apps were observed to have positive
effects on pain management including reducing pain level,
reducing the use of interventions and assisting therapy.83,98–100

Neuroimaging and artificial intelligence for assessment of chronic. . .
Shrivastava and Ye

7

International Journal of Oral Science           (2023) 15:58 



However, the generalizability of these results is subject to certain
limitations such as studies only assessed the general pain level
instead of the pain at each specific site. Furthermore, studies were
limited to immediate post intervention effects of AI based apps, it
was impossible to know sustained effects of those interven-
tions.99,101 Therefore future research is needed to determine if
improvements in pain level could lead to changes in other
functions or other long term physiological changes. Further work
is required to establish the viability of these novel systems and
test different combination of technologies. Moreover, comparison
with an appropriate reference standard should be considered in
future research.

Artificial intelligence and neuroimaging methods for TMD
Despite these encouraging findings it is important to point out on
our understanding of chronic painful TMD and the underlying
neurobiological mechanisms. Given this, a combination of
neuroimaging and AI may benefit investigators in understanding
the mechanism of chronic painful TMD. A growing number of
neuroimaging studies have shifted from establishing general
neural activation patterns or connections related to specific tasks
or behaviors to uncover individual level variations that can be
used to make predictions about an individual’s behavior.101,102 ML
has been a critical component in this advancement. ML can
identify patterns and relationships of signals in neuroimaging
data.103 It can also help in quantification of anatomy as well as in
detection and analysis of findings associated with painful TMD.
Generally, supervised and unsupervised learning are two types

of ML methodologies. In supervised ML some neuroimaging data
exists which is used to train the algorithms.104 For example,

collection of neuroimaging data that a neuro-radiologist has
classified into painful TMD and non-painful TMD groups. In
contrast for unsupervised learning, no criterion standard images
or classifications are used, and the computer must itself determine
the classes. Unsupervised ML identify patterns in a large set of
observations establishing normal variability or spotting groups of
related observations. For assessment of chronic painful TMD, both
supervised and unsupervised ML method are appropriate. Deep
learning approaches are required to understand the neural pain
networks in chronic painful TMD. The DL model is a specified
learning method typically inspired from how the human brain or
biological pain network is structured. It consists of multiple layers
of artificial neural networks which corresponds to a pain network
observed in neuroimaging data.103,104 (Fig. 4).
To date multitude of ML approaches have been applied to

identify and characterize the brain lesion. The ML algorithms detect
the neuroimaging data such as alterations in cortical thickness
based on different voxel intensities or BOLD signal detected from
each voxel image of fMRI to identify brain areas whose signals is
associated with chronic painful TMD.103,105 In structural imaging
data, ML facilitates quantifying size of brain structures and their
deviation associated with underlying pain disorder and act as
potential markers for clinical outcome. As the number of structural
images of patients with painful TMD and controls increases, ML will
generate more robust models for segmentation, classifications and
prediction tasks.106 While in functional imaging, Ml algorithms are
used in univariate (imaging each brain region) and multivariate
fashion (imaging entire brain region to analyze relationships
different brain regions) which aim to identify brain regions whose
functional signal is associated with the condition. Additionally deep

Machine
learning (ML) is
a compilation of
algorithms and
software that
assist pattern
recognition,
classification and
prediction based
on models built
from existing
data set

Deep learning
(DL) is a subform
of ML rely on deep
layered artificial
neural
networks.DL
methods eliminate
the need for feature
engineering by
trying to learn the
optimal set of
features from data

AI can be used clinically in identification of neural correlates associated with
painful TMD.

AI algorithm used for neuroimaging analysis demonstrate improve pain
recognition and pain prediction with relatively high accuracy.

Researchers observed disc displacements and DJD and noted heterogeneous
sensitivity and specificity.

Studies used AI algorithm on clinical TMD and imaging data to improve
diagnostic accuracy, patient outcome and predict response to treatment.

Artificial intelligence (AI) is a computational model that
parallels human performance often without explicit
programming but requires features defined by humans

Fig. 3 Overview of AI on assessment of chronic painful temporomandibular disorders
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learning-based approaches have shown promising results in both
speed and accuracy in segmentation of neuroanatomy compared to
standard tools as well as in establishing markers of diseases with
prognostic values.103–107

Finally, brain networks architecture is critical for cognitive
capabilities, and it can be affected by chronic pain.103 Hence,
quantifying and understanding associated changes in network
architecture or model reorganization mechanism associated with
pain progression and recovery are clinically relevant.108 Moreover,
chronic painful TMD occur generally in association with other
psychological and sleep disorders. ML algorithms can also be
clinically useful in exploring the neural mechanism of underlying
psychiatric, psychological and sleep disorders.109 In a selective
review the application of ML in psychoradiology was discussed.
According to the review the ML not only helps in identifying the
disorders specific brain functional dynamics but also offered
biomarkers for precise diagnosis and personalized treatment.110

As a result it is crucial to use ML to understand the deviation in
connectivity from normal networks and exploring specific
reorganization patterns of network architecture underlying
chronic painful TMD and associated psychiatric and sleep
disorders. Further, ML also helps in identification of association
between chronic pain and network alterations as well as in
identification of early biomarkers which can predict transition
from acute to chronic pain. More experimental and clinical studies
can provide valuable opportunity to stud the brain structural and
functional abnormalities, which may help us obtain more
information about the genesis of chronic pain. (Fig. 5).

Limitations
Although neuroimaging methods has had a significant impact on
our understanding chronic painful TMD, most studies in the

literature focus on establishing group differences or qualitative
and quantitative measures of pain such as pain intensity, duration
etc. so drawing conclusion about subject specific information is
difficult. Additionally, TMD encompasses different pain conditions
as Myalgia, arthralgia, and headaches the large variability in TMD
characteristics of patients’ groups precludes drawing a firm
conclusion about brain changes in TMD with a specific type and
pain origin. To address this issues studies aimed at identifying
patient’s subgroups in large samples of TMD group are required.
Similarly challenges related to data screening, collection and data
verification have consistently been reported. Given that TMD is
heterogenous disorder associated with other comorbid conditions
understanding the personal difference is critical for choosing a
proper clinical management approach. Therefore, a combination
of neuroimaging techniques and machine algorithms such as
SVM, DT And ANN may serve to benefit future studies. The ML
algorithms can be used to not only build predictive systems for
diagnosis and prediction but also to advance and deepen our
understanding of underlying biological mechanism of painful
TMD. However, a recent review identified limitations of existing
ML approaches in health care such as inability to consistently
perform across the size and variety of data within health care.111

CONCLUSION AND FUTURE PERSPECTIVES
The application of neuroimaging has significantly improved our
understanding of chronic painful TMD and the underlying
neurobiological mechanism (Table 4. Clinical Points). This review
demonstrates different neuroimaging methods and existing
literature on brain changes in patients with TMD. The major
observation is that the central nervous system of chronic painful
TMD patients demonstrate changes in brain function, structure,

Table 3. A summary of artificial intelligence studies on painful TMD

Summary of major artificial intelligence studies on TMD

Studies Study objective Inference

Bas
et al.86

Use of artificial neural network (ANN) for diagnosis of
temporomandibular joint internal derangement and normal joints

Heterogenous sensitivity and specificity noted for the diagnosis
of disc displacements using ANN. The application of ANN for
diagnosis of subtypes of TMJ internal derangement may be a
useful supportive diagnostic method

Radke
et al.87

ANN for detection of normal TMJ and non-reducing displaced
disks

The ANN detected the presence and type of non-reducing disk
displacement from frontal plane recordings of gum chewing in
a group of real patients seeking treatment

De Dumast
et al.88

Deep neural network to assess shape changes in TMJ
osteoarthritis (TMJOA) and web-based system for neural network
classification of TMJ OA

Study demonstrates a comprehensive phenotypic
characterization of TMJ disease at clinical, imaging and
biological levels using web-based system that provides
advances shape statistical analysis and a neural network-based
classification of TMJ OA

Bianchi
et al.89,93,95

Diagnosis of TMJOA using quantitative bone imaging biomarkers
and machine learning

Total 13 imaging biomarkers presented an acceptable
diagnostic performance fir diagnosis of TMJ OA using CBCTAND
accuracy of 0.823 observed for diagnosis of TMJ OA status

Kim
et al.91

Automated detection of mandibular condyle using convolutional
neural networks (CNN) and faster region-based CNN (R-CNNs)

The sensitivity specificity and accuracy of the TMJOA
classification algorithm using CNN are 0.54, .94 and 0.84
respectively and classifying panoramic images using CNN is
possible

Shoukri
et al.92

Test correlation of biomarkers of condylar morphology and find
deep neural networks to assess bony changes in TMJ OA

Study demonstrates a significant correlation among variations
in protein expression levels, clinical symptoms and condylar
surface morphology. The results suggest that 3-dimensional
variability in TMJ OA condylar morphology can be
comprehensively phenotyped by the neural networks

Reda
et al.27

Present the AI based system for supporting non-expert dentist in
early TMD recognition

Study provides a preliminary proof of concept of the feasibility
of implementing an AI based system in early identification of
TMDs.

Data from assorted studies25,27,85–94
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and chemistry. MRI have provided a deeper understanding of
what happens to the brain structure and function in TMD patients
which provide both physiological and pharmacological targets for
us to collectively develop. The cellular mechanism under these
changes still needs to be explored. Increase multidisciplinary
collaboration, combine with more precise tools for understanding

responses within the pain matrix, should result in the develop-
ment of new and more effective chronic pain therapies in the
coming decades.
AI is becoming increasingly important in the use of neuroima-

ging data for research and clinical applications. This paper also
discuss the AI algorithms developed for TMD diagnosis that can be

CerebellumPAG

Thalamus

S2 Posterior
parietal

Chronic painful TMD (myalgia,
arthralgia, and headache attributed to
TMD)

Basic pain matrix and
digital neural networks

Artificial intelligence (ML/DL) and neuroimaging can benefit investigators in understanding the brain mechanisms of chronic painful
TMD patients and  associated comorbid conditions.
Using databases from large samples at multiple centers, AI algorithms may be used to develop clinically useful image analysis that can
help clinicians diagnose predict and make treatment decisions.

Comorbid disorders (headaches,
depression, anxiety, sleep disorders,
psychiatric disorders, fibromyalgia,
IBS etc.)

Somatosensory
cortex

Alterations in nerve fiber density, cortical thickness
GMV, MD, FA, rCBF, BOLD effect functional
connectivity between different brain regions, DMN
dysfunction in rest/task state and changes in
neurochemicals level were investigated in chronic
painful TMD using Structural MRI, Functional MRI,
DTI, ASL and H-MRS methods.

Artificial intelligence [machine learning
(supervised/unsupervised) and Deep learning]
approaches are used to understand changes in neural
network changes of patients with chronic painful
TMD. ML algorithms can detect alterations in 
cortical thickness, BOLD effect while DL can detect
changes in neural network.

Supplementary
motor area

Insula

Anterior
cingulate

Prefrontal cortex

Amygdala
hippocampus

Fig. 5 A summary on role of neuroimaging methods and AI in chronic painful TMD

Chronic
painful
TMD

(biological
pain

network)

Machine learning algorithms can
detect and quantify characteristics of

anatomical structures and
abnormalities associated with chronic

painful TMD.

Deep network artichecture classify
MR images into normal and painful

TMD.

Computational neural
network designed

based on the biological
and neuroimaging pain

models.

Neuroimaging data
set consist of 3D

images of brain to
model brain pain

networks and
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image consists of
large number of

fMRI 3D volume

Fig. 4 Relationship between neuroimaging and machine learning algorithms
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used by the clinician to support decision. More diagnostic images
features and various input data may aid in improving TMD
diagnostic accuracy. ML current clinical relevance is based on its
ability to detect, quantify and compare neuroanatomy and disease
related patterns. ML methodology can bridge the gap between
representing imaging data and other molecular markers of painful
TMD. Most previous studies lack external validation and certainty
of evidence was very low. Further studies with larger data set to
ensure generalizability of develop models are warranted.
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