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Oral squamous cell carcinomas: state of the field and emerging
directions
Yunhan Tan1,2, Zhihan Wang1, Mengtong Xu1, Bowen Li1, Zhao Huang1, Siyuan Qin1, Edouard C. Nice3, Jing Tang4✉ and
Canhua Huang1✉

Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of
oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were
reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by
2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ),
and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral
mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves
genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic
interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC
and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors,
thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC.
Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate
comprehension and provide several prospective outlooks for the fields.
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INTRODUCTION
Oral squamous cell carcinoma (OSCC), which develops in the oral
mucosa, is a common type of head and neck malignancy.1–3

According to data collected by the Global Cancer Observatory
(GCO), there were 377,713 cases of OSCC worldwide in 2020, with
the majority occurring in Asia.4 OSCC affects more males than
females, with middle-aged to elderly men being the most
susceptible.5 OSCC results in disfiguration and functional impair-
ments, including swallowing, speech, and taste, which have a
substantial impact on the life quality of patients.6,7

Clinically, OSCC is characterized by a red and white or red lesion
with a slightly uneven surface and distinct borders.8,9 Early-stage
lesions are typically painless,10 but they may cause discomfort and
exhibit features such as ulceration, nodularity, and tissue
attachment as they progress.11 Ulceration is a typical symptom
of OSCC, which appears with an irregular floor and margins and is
hard upon palpation.11,12 The posterior lateral border of the
tongue has the highest incidence of OSCC, accounting for an
estimated 50% of all OSCC cases,13 followed by the mouth floor,
the soft palate, the gingiva, the buccal mucosa, and the hard
palate.14 OSCC spreads predominantly to ipsilateral lymph nodes
of the neck via lymphatic outflow, but can also invade
contralateral or bilateral lymph nodes. Lungs, bones, and the liver
are typical locations for OSCC metastases.15

Patients with oral potentially malignant disorders (OPMDs) are
more likely than those with healthy mucosa to develop invasive

oral carcinomas.16–20 At the time of diagnosis, the majority of
patients with OPMDs are asymptomatic;21 however, some
patients may exhibit symptoms of suspected malignancy, such
as erythema, pain, tingling sensations, or ulceration.16 Conse-
quently, the diagnosis of OPMDs is a crucial method for clinicians
to evaluate the risk of OSCC and guide appropriate treatments
(Table 1). OPMDs include oral leukoplakia (OL), oral erythroplakia
(OE), oral submucosal fibrosis (OSMF), and oral lichen planus
(OLP).22,23

The World Health Organization (WHO) Collaborating Center
defines OL as a permanent, white, and non-scrapable lesion that
appears to be “a predominantly white plaque of questionable risk
having excluded (other) known diseases or disorders that carry no
increased risk for cancer”.24–27 OL patients have a prospective risk
of malignancy ranging between 1% and 30%.28 OL could present
as homogeneous or non-homogeneous depending on the color
and the texture of the surface.29 In non-homogeneous OLs,
malignant transformation is more prevalent. Proliferative verru-
cous leukoplakia (PVL) is a rare form of multifocal OL. PVL plaque
has a verrucous and keratotic surface and is asymptomatic and
non-homogeneous. PVL exhibits invasive behavior and recurrence
following excision,30 of which 60% to 100% develop into oral
carcinomas.31 In addition to PVL, OE displays an elevated potential
for malignant transformation, with approximately 50% of patients
at risk of progressing to dysplasia, cancer in situ, or aggressive
cancer.32
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OE is an isolated condition described as a “predominantly fiery
red patch that cannot be characterized clinically or pathologically
as any definable disease”.33–35 85%–90% of early OSCC manifests
initially as OE.36

OSMF is characterized by burning sensations or intolerance to
spicy food, as well as the presence of vesicles on the palate.
Histopathological features of OSMF include alterations in epithelial
cell morphology and changes in the composition and structure of
the connective tissue.37–39 OSMF has a 7.6% rate of malignant
transformation over 17 years and may be accompanied by OL and
other potentially malignant lesions and carcinomas.40

OLP is an inflammatory mucocutaneous disorder affecting
between 1% and 2% of the general population, of which 0.07% to
5.8% undergo malignant transformation.41,42 There are three
clinical subtypes of OLP: erythematous or atrophic, reticular, and
erosive. Erosive OLP is the most prevalent clinical subtype
associated with malignant transformation.43–45

OPMD and OSCC have complex etiologies, including smok-
ing,46,47 alcohol abuse,48–50 betel quid (BQ) chewing,51,52 human
papillomavirus (HPV) infection,53,54 nutritional insufficiency,55

immune deficiency,56 and hereditary conditions (Fig. 1).57 The
carcinogenicity of polycyclic aromatic hydrocarbons (PAH) and
tobacco-specific nitrosamines (TSNA) in tobacco,58 ethanol in
alcohol,59 and nitrosamines in BQ has been demonstrated.52,60

Additionally, exposure to dust and heavy metals can cause chronic
inflammation or serve as carriers for other oncogenic compounds,
thereby increasing the incidence of oral cancer.61,62 HPV can cause

precancerous squamous intraepithelial neoplasia, which has the
potential to become malignant,63 and has been hypothesized to
assist in OSCC progression.64 Nutritional insufficiency, particularly
in plant foods and vitamin D, is also related to an elevated
potential of oral carcinomas.65 Individuals with suppressed
immune systems and rare hereditary diseases, such as Fanconi
anemia (FA) and dyskeratosis congenital (DC), are more suscep-
tible to OSCC than those with normal physiological function.66

Persistent exposure to these risk factors results in genetic
alterations, epigenetic modifications, and a dysregulated tumor
microenvironment, all of which contribute to the occurrence and
transformation of OPMDs to OSCC. The genetic alterations result
in the aberrant activation of oncogenic pathways, such as EGFR,67

Wnt/β-catenin,68 JAK/STAT,69 NOTCH,70 PI3K/AKT/mTOR,71 MET,72

and RAS/RAF/MAPK, as well as disruptions of suppressor path-
ways, such as TP53/RB,73 p16/Cyclin D1/Rb,74 which significantly
contribute to the progression of OSCC. Epigenetic modifications,
such as DNA methylation,75 histone covalent modification,76

chromatin remodeling,77 and gene regulation by non-coding
RNAs (ncRNAs),78 participate in OSCC formation and development.
In addition, immune suppression, stromal alteration, hypoxia, and
an imbalanced oral microbiome can contribute to the dysregu-
lated tumor microenvironment, thus facilitating OSCC
progression.79–81

As mentioned above, OSCC may be induced by various risk
factors. Chronic exposure to these stimuli promotes carcinogen-
esis and cancer metastasis by causing genetic mutations, altered

Table 1. The risks factors, characteristics, epidemiology, and diagnosis of OPMDs

OPMDs Risk factors Histopathology Epidemiology Diagnosis

Homogeneous OL ▪ Tobacco
▪ Alcohol
▪ BQ
▪HPV

▪ Superficial surface
▪White surface
▪ Flat surface
▪ Sharp boundaries

▪Men aged over 40
▪Women non-smoking

▪ Biopsy
▪ Toluidine blue
▪ Salivary diagnostics
▪ Brush biopsy

Non-homogeneous OL ▪ Speckled red lesions
▪ Irregular white lesions
▪ Corrugated epidermis
▪Wrinkled epidermis
▪ Verrucous surface
▪ Exophytic growth
▪Nodular outgrowths
▪ Polypoid outgrowths

▪Men aged 50-70 ▪ Biopsy
▪ Toluidine blue
▪ Salivary diagnostics
▪ Brush biopsy

PVL ▪ Verrucous surface
▪ Keratotic surface
▪Multifocal

▪Women aged over 60 ▪ Biopsy

OE ▪ Tobacco
▪ Alcohol
▪HPV

▪ Fiery red patch
▪ Smooth surface
▪ Velvety surface
▪ Atrophic epithelium
▪ Thin epithelium
▪ Tough texture (Speckled)
▪Granular texture (Speckled)

▪ People susceptible to HPV ▪ By exclusion

OSMF ▪ BQ
▪ Areca nuts

▪ Vesicles
▪ Blanching mucosa
▪ Fibrosis
▪Diffuse boundaries

▪ People aged 20–50 ▪ Solid biopsy
▪ Liquid biopsy

Reticular OLP ▪ Psychological stress
▪Medications
▪Dental materials
▪ EBV

▪Wickham striae
▪Hyperkeratotic plaques

▪Women aged over 40 ▪Direct immunofluorescence

Erosive OLP ▪ Atrophic ulcers
▪White striae
▪ Keratinization

Erythematous OLP ▪ Atrophic mucosa

Plaque-like OLP ▪White lesions
▪Hyperkeratotic surface

Bullous OLP ▪ Bullae
▪Ulcerative surface
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epigenetic modification, and a dysregulated tumor microenviron-
ment. Here, we briefly review the mechanisms involved in the
occurrence of OSCC. We also discuss therapeutic interventions
and the clinical prognosis of OSCC and OPMDs, followed by
perspectives for future advancements in the field.

GENETIC ALTERATIONS DRIVE THE OCCURRENCE OF OSCC
There exist a multitude of risk factors that have been identified as
being capable of inducing genomic alterations, which are
commonly observed in both OSCC and OPMDs.82,83 Genetic
mutations contribute to aberrant activation of oncogenic signaling
and inactivation of suppressor signaling, promoting the transfor-
mation and uncontrolled proliferation of OSCC cells (Fig. 2).70,84–86

Aberrant activation of oncogenic signaling
Oncogenic signaling pathways, including the EGFR pathway, PI3K/
AKT/mTOR pathway, JAK/STAT pathway, MET pathway, Wnt/
β-catenin pathway, and RAS/RAF/MAPK pathway, are aberrantly
activated and upregulated to promote the progression of OSCC.87

EGFR pathway. 80%-90% of head and neck squamous cell
carcinoma (HNSCC) is found to overexpress epidermal growth
factor receptors (EGFR), a member of the HER/ErbB family of
receptor tyrosine kinases (RTKs).88–90 It has been reported that
OSCC shows increased EGFR (42% to 58%),91 which is associated
with poor treatment outcomes and prognosis.92

The EGFR pathway prompts OSCC cell proliferation, metastasis,
invasion, and apoptosis resistance.93 Radiation triggers the
translocation of EGFR into the nucleus, where it functions as a
transcription factor and leads to radiotherapy resistance in oral
cancer.94 The EGFR also interacts with other receptors, such as Axl,
increasing its carcinogenic potential on the mucosal surface of the
oral cavity.95

Meanwhile, various factors are implicated in the EGFR pathway
to drive the malignancy of OSCC. For instance, downregulated
hsa_circ_0005379 facilitates the proliferation and metastasis of
OSCC cells by regulating the EGFR pathway.96 The overexpression
of distal-less homeobox 6 (DLX6) enhances proliferation and
inhibits apoptosis in OSCC cells through the EGFR-CCND1 axis.97

Upregulated bone marrow stromal cell antigen 2 (BST2) promotes

tumor growth and confers gefitinib resistance in OSCC patients via
activating the EGFR pathway.98

PI3K/AKT/mTOR pathway. Thirty-seven percent of HNSCC cases,
more specifically 34% of HPV- and 56% of HPV+ patients, exhibit
overexpression or mutation of PIK3CA, as reported by the Cancer
Genome Atlas (TCGA) study.99,100 Furthermore, patients with OSCC
are more likely to exhibit somatic copy number alterations in
genes encoding components of the PI3K/AKT/mTOR
network.71,101–103

The PI3K/AKT/mTOR pathway leads to the metastasis and
proliferation of OSCC cells.104,105 The PI3K-AKT pathway is
frequently activated in OSCC malignancies due to the evaluated
phosphorylation levels of AKT and associated mTOR. Then, by
stimulating AKT, PDK1, and mTOR, a cascade of downstream
biological processes, such as cell metabolism, cell proliferation, cell
death, protein synthesis, and transcription, are increased to drive
OSCC.106 In the meantime, extracellular ATP stimulates the PI3K-
AKT pathway through the P2Y2-Src-EGFR axis to prompt OSCC cell
metastasis.107 Also, the circEPSTI1/miR-942-5p/LTBP2 axis phos-
phorylates the components of the PI3K-AKT-mTOR pathway and
facilitates epithelial–mesenchyme transition (EMT) to accelerate
the metastasis and proliferation of OSCC cells.108 Moreover, ITGB2
high cancer-associated fibroblasts (CAFs) stimulate the PI3K-AKT-
mTOR pathway to promote the progression of OSCC malignancy
via NADH oxidation.109 Additionally, a variety of factors, including
ZNF703,110 PDGF-D,111 CCL18,112 and Muc1,113 activate the PI3K/
AKT/mTOR pathway, resulting in OSCC cell survival, invasion, and
drug resistance.105,114 Collectively, targeting the PI3K/AKT/mTOR
pathway could be a potent method to prevent OSCC.

JAK/STAT pathway. Both HPV+ and HPV- HNSCC display abnor-
mal activation of the signal transducer and activator of the
transcription (STAT) pathway.69,115 Upregulated STAT3 is asso-
ciated with HNSCC malignancies and resistance to chemotherapy,
radiotherapy, and EGFR-targeted therapy.116,117 The
STAT3 signaling pathway causes immune suppression and
protects OSCC cells from being recognized and destroyed by
cytotoxic T cells by stimulating the release of cytokines, such as
transforming growth factor (TGF)-β1, vascular endothelial growth
factor (VEGF), interleukin (IL)-6, and IL-10.118 Moreover, in response
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to upstream signals from the IL-6 receptor family and RTKs
including EGFR, VEGFRs, Jenus-activated kinases (JAKs), and Src
family kinases (SFKs), STAT3 is activated and translocated to the
nucleus,119 thereby inducing the expression of cyclin D1, Bcl-xL,
and other pro-survival factors.118 In addition, various factors, such
as miR-548d-3p and long non-coding RNA (lncRNA) P4713,
participate in the JAK/STAT pathway. Specifically, miR-548d-3p
binds to the 3’UTR of SOCS5 and SOCS6 to downregulate their
expression, regulating the JAK/STAT pathway and serving as an
oncogene in OSCC.120 lncRNA P4713 activates the JAK/STAT
pathway and drives the metastasis and proliferation of OSCC
cells.121

MET pathway. Mutations and gene amplifications in hepatocyte
growth factor (HGF) receptor (MET or c-Met) and its ligand HGF are
uncommon, occurring in 6% and 2%-13% of HNSCC,

respectively.122–125 Immunohistochemistry analysis reveals MET
and/or HGF are upregulated in approximately 80% of HNSCC.126

Lymph node metastases with elevated MET levels can also be
present.127 Overexpression of MET is recognized as a cause of
EGFR inhibitor resistance, as it compensates for PI3K and MAPK
inhibition in EGFR signaling.123,128 Anoikis resistance is enhanced
in HNSCC as a consequence of HGF amplification, which is
essential for developing nodal metastasis.127 KRT16 overexpres-
sion is associated with metastasis, increased mortality rate,
unfavorable pathological differentiation, and advanced stages in
OSCC patients. c-Met was also discovered to correlate with KRT16
through β5-integrin.129

Wnt/β-catenin pathway. Various components of the Wnt/
β-catenin signaling pathway, including Wnt ligands, Wnt inhibi-
tors, membrane receptors, and intracellular mediators, are
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regularly impaired by genetic alterations in malignant tumors,
such as OSCC.130–133 The Wnt/β-catenin signaling pathway
determines cell fate and proliferation in OSCC, whereas aberrant
Wnt/β-catenin signaling promotes oncogenesis, typically via
various mechanisms related to abnormal β-catenin stimulation.134

For example, KMT2D, one of the most frequently mutated genes in
OSCC cells, collaborates with MEF2A to boost the transcription
activity of β-catenin.135 In addition, the SNHG17/miR-384/ELF1 axis
stimulates the Wnt/β-catenin pathway by upregulating CTNNB1
expression to drive the proliferation and metastasis of OSCC
cells.136 DEP domain containing 1 (DEPDC1) is also essential for
OSCC progression, which drives OSCC metastasis and aerobic
glycolysis through the WNT/β-catenin pathway.137 Mutations that
inactivate NOTCH1 and FAT1 diminish their capability to suppress
the expression of β-catenin.138 In addition to mutations in Wnt/
β-catenin signaling components, OSCC exhibits an overexpression
of Wnt ligands.139 A high level of Wnt-7b in OSCC activates Wnt/
β-catenin and facilitates cancer cell invasion and proliferation.140

Moreover, Wnt7a enhances the expression of MMP-9 to facilitate
OSCC progression.141 Overall, Wnt/β-catenin signaling has a vital
role to play in the formation of oral malignancies.

RAS/RAF/MAPK pathway. Only 4% of HNSCC cases exhibit
mutations of mitogen-activated protein kinase (MAPK) signaling,
which modulates cell proliferation, death, differentiation, angio-
genesis, and dissemination.142–144 It comprises four sub-pathways,
namely extracellular signal-regulated kinase (ERK1/2), c-Jun N-
terminal kinase (JNK), p38, and ERK5 sub-pathways.144 In oral
cancer, the ERK1/2 pathway has generated significant interest due
to the fact that ERK1/2 is activated mechanistically by binding the
growth factor EGF. Erl1/2 separates from RAS-RAF-MEK-ERK1/2
and induces the phosphorylation of OSCC-causing transcription
factors, such as c-Myc, ETS-1, AP-1, NF-κB, and others.144 Mean-
while, OSCC cell growth is influenced by various proteins serving
as targets, including SH3 domain-containing kinase binding
protein 1 (SH3KBP1),145 annexin A10,146 fibroblast activation
protein,147 EGFR,148 parathyroid hormone-related protein,149

angiopoietin-like 3 (ANGPTL3),150 quaking 5,151 and 70-kDa
ribosomal S6 kinase.152

Aberrant inactivation of suppressor signaling
TP53/RB, p16/Cyclin D1/Rb, and NOTCH are examples of
suppressor signaling pathways. During the malignant transforma-
tion of OPMDs to OSCC, they become abnormally inactivated and
downregulated.

TP53/RB pathway. Approximately 80% of HPV- HNSCC have
muted tumor protein p53 (TP53), resulting in gene dysfunc-
tion.138,153,154 Exon 4 or intron 6 is the location of TP53 mutations
that occur early in the progression of HNSCC, especially OSCC.155

Consistently, p53 mutation is commonly observed in HPV- OSCC,
as the HPV E6 oncoprotein degrades p53.156 In both subtypes,
mutations in p53 are correlated with a lower overall survival rate,
treatment resistance, and an increased risk of relapse.138 In early
OSCC, TP53 expression is also associated with tumor stage and
grade, as well as surgical margin dysplasia. It is not clear, however,
whether TP53 expression and lymph node metastasis are
related.157,158 p53 modulates cell death, apoptosis, and differ-
entiation in OSCC cells by interacting with a complicated network
of proteins.138,159 APR-246 targets GSTP1 to reactivate p53 and
induce cell dealth.160 Co-expression of platelet-derived growth
factor receptor A (PDGFRα) and p53 stimulates cell growth in
poorly differentiated OSCC.161 Accordingly, TP53 and p53
collaborate to enhance OSCC invasion.162

Similar to mutations in the TP53 pathway, retinoblastoma (RB)
pathway mutations are early manifestations of HNSCC. Both p53
and RB pathway mutations contribute to the unrestricted
replication of HNSCC cells.100 In HPV+ neoplasms, the degradation

of pRb by E7 contributes to the secretion of E2F and unregulated
HNSCC cell proliferation.163 In persistent HPV infection, E2-
regulated expression of E6 and E7 is responsible for p53
degradation and Rb functional suppression.150 When pRb is
dysregulated, oral epithelial dysplasia has an increased likelihood
of transforming into malignant carcinomas.164

p16/Cyclin D1/Rb pathway. In most HNSCC, the tumor suppressor
p16 is inactivated, resulting in aberrant cell cycle control and cell
proliferation, a deficiency in cell senescence, and ultimately
dysplasia.165 Similar to HNSCC, OSCC frequently has a low level
of p16.166,167 OSCC patients with inactive p16 tend to have a lower
survival rate than those with normal or augmented p16 levels.168

Cyclin D1 (CCND1) amplification occurs in 25–43% of OSCC
cases.169–171 In the early stages of OSCC, CCND1 is upregulated
and contributes to the proliferation of OSCC cells.172 Particularly,
CCND1 is more likely cytoplasmically expressed in advanced OSCC
with deleterious differentiation, increased mitosis, and invasive
cell morphology.173 Elevated expression of CCND1 is also related
to reduced overall survival and poor prognosis among patients
with OSCC.174,175 CCND1 deficiency inhibits the cyclin-dependent
kinases CDK4 and CDK6, which are responsible for the cell cycle
progression by dephosphorylating and inactivating pRb and then
hindering G1 to S transition.176

NOTCH pathway. Notch signaling shows diverse effects on
different cell types.177–181 Therefore, the suppressive or oncogenic
functions of Notch in tumorigenesis have a contextual basis.
According to a 2015 TCGA analysis, NOTCH1-3 is inactivated in
17% HPV+ and 26% HPV- HNSCC.138 The majority of these
aberrations are found in NOTCH1, including nonsense mutations
causing truncated proteins, missense mutations within functional
regions, and frameshift deletions and insertions. On the basis of
mutational features, such as the absence of mutational hotspots
and the presence of nonsense mutations, it is hypothesized that
NOTCH1 acts as a tumor suppressor in HNSCC.182 Notch signaling
has been demonstrated as a tumor suppressor in epithelial SCC
malignancies (lung, bladder, and esophageal tumors) and several
in vivo models.159

Nevertheless, in vitro assays with HNSCC cell lines have shown a
requirement for an increase in Notch signaling activity to maintain
malignant behavior.183 Recent research has shown that 43% of
OSCC cases from a Chinese population are associated with
activating mutations in NOTCH1, including novel mutations in
heterodimerization and abrupted domains likely to obtain
function.184 Furthermore, the mutation of NOTCH1 can result in
a poor prognosis and lymph node metastasis in OSCC.185 NOTCH1
is responsible for sustaining the characteristics of cancer stem cells
(CSCs), which are essential for cancer relapse and migration, via
Wnt signaling; and 32% of HNSCC showed overexpression of
downstream Notch effectors (measured by methylation, DNA copy
number, and expression of 47 genes involved in Notch
signaling).186

Overall, it remains unclear whether NOTCH mutations in HNSCC
are typically activating or inactivating.184,187 Various mutations
may be present in distinct subtypes of HNSCC.177 Since in vitro
assays may not accurately reflect the disease progression in
patients, it is imperative to investigate the functional role of Notch
signaling in OSCC using robust in vivo models. Clinical trials of
inhibitors or stimulators of the Notch pathway must be carefully
considered.188,189

EPIGENETIC MODIFICATIONS PROMOTE THE DEVELOPMENT
OF OSCC
Epigenetic regulation refers to heritable and stable alterations in
gene expression that do not modify the DNA sequence and are
responsible for the formation and progression of OSCC neoplasms
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by regulating gene expression.190–194 Epigenetic modifications
comprise DNA methylation, histone covalent modification, chro-
matin remodeling, and the impact of ncRNAs on gene expression
(Table 2).195

DNA methylation
The development and prognosis of OSCC are affected by DNA
methylation abnormalities.196 Both hypomethylation and hyper-
methylation increase the prevalence of oral malignancies. In
addition to the correlation between smoking and global
hypomethylation,197 alcohol consumption is linked to evaluated
levels of CpG hypermethylation in genes associated with oral
cancers.198 Several OSCC samples have been found to manifest
both hypermethylation and hypomethylation, leading to abnor-
mal expression of genes, the majority of which are implicated in

the tumorigenic process of OSCC by stimulating the Wnt and
MAPK pathways.199,200

Particularly, DNA methylation silences suppressor genes in
OSCC.201,202 CpG island hypermethylation inhibits over 40 tumor
suppressor genes, which regulate the cell cycle, programmed cell
death, Wnt pathway, cell-to-cell adhesion, and DNA repair in
OSCC.203 The specific pattern of gene methylation leads to
hypermethylated promoters in 22%-76% of OSCC
patients.193,204,205 In contrast, the p16 promoter region was found
to be methylated in only 5.4% of normal mucosa samples,
indicating the epigenetic silencing of p16 in the development of
OSCC.193 Moreover, DNA is methylated throughout the entire
genome in 28-58% of premalignant oral tissues of tobacco users,
with methylation levels increasing as the cancer progressed.193

Continued smoking increases DNA methyltransferase activity,
enhancing methylation of the p16 promoter.206,207

OSCC also demonstrates hypermethylation in the promoter
regions of many other genes, including O-6-methylguanine-DNA
methyltransferase (MGMT), mutL homolog 1 (MLH1), and p15INK4B.
MGMT functions in DNA repair by eliminating guanine DNA
adducts, and maintaining the integrity of the genome.191 There-
fore, increased MGMT levels render normal cells more resistant to
carcinogens and spontaneous mutations.208 Silencing MGMT is
associated with a poor prognosis in the early stages of OSCC
development.198,200 Furthermore, the hypermethylation of MLH1
is essential for DNA mismatch repair and prevents the accumula-
tion of DNA mutations, which are linked to the initiation of
OSCC.209 Due to its significance, methylation patterns of MLH1
have been extensively investigated.200

In addition, p15INK4B significantly contributes to tumor suppres-
sion. It inhibits cell proliferation and, consequently, cell cycle
progression at the G1 stage, which is induced by stimulation of
extracellular TGF-β and IFN-α.200 Hypermethylation of p15INK4B

may render cells less sensitive to these external stimuli, thereby
influencing the progression of OSCC. Normal tissues lack
methylation of p15INK4B; therefore, its abnormal methylation can
serve as an indicator for OSCC.210 Additionally, hypermethylated E-
cadherin,211 phosphatase and tensin homolog (PTEN),212 adeno-
matous polyposis coli (APC),213 p14ARF,214 p16INK4A,215 miR-137,216

and miR-193a217 prevent oral cells from promoting OSCC.218

Hypermethylation can also lead to the suppression of genes
involved in the progression and metastasis of OSCC. For example,
DNA methyltransferase (DNMT) levels have been linked to OSCC
progression, growth, poor prognosis, and a higher risk of
metastasis.219 DNMT3a immunoreactivity increased significantly
in OSCC tissues compared to normal tissues.220 Despite some
reports of normal DNMT1 expression in OSCC, the preponderance
of studies have demonstrated that OSCC development is
associated with DNMT overexpression.221 In general, DNMT1
regulates the prognosis of OSCC patients in a manner that
decreases their overall survival.222

In alcoholic beverages, ethanol and acetaldehyde cause DNA
hypomethylation.223 Global hypomethylation may facilitate
tumorigenesis by diminishing the methylation of CpG dinucleo-
tides across the entire genome.194 Moreover, global hypomethyla-
tion may promote the progression of cancer by demethylating
previously methylated promoter regions of numerous oncogenes,
thereby altering their expression.200 The presence of these
characteristics is linked to the progression of malignant tumors,
as they can increase the instability of the genome.191 AIM2,224

CEACAM1,225 LINE-1,226 PI3,227 and PTHLH228 are found as
hypomethylated genes that contribute to OSCC.218

Histone and chromatin modification
There are two distinct forms of chromatin: heterochromatin, which
is highly compressed and transcriptionally silent, and euchroma-
tin, which is less dense and transcriptionally active. The
organization of chromatin and the expression of genes depend

Table 2. Epigenetic modifications in OSCC

Epigenetic
modifications

Targets Exhibitions Outcomes

DNA
methylation

▪ p16
▪MGMT
▪MLH1
▪ p15INK4B

▪ E-cadherin
▪ PTEN
▪ APC
▪ P14ARF

▪ P16INK4A

▪miR-137
▪miR193a

▪Hypermethylation ▪Oncogenic

▪ AIM2
▪ CEACAM1
▪ LINE-1
▪ PI3
▪ PTHLH

▪Hypomethylation ▪Oncogenic

Histone
acetylation

▪H3K9ac
▪H3K4ac
▪miR-154-5p

▪Downregulation ▪Oncogenic

▪H3K27me3
▪HDAC6
▪HDAC8
▪HDAC1
▪HDAC2

▪Upregulation ▪Oncogenic

Chromatin
modification

▪ SATB1
▪ ZSCAN4
▪ CSC factors
▪ RSF-1

▪Upregulation ▪Oncogenic

ncRNAs ▪miR-1246
▪miR-31
▪miR-214
▪miR-23a
▪miR-372

▪Upregulation ▪Oncogenic

▪miR-181a
▪miR-17-92
cluster

▪miR-329
▪miR-410
▪miR-211
▪ TCF12
▪miR-214
▪miR-23a
▪miR-372

▪Upregulation ▪ Tumor
suppression

▪ lncRNA
HOXA11-AS

▪ ZBTB7A
▪miR-98-5p
▪miR-214-3p
▪ circITCH

▪Downregulation ▪Oncogenic
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heavily on histone modifications, particularly histone acetylation. It
is therefore not surprising that abnormalities in histone acetylation
correlate with the progression of oral malignancies.229 Recent
studies have identified reduced histone H3K9ac as an indicator of
chemoresistance related to the NFκB pathway and CSCs recruit-
ment230–232; it is also associated with enhanced cell proliferation
and disruption of EMT in oral tumorigenesis.233 In light of these
findings, H3K9ac assists in HNSCC development. Furthermore, low
H3K4ac and high H3K27me3 levels are related to disease-free
survival (DFS) and cancer-specific survival (CSS) and influence the
progression of OSCC.234

In contrast to other histone modifications (such as methylation
and phosphorylation), which have been extensively investigated
in various cancer types, studies on the role of acetylation in the
formation of OSCC are relatively limited. The acetylation of
histones is governed by the equilibrium between histone
acetyltransferases (HATs) and histone deacetylases (HDACs).
Multiple HDACs are correlated with differentiation, cell cycle-
associated genes, programmed cell death, angiogenesis, and
dissemination of cancer cells, which have been observed to be
altered in OSCC.235,236 OSCC exhibits overexpression of HDAC1,237

which contributes to OSCC growth and progression by regulating
miR-154-5p/PCNA signaling.238 HDAC2 mRNA and protein levels
are higher in OSCC and premalignant lesions than in controls.
Meanwhile, the protein level of HDAC2 is related to histological
differentiation and the stage of tumor-node-metastasis (TNM) in
OSCC patients, emphasizing its significance in the progression of
premalignant to malignant carcinomas.239

Chromatin remodelers are crucial molecules in charge of
modulating nucleosome positioning and chromatin accessibility
in response to DNA-driven stimulation of biological processes in
OSCC.240 For instance, special AT-rich sequence binding protein 1
(SATB1) is a genome-organizing protein that modifies chromatin
structure and directs chromatin remodeling enzymes to specific
chromatin regions to regulate gene expression. High SATB1
expression is related to HNSCC metastasis, poor prognosis, and
decreased survival rate.241 The zinc finger and SCAN domain
containing 4 (ZSCAN4) is another example of a protein that can
alter the epigenetic profile and chromatin state in tumors.242

ZSCAN4 induces the functional hyperacetylation of histone 3 at
the OCT3/4 and NANOG promoters, thereby upregulating CSC
factors.77 In contrast, ZSCAN4 exhaustion contributes to the
downregulation of CSC markers, the diminished capacity to
develop tumorspheres, and the restriction of tumor growth.243

Therefore, ZSCAN4 is essential for maintaining the CSC phenotype
and tumor progression in HNSCC.77 Furthermore, the chromatin
remodeler RSF-1, a member of the ISWI family,244 is upregulated in
OSCC and linked to enhanced invasion, lymph node metastasis,
and advanced stages of carcinomas. RSF-1 exhibits the ability to
increase the resistance of OSCC cells to both radiotherapy and
chemotherapy.245

Non-coding RNAs
Similar to proteins, microRNA (miRNA) dysfunction can arise from
abnormalities in miRNA expression caused by genetic mutations,
epigenetic modifications, or processing deficiencies. MicroRNAs
are a class of ncRNAs that have been intensively investigated in
HNSCC. Due to genetic and epigenetic alterations, a number of
miRNAs have been linked to OSCC.246 miR-26,247 -137,248 and
-203249 are repressed by CpG hypermethylation in OSCC. Notably,
miR-26a binds to the DNMT3B enzyme, which stimulates cell
proliferation, indicating an intimate relationship between epige-
netic modifications and the progression of oral malignancies.250

miRNAs are capable of functioning as either tumor oncogenes
or suppressors to modulate cell growth.251 For instance, miR-1246
functions as an oncogene and is abundant in exosomes derived
from the oral carcinoma cell line HOC313-LM, which is highly
metastatic.252 After the transfer of miR-1246 via exosomes,

inadequately metastatic cells displayed enhanced cell motility
and invasion capability. miR-1246 facilitates cell mobility by
directly binding to DENN/MADD Domain Containing 2D
(DENND2D) in OSCC.253 In addition, patients with oral malig-
nancies had increased levels of miR-31 in their saliva throughout
the entire process of the disease.254 Following oral tumor excision,
the level of salivary miR-31 decreased significantly, indicating that
the majority of the raised level of salivary miR-31 originated from
tumor tissues.255

OSCC is frequently associated with the downregulation of
numerous tumor-suppressing miRNAs. For example, ectopic miR-
181a expression inhibits the proliferation and anchorage-
independent growth of OSCC.256 miR-181a significantly inhibits
OSCC formation in three-dimensional organotypic raft cultures.257

Mechanistically, miR-181a reduced K-ras protein levels and
luciferase activity in receptor vectors containing the 3’-untrans-
lated region of the K-ras gene. By inhibiting the oncogene K-ras,
miR-181a could suppress OSCC.257 Similar results are observed
when the miR-17-92 cluster, comprising miR-17, miR-19b, miR-20a,
and miR-92a, is induced to overexpress in OSCC cell lines.258 miR-
17/20a within the miR-17-92 cluster modulates OSCC migration
predominantly and is inversely associated with TNM stage and
lymphatic metastasis in clinical investigations; it is known to
suppress tumor migration in OSCC.258 Other examples include
miR-329, miR-410, and miR-211. Increased levels of miR-329 and
miR-410 inhibit the proliferation and dissemination of OSCC cells.
Specifically, miR-329 and miR-410 could bind to Wnt-7b and then
attenuate the Wnt-β-catenin pathway in OSCC.140 miR-211 is
upregulated in OSCC cells by arecoline and 4-nitroquinoline 1-
oxide (4NQO), and it directly inhibits OSCC cell growth by
targeting transcription factor 12 (TCF12). However, miR-211 levels
are drastically reduced in tumor tissues, resulting in an enhanced
oncogenicity for OSCC.259

The progression of OSCC cells toward a drug-resistant state
appears to be mediated by multifunctional ncRNAs, including
miRNA, lncRNA, and circular RNA (circRNA).260 Over 10% of all
identified miRNAs correlate with chemotherapy resistance in
cancer cells, particularly those implicated in OSCC cell chemore-
sistance.261–263 In the presence of cisplatin (CDDP) resistance, miR-
214 and miR-23a levels were promoted, as determined by
microarray analysis.264–266 miR-372 is overexpressed in OSCC
and inhibits zinc finger and BTB domain-containing 7A protein
(ZBTB7A), promoting tumorigenesis and CDDP resistance in OSCC
cells.267,268 OSCC cells and tissues overexpress the lncRNA
HOXA11-AS relative to adjacent normal tissues and oral keratino-
cytes.269 lncRNA HOXA11-AS consumes miR-98-5p, which is
capable of inhibiting OSCC cell proliferation,270 and suppresses
miR-214-3p expression, which may lead to the establishment of
drug resistance in OSCC.271 In addition, when circITCH is
upregulated, chemotherapy agents are more effective against
drug-resistant myeloma cells. However, OSCC tissues and cells
express less tumor-suppressing circITCH than adjacent normal
tissues and human oral keratinocytes.272

In addition to the aforementioned characteristics, OSCC exhibits
phenotypic plasticity. EMT is an epigenetically regulated process
that induces plasticity in OSCC and leads to the transition of
cancerous cells into distinct phenotypic forms with increased
motility and survival. Notably, oral CSC plasticity interacts with
EMT to enhance treatment resistance in OSCC.273–276

DYSREGULATED TUMOR MICROENVIRONMENT IN OSCC
OSCC occurrence and progression are influenced by a dysregu-
lated tumor microenvironment. Specifically, a suppressed
immune system, stromal alteration, hypoxia, and an unbalanced
oral microbiome all contribute to the development and
metastasis of OSCC, so their underlying mechanisms present
therapeutic opportunities.
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Immune suppression
Patients with suppressed immune states, such as HIV+ patients
and organ transplant recipients, are more likely to develop oral
malignancies,277–279 suggesting that immune response plays a
crucial role in OSCC development (Fig. 3).92,280–283

OSCC evades the immune surveillance of their hosts by
employing a variety of molecular-level strategies. First, a high
mutational burden in OSCC caused by smoking and alcohol
abuse-induced DNA damage facilitates immune evasion.86 Parti-
cularly, OSCC is linked to mutations in human leukocyte antigen
(HLA) and antigen processing machinery (APM) that are critical for
evading immune surveillance.284,285 Second, immune checkpoints
contribute to immune evasion of OSCC. An estimated 83% of
OSCC expresses programmed death ligand-1 (PD-L1), which
interacts with programmed death 1 (PD-1) on T cells and induces
T-cell suppression and tolerance to adaptive immunity.286 The
expression of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-
4) is elevated in OSCC for evading immune surveillance. CTLA-4
interacts with CD80/86 on antigen-presenting cells (APCs) to
compete against its stimulatory counterpart CD28 to block the
differentiation of naïve T cells.287 Additionally, significant immune
checkpoints such as lymphocyte activation gene-3 (LAG-3),288

T-cell immunoglobulin and mucin-containing protein-3 (TIM-3),289

and B7 Homolog 3 (B7-H3)290 are overexpressed in OSCC. Third,
cancer cells can secrete cytokines that suppress adaptive
immunity and promote tumor growth. Particularly, OSCC cells
generate immunosuppressive inflammatory cytokines, such as
VEGF, granulocyte-macrophage colony-stimulating factor (GM-
CSF), TGF-β, IL-6, and IL-10, which affect T cells.291 Moreover, a

significant reduction of immune-activating cytokines, like IL-2,
inhibits the stimulation of the innate and adaptive immune
response against OSCC.292

Microenvironment regulators such as hypoxia, abnormal
vasculature and lymphatics, and high interstitial pressure, may
also manipulate the immune response to OSCC by influencing the
secretion of cytokines, the trafficking of immune cells, and the
function of the immune system. In addition, patients with
uncommon inherited diseases such as FA and DC exhibit immune
deficiencies that promote OSCC progression.293,294

FA is an autosomal recessive genetic disorder. It manifests as
aplastic anemia, progressive pancytopenia, congenital anomalies,
and an elevated incidence of developing malignancies. In a study
conducted in Brazil, 121 cases of oral malignancies in FA patients
were identified.293 Hematopoietic stem cell transplant (HSCT), the
only current treatment option for the hematological complications
of FA patients, is linked to a 500-fold increased risk of head and
neck malignancies and a risk factor for a more rapid progression of
oral malignancy in comparison to non-transplanted patients.295

DC is a rare genetic disorder characterized by premature telomere
shortening that leads to bone marrow failure. DC-associated
mucocutaneous illness symptoms include reticulated pigmenta-
tion of the skin, nail dysplasia, and oral leukoplakia. Multiple
malignancies may develop in patients with DC, such as a transition
from leukoplakia to HNSCC.294,296

Taken together, the above-mentioned immunosuppressive
tumor microenvironment enables OSCC to evade immune
recognition and elimination, thereby presenting therapeutic
opportunities.
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Fig. 3 Immunosuppressive TME in OSCC. The tumor microenvironment (TME) contains various immunomodulatory cells, including cancer-
associated fibroblasts (CAFs), regulatory T cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs).
The interaction between programmed death 1 (PD-1) and programmed death ligand-1 (PD-L1) leads to T-cell suppression and adaptive
immunity tolerance, whereas cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) competes with CD28 by interacting with CD80/86 on
OSCC cells. Other immune checkpoints also play a role, including LAG-3 and TIM-3. OSCC cells produce immune suppressive factors such as
vascular endothelial growth factor (VEGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), transforming growth factor (TGF)-β,
interleukin (IL)-6, and IL-10, which block effector cells. Tregs generate TGF-β and IL-10 to diminish the functions of T cells. CAFs express α-
smooth muscle actin (α-SMA) and fibroblast activation protein (FAP) and promote tumor growth by overexpressing miR-385-5p in their
exosomes. In the TME, there is a greater proportion of M2 macrophages to M1 macrophages, with M2 TAMs possessing carcinogenic
properties. OSCC oral squamous cell carcinoma
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Stromal alteration
Due to stromal alteration, HPV- and HPV+ OSCC can escape the
cytotoxic mechanisms despite overexpressing CD8+ cytotoxic
T cells and activated NK cells. This is influenced by various stromal
cells, including CAFs, tumor-associated macrophages (TAMs),
myeloid-derived suppressor cells (MDSCs), and regulatory T cells
(Tregs) (Fig. 3).297 These stromal cells can also secrete cytokines
and immune checkpoint inhibitors, which act together to
constitute an immunosuppressive microenvironment and allow
the growth of neoplasms.291

Active CAFs express α-smooth muscle actin (α-SMA) and fibroblast
activation protein (FAP), which promote OSCC metastasis.298 CAFs
boost OSCC development via miR-382-5p overexpression in their
exosomes and lncRNA-regulated RUNX2/GDF10 signaling. Mean-
while, lncRNA H19 enhances glycolysis of CAFs in the oral cavity
through the miR-382-5p/PFKFB3 (6-phosphofructo-2-kinase/fruc-
tose-2,6 biphosphatase 3) axis.299 In addition, senescent CAFs
facilitate the rapid progression of oral malignancies in genetically
unstable OSCC by promoting keratinocyte migration, inhibiting
epithelial adhesions, and releasing active matrix metalloproteinases-
2 (MMP-2).300–303 CXCL1304 and peroxiredoxin1 (PRDX1)305 drive the
development of OSCC through the induction of cell senescence.
TAMs consist of M1 TAMs with antitumor properties and M2 TAMs

with tumorigenic properties.306–308 A higher ratio of M2 to M1 TAMs
is commonly observed in the peritumoral microenvironment
surrounding OSCC, promoting carcinogenesis.309,310 MDSCs are
immature myeloid-derived cells which can suppress T cells.311–315

Patients with OSCC have an elevated quantity of Tregs in their
peripheral circulation, lymph nodes, and neoplasms.277–279,316

Tregs are able to suppress various stromal cells, including CD4+

and CD8+ T cells, B cells, dendritic cells (DCs), and natural killer
cells (NKs),317,318 due to the expression of CTLA-4, CD73, CD39,
and CD25, and the production of TGF-β, IL-10, and perforin/
granzyme B.319–322 It has been demonstrated that mice with OSCC
have elevated levels of immunosuppressive CD11b+Gr-1+ cells in
the peripheral circulation, spleen, and tumors.323 Tumor
CD11b+Gr-1+ cells express more PD-L1 than cells from other
tissues, disrupt T-cell proliferation in vitro, and ultimately suppress
immunity.323 On the other hand, researchers hypothesize that
elevated T-helper 2 cells in the immune system may shield
individuals with allergies or asthma from tumor development;324

however, additional investigation is required to verify if this is true.

Hypoxia
OSCC is a locally aggressive tumor with an elevated hypoxia level,
resulting in dissemination, relapse, and poor therapeutic response
(Fig. 4).285,325–328 Of note, hypoxia is induced by hypoxia-inducible
factors (HIF) in OSCC.329,330 HIFs 1-3 are the principal hypoxia
response mediators. Under normoxic conditions, the E3 ubiquitin
ligase Von Hippel-Lindau (VHL) protein degrades the HIFα
subunits.331,332 In the presence of hypoxia, HIFα becomes stable
and binds to HIFβ in the nucleus, adhering to hypoxia response
elements (HREs) to facilitate tumor adaptation.333 HREs are
present in genes involved in metabolism, extracellular matrix
remodeling, angiogenesis, immune modulation, and inflamma-
tion.334–337 In addition, hypoxia promotes Bcl-2/Twist1 interaction
by enhancing Bcl-2 attachment to Twist1, which is related to the
poor prognosis of OSCC patients.325,338
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Fig. 4 Hypoxia in OSCC. Under normoxic conditions, VHL degrades the HIFα subunits. In the condition of hypoxia, HIFα becomes stable and
binds to HIFβ within the nucleus, adhering to hypoxia HREs to enable tumor adaptation. Hypoxia also promotes Bcl-2/Twist1 interaction by
enhancing Bcl-2 attachment to Twist. Particularly, the mTOR pathway has been demonstrated to increase the level of HIFα in tumor regions
that do not experience significant hypoxia. Several oncogenic mechanisms, such as inactive p53 mutations, RAS mutations, excessive oxygen
radical accumulation, suppression of PTEN, and the infective HIF-1α degradation by VHL mutation, have been identified as contributing to this
development. In addition, HIF-1α stimulates Twist1 to transactivate EMT-related genes, including Vimentin, N-cadherin, and E-cadherin, in
order to drive EMT. Moreover, HIF-1α blocks apoptosis and confers higher resistance to chemotherapy and radiotherapy on OSCC. EMT
epithelial–mesenchyme transition, HERs hypoxia response elements, HIF hypoxia-inducible factors, OSCC oral squamous cell carcinoma, PTEN
phosphatase and tensin homolog, VHL Von Hippel-Lindau

Oral squamous cell carcinomas: state of the field and emerging directions
Tan et al.

9

International Journal of Oral Science           (2023) 15:44 



Several examples demonstrate that HIFs can stabilize under
normoxic conditions, suggesting that hypoxia is not clearly defined.
In particular, the mTOR pathway raises the level of HIF-1α in tumor
regions that do not experience significant hypoxia. A variety of
oncogenic mechanisms, such as inactive p53 mutations, RAS
mutations, excessive oxygen radical accumulation, suppression of
PTEN, and infective HIF-1α degradation due to VHL mutations, have
been identified as contributing to this development. HIF signaling is
synergized with activating mutations in p53.335,339,340

Hypoxia and EMT have a correlation with OSCC metastasis and
invasion.325 Hypoxia-induced decreases in E-cadherin mRNA levels
boost the migration capability of OSCC cells.341 HIF-1α drives EMT
by stimulating Twist1 to transactivate EMT-related genes, such as
Vimentin, N-cadherin, and E-cadherin.342 Moreover, HIF-1α blocks
apoptosis and imparts increased chemoresistance and radio-
resistance in OSCC, thereby contributing to the aggressiveness of
the disease.343

BQ chewers exhibit endogenous nitrosation, which gener-
ates potentially carcinogenic nitrosamines, including
3-methylnitrosopropionitrile.344 As a result of the auto-
oxidation of polyphenols found in areca nuts, reactive oxygen
species (ROS) are present in the mouths of patients who
consume BQ, which is exacerbated by the alkaline pH of slaked
lime345 and can stimulate hypoxic adaptation in OSCC cells.346

Taken together, as HPV- HNSCC are susceptible to p53
mutations and are hypoxic, the synergy between p53 mutants
and HIF-1 signaling may provide a valuable avenue for future
research. Hypoxia tumors are a subtype of OSCC characterized by
a poor prognosis and resistance to treatment.287

Oral microbiome
Independent of other risk factors, oral microbiome alterations may
facilitate the progression of oral malignancies in 7–15% of
cases.347–351 The microbiome is comprised of a complicated
community of bacteria, fungi, protists, archaea, and viruses, all of
which contribute to the maintenance of microbial diversity.352–357

Statistical evidence establishes a correlation between dysbiosis
and the incidence of various cancers, thereby elevating the clinical
significance of the oral microbiome (Fig. 5).358 In the diverse oral
cavity environment, including mucosal surfaces and deep tissue
crevices, there are distinct microbial species present in both
healthy and malignant.359

Certain bacterial species have been linked to the development of
oral carcinoma. Some periodontal bacteria, such as Porphyomonas
gingivalis, Fusobacterium nucleatum, and Prevotella intermedia, may
be responsible for OSCC.360 The presence of elevated levels of
Lactobacillus,361 Prevotella melanogenic, Streptococcus mitis, and
Capnocytophaga gingivalis362 in saliva can also be used to diagnose
OSCC. OSCC patients have been found to lack Rothia,363 Lepto-
trichia,364 Haemophilus,363 Aggregatibacter,365 and Neisseria.361

P. gingivalis can stimulate OSCC cells to express the B7-H1 and
B7-DC receptors.366 Expression of B7-H1 activates Tregs develop-
ment, thereby inhibiting effector T cells. Consequently, the
expression of B7-H1 by oral carcinomas may aid their ability to
evade immunity.366 Infection with P. gingivalis induces ERK1/2-
Ets1, p38/HSP27, and PAR2/NF-KB signaling to promote expres-
sion of promatrix metalloproteinase (proMMP-9).360 In this
process, P. gingivalis produces gingipains, which are cysteine
proteinases with a dual function, and then binds to the PAR2
receptor, resulting in the maturation of the proenzyme MMP-9
into its active form. The destruction of the basement membrane
facilitates the invasion and metastasis of OSCC cells through blood
vessels and lymphatic systems. Collectively, P. gingivalis contri-
butes to the spread of OSCC.367

The oral microbiome is affected by OSCC risk factors such as
smoking, alcohol abuse, and HPV infection.368 There is a correlation
between exposure to these risk factors and a shift in diverse
bacterial genera of bacteria. Also, oral microbes have been

demonstrated to trigger mutations and epithelial hyperplasia by
generating acetaldehyde, a cancer-causing derivative of ethanol.369

The ability of different bacterial strains to produce acetaldehyde
varies considerably. For instance, S. mitis produces a substantial
quantity of acetaldehyde and is an active alcohol dehydrogenase.
OSCC has been found to contain elevated levels of S. mitis.370

In addition, OSCC has been observed in immunocompromised
patients with chronic mucocutaneous candidiasis and rarely in
patients with autoimmune polyendocrinopathy-candidiasis-
ectodermal dystrophy.371 Candida albicans is more prevalent in
the oral cavity of patients with OSCC or leukoplakia compared to
those without oral pathology.372,373

THERAPEUTIC INTERVENTIONS AND PROGNOSTIC FACTORS
FOR OPMDS AND OSCC
The goal of multidisciplinary therapeutic strategies for OPMDs is to
impede the development of OSCC and reduce mortality and
morbidity. However, due to the complexity and diversity of
OPMDs, there has yet to be a consensus regarding the optimal
treatment approach. Meanwhile, OSCC management is crucial for
improving survival rates, especially considering the possibility of
malignant transformation of OPMDs.

Therapeutic interventions for OPMDs
OPMDs are treated differently depending on their classification.
Although there are numerous methods for preventing and
managing OL, there is no standard approach.26 According to the
severity of the dysplasia, OL is typically treated surgically by
excision of the lesions. Nevertheless, a study on leukoplakia
surgery reveals that surgery decreases but does not completely
eliminate the risk of developing leukoplakia. Also, randomized
controlled trials have yet to be conducted to determine whether
removing the OL reduces the likelihood of OSCC. According to a
previous study, 20% of OL patients may recover if risk factors are
eliminated and antifungal therapy is administered. Based on a
retrospective study of 94 patients whose OL was surgically
removed and 175 patients who did not undergo surgery, OSCC
was found to occur in 12% and 4% of patients, respectively.374

Overall, surgery did not safeguard the inhibition of transformation.
As an alternative to OPMD surgery, chemoprevention has the

potential to diminish the risk of developing cancer. Chemoprevention
is effective when vitamin A, bleomycin, β-carotene, or retinoids are
utilized.375,376 Despite their ability to induce therapeutic responses,
frequent relapses were observed. Additionally, laser ablation,
cryosurgery, and photodynamic therapy are effective treatments for
OL. Recent studies have demonstrated statistically significant
improvements in the clinical outcomes of OL following erbium:
yttrium aluminum garnet laser compared to cold scalpel excision.376

In terms of OE, early treatment is recommended due to its high
incidence of malignant transformation.377 Lesions exhibiting
severe epithelial dysplasia on excisional or incisional biopsies
should be completely removed under microscopic examina-
tion.32 Laser surgery is also a recommended treatment option for
OE.378 OE can be effectively ablated with CO2 lasers which
contributes to a low morbidity rate.32 Using natural agents as
chemopreventative agents is an additional method of treating
OE. Several natural agents, including curcumin, green tea extract,
and Bowman-Birk inhibitor concentrate, are beneficial in the
treatment of OE.379,380 Continuous monitoring is advised for
lesions exhibiting minimal to moderate dysplasia. In addition,
postoperative recurrences are more likely to occur when the
initial lesion size is larger, with lesions more than 80 mm2

regarded as significant predictors of recurrence.32

Due to the complicated pathogenesis of OSF, it is difficult to
ascertain the most effective treatment. OSF cannot be comple-
tely cured by a singular treatment modality. Therefore, the
primary objective of OSF treatment is to improve the condition
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of the oral mucosa, alleviate the burning sensation, and facilitate
mouth opening. There are a variety of therapies available,
including medical, physical, and surgical treatments. In the initial
stages of OSF, cessation of BQ chewing and therapeutic
interventions may reduce or eliminate symptoms. In the
intermediate or advanced phases of OSF, surgical treatments
are necessary to alleviate pain in the mucosal epithelium of the
mouth and to facilitate mouth opening.40,381,382

In general, OLP is treated with palliative care as opposed to
curative care. Asymptomatic reticular lesions are unnecessary to
treat, but continued observation is advised. The main objective of
treatment is to diminish inflammation and relieve the symp-
toms.383 In most cases, topical steroids are required to treat
symptomatic OLP. Corticosteroids are used intralesionally to
combat erosive OLP. In cases that are more severe or resistant,
systemic steroids are prescribed.384,385 Topical calcineurin
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inhibitors can be administered to patients who do not respond to
corticosteroids.384 Furthermore, topical cyclosporine and systemic
immunosuppressants have been used to treat OLP.386

Therapeutic interventions for OSCC
OSCC treatments include surgical intervention followed, if neces-
sary, by postoperative radiation or chemotherapy. In most cases,
surgery is the first-line treatment for oral carcinomas. In advanced
cases, postoperative radiation, chemoradiation, oncogene-targeted
therapy, and immunotherapy may be administered (Fig. 6).
Surgical procedures, such as open procedures, endoscopic

procedures, and robotic surgery, are used to treat the majority of
oral carcinomas. The purpose of surgical resection is to eliminate
sufficient tumor tissue. Inadequate removal of tumor cells
increases the likelihood of local and regional recurrences, thereby
reducing long-term survival rates.387,388 In oral carcinoma surgery,
a 1 cm margin of three-dimensional dissection is deemed
appropriate.389 During primary tumor dissection, iodine solution
staining is recommended to identify and delineate the dysplastic
epithelium. However, a greater resection margin may enhance the
risk of esthetic and functional complications in OSCC.390,391

Following the excision of the primary tumor, reconstructive
surgery is typically required to restore oral cavity function and head
and neck aspect. Postoperative oral disabilities can be reduced
through routine surgical reconstruction. The choice of an appropriate
method of reconstruction is affected by a variety of factors, such as
the features of the primary defects, the medical history and general
health of the patient, the skills of the surgeon, and the prognosis. In
general, reconstructive procedures adhere to a “reconstructive
ladder” consisting of a skin graft followed by a microvascular free
flap. In the field of oral reconstruction, unrestricted tissue transfers
are regarded as one of the most reliable and widely used techniques.
There are various options for free flaps; however, no singular flap is
capable of resolving the entire range of oral defects at present.14,392

Radiotherapy is typically administered postoperatively, as irra-
diated tissue cannot be removed surgically. Tissue fibrosis
diminishes the effectiveness of regeneration. Radiotherapy at the
primary site is determined by variables such as the primary tumor
size, positive surgical margins, and the presence of perineural,
lymphatic, and vascular invasion. Nevertheless, it is also common to
treat the neck to prevent the possibility of metastasis and
recurrence, particularly in lymph nodes with extracapsular dissemi-
nation. It is recommended to begin radiotherapy within six weeks
after surgery. There are variations in the radiation doses, but an
approximate cumulative dose of 60 Gy is typically provided.393 In
addition, chemotherapy has recently become a popular adjunct
treatment for locally advanced OSCC. Even though chemotherapy is
not considered a curative treatment for oral carcinomas, it can be
administered prior to surgery or in conjunction with irradiation
before or after surgery. Adjuvant chemotherapy and radiotherapy
are becoming standard remedies for advanced oral cancers. Other
variants, such as daily low-dose and weekly intermediate-dose of
CDDP, are also effective in improving survival rates.394,395 Typically,
EGRF inhibitors are utilized to treat metastatic HNSCC.14

Furthermore, oncogene-targeted drugs can improve chemother-
apy to OSCC.396 The antibody cetuximab has been shown to
suppress the EGFR pathway and is approved for HNSCC
treatment.397 NVP-BEZ235 inhibits the PI3K/AKT/mTOR pathway
to sensitize OSCC cells to infrared radiation and diminish their
resistance to radiotherapy.398 Flavopereirine silences JAK/STAT
signaling and upregulates LASP1 to block the development of oral
carcinomas.399 FLI-06 inactivates the Notch signaling pathway to
disrupt the proliferation and self-renewal of oral malignancy
cells.400 In the Wnt/β-catenin pathway, OMP-18R5 inhibits Fzd
receptors,401 whereas PRI-724 interrupts the interaction between
β-catenin and CBP.402 LGK974 targets PORCN, an acyltransferase
vital for producing Wnt proteins in various carcinomas.403 Targeted
drugs hold great potential for OSCC treatments in the clinic.
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Immunotherapy is an alternative treatment. OSCC is considered to
be an immunosuppressive disease. It has been suggested that a
malfunctioning immune system participates in the development or
recurrence of OSCC. Immunotherapy has shown promise in the
handling of OSCC. For instance, anti-PD-1/PD-L1 agents promote an
immune response against tumors by blocking the suppression
signals of the immune checkpoints.404 Pembrolizumab, nivolumab,
and lgG4 monoclonal antibodies that target PD-1 have been
authorized for therapeutic interventions of metastatic HNSCC based
on proven efficacy in clinical trials.405,406 Cytotoxic CD8+ T cells are
recruited to suppress the growth of tumors in vivo by blocking LAG-
3 with its antibodies.407 Also, anti-TIM-3 therapy appears to inhibit
neoplasm growth in in vivo models.408 IRX-2, a multi-cytokine
biologic preparation derived from homologous cells and comprised
of IL-2, IL-1β, IFN-γ, and TNF-α, is under investigation and has been
shown to be effective against inflammatory immune suppressive
cytokines. To boost both adaptive and innate immune defenses
against tumor cells present in the host, IRX-2 blocks tumor-induced
apoptosis of T cells and facilitates their effector function in regional
lymph nodes.409 In addition, anti-Treg receptor monoclonal
antibodies are being developed to decrease the quantity of Tregs
in the tumor microenvironment.410 Gemtuzumab ozogamicin
facilitates MDSCs maturation, thereby reducing their immunosup-
pressive properties.411 An alternative strategy is to inhibit the
recruitment of TAMs and MDSCs into the TME by blocking their
chemotactic receptors.412

Prognosis of OSCC
As mentioned above, multidisciplinary team care is essential to
the effective treatment of OSCC. However, malignant tumors have
a poor prognosis, with limited improvements in survival over
many decades.413–415 After malignant transformation, it is crucial
to evaluate the progression and development of OSCC in terms of
angiogenesis, tumor budding, perineural invasion, staging, HPV
status, and the presence of specific biomarkers. These prognostic
factors help to assess the mortality rate of OSCC patients and
guide treatment decisions (Table 3).416–418

Clinicopathological factors. Several immunohistochemical stain-
ing protocols can be used on patient tissue samples to identify
clinicopathological alterations such as angiogenesis, tumor bud-
ding, perineural invasion, and staging. Oral malignancies have the
capability of inducing blood vessel formation, which is crucial to
the dissemination of tumors.
Angiogenesis in tumors is generally evaluated by quantifying

the blood vessels (microvessel density, MVD) present in regions of
the tissue.419 In addition to immunohistochemical staining
techniques for identifying vessels, angiogenesis can be investi-
gated by other methods, such as the Chalkley method and flow
cytometry.420 The presence of marked angiogenesis was related to
an elevated possibility of nodal metastases and may indicate the
requirement for intensified adjunctive treatment following sur-
gery. Moreover, angiogenesis in OSCC is associated with the
parameters of size (T) and lymph node involvement (N), a reliable
indicator of tumor relapse.11 HMGA2 regulates OSCC
angiogenesis-related genes and correlates with both distant and
lymph node metastasis.421 Patients with high HMGA2 expression
have a worse 5-year survival rate. HMGA2-high samples exhibit
more CD34-stained blood vessels and higher expression of VEGF-
A, VEGF-C, and fibroblast growth factor (FGF)-2, which are
associated with new blood vessel formation in vitro.421 In addition,
Id-1 expression is associated with intratumoral MVD, and there is a
positive correlation between Id-1 overexpression and angiogen-
esis as well as poor clinical outcomes in OSCC.422

There is a significant correlation between tumor budding and
shorter overall survival.423,424 Also, tumor budding correlates
positively with lymph node metastasis.425,426 A study revealed that
33.9% of OSCC specimens displayed tumor budding, 58.9% of 56

OSCC patients have died, and the 5-year survival rate is 44.6%.423

However, no other clinicopathological factors are associated with
tumor budding. Moreover, tumor budding is correlated with a rise
in Snail expression and a tendency toward higher Twist expression.
46.4% of 56 OSCC specimens exhibit a positive expression of Snail,
and 32.1% display a positive expression of Twist.423 Specifically,
Snail is primarily located in cytoplasm and nuclei, whereas Twist is
only present in a small number of nuclei. Expression of Snail and
Twist are associated with lymph node metastasis in OSCC.423

However, well-differentiated OSCC expresses significantly less Twist,
and there is no correlation between Snail or Twist expression and
other clinicopathological factors. The overall survival rate of patients
expressing Snail or Twist decreases dramatically.423 Taken together,
tumor budding is strongly related to an unfavorable prognosis in
patients with OSCC and correlates with the process of EMT.
Perineural invasion (PNI) may influence the progression of

malignant cells and lead to poor prognosis. PNI has been detected
in 17.4% of OSCC samples.427 In OSCC patients, miR-21/
phosphatase and tensin homologs are abundant, and their
dysregulation correlates with PNI and a poor prognosis.428 MMP-
2 expressed by fibroblasts in the microenvironment of PNI is
associated with a poorer prognosis in the treatment of OSCC and
may be a contributing factor in OSCC PNI.429 Moreover, tumors
with PNI have substantially higher levels of nerve growth factor
(NGF) and tyrosine kinase than tumors without PNI (84% and 92%,
respectively). PNI is associated with advanced carcinomas and
worse DSS. Therefore, PNI in OSCC can be predicted by a high
expression of NGF and tyrosine kinase A. The overexpression of
PNI and NGF can also lead to pain in OSCC patients.427 Taken
together, the expression of PNI and NGF is capable of determining
the aggressiveness and prognosis of oral cancers in patients.427

Typically, prognosis has been correlated with the stage of the
tumor. The 5-year survival rate for oral cancer patients is 64.4%
overall, and 79.8%, 70.0%, 57.6%, and 53.9% for stages I–IV,
respectively, with clinical stages II-IV having a reduced survival.430

In a research of 274 patients with oral malignancies, the survival
rate among them after 12, 24, 36, 48, and 60 months is
approximately 80%, 60%, 46%, 40%, and 39%, respectively.431

Table 3. Prognostic factors for OSCC

Prognostic
factors

Indicators Exhibitions Outcomes

Staging Clinical stages:
▪ Stage I
▪ Stage II
▪ Stage III
▪ Stage IV

5-year survival
rate:
▪ 79.8%
▪ 70.0%
▪ 57.6%
▪ 53.9%

▪ Poor
prognosis

Biomarkers ▪G3BP1
▪ B7-H6
▪ FAM3C

▪Upregulation ▪ Poor
prognosis

Angiogenesis ▪MVD
▪HMGA2
▪ Id-1

▪Upregulation ▪ Poor
prognosis

HPV status ▪HPV+

▪ p16+
▪Upregulation ▪ Favorable

prognosis

Tumor budding ▪ Snail
▪ Twist

▪Upregulation ▪ Poor
prognosis

Perineural
invasion

▪miR-21/
phosphatase

▪ Tensin
homologs

▪MMP-2
▪NGF
▪ Tyrosine
kinase A

▪Upregulation ▪ Poor
prognosis

Oral squamous cell carcinomas: state of the field and emerging directions
Tan et al.

13

International Journal of Oral Science           (2023) 15:44 



However, over 60% of oral carcinomas are detected in the
advanced phases.432 In conclusion, the low survival rate obtained
can be attributed primarily to the high proportion of OSCC cases
diagnosed at an advanced stage.

Biological factors. Several biological indicators can be used to
assess the progression of oral malignancies in patients. Accumulat-
ing evidence suggests a causal relationship between HPV and OSCC.
Independent of cigarette smoking and alcohol abuse, HPV is linked
to an elevated possibility of suffering from oral malignancies.433 This
association applies to high-risk HPV samples, including subtypes 16,
18, 33, and 35.434 Over 80% of HPV+ OSCC may be due to HPV-16.435

HPV infection categorizes tumors into two distinct groups with
varying prognoses and therapeutic implications.436 Generally,
HPV+OSCC patients have a better treatment response, a higher
two-year overall survival rate, a reduced disease progression risk
and an improved prognosis, and lower death and recurrence rate
than HPV- patients.437 p16 is one of the most investigated
prognostic biomarkers of OSCC. Of note, HPV+ and p16+ patients
have a higher overall survival rate than HPV- or HPV+ but p16-

patients.438 When p53 interacts with E6 encoded by carcinogenic
types of HPV (such as HPV-16 and HPV-18), it is proteolyzed by
ubiquitin-dependent proteases.434 There is a significant difference
between the level of wild-type p53 in HPV+ neoplasms and the
elevated possibility of p53 mutations in HPV- tumors, which is
related to a favorable prognosis for HPV+ OSSC patients.53

Additional OSCC prognostic biomarkers include G3BP1, B7-H6,
and FAM3C. Patients with overexpressed G3BP1 mRNA exhibit a
lower overall survival rate. In OSCC, mRNA and protein levels of
G3BP1 are significantly higher than in normal tissues.439 G3BP1 has a
direct relationship with Ki67 and an inverse relationship with
Cleaved-caspase 3. The correlation between CD4+ T-cell infiltration
and G3BP1 mRNA levels is positive. Enrichment analysis reveals that
G3BP1 participates in helicase/catalytic/ATPase activity functions as
well as spliceosome/RNA transport/cell cycle pathways and can be
used as a biomarker to predict the prognosis of OSCC.440 Moreover,
B7-H6 is identified as a distinct prognostic factor in OSCC involving
DFS and CSS. OSCC tissues express significantly more B7-H6 protein
than normal oral mucosa. B7-H6 expression correlates with
differentiation; OSCC patients with less B7-H6 expression or more
differentiated tumor tissue may have a better prognosis.441 Family
with sequence similarity 3 member C (FAM3C) is an additional
prognostic indicator that is essential for EMT. Immunohistochemical
staining of OSCC samples with FAM3C, EMT markers, CSC markers,
and co-inhibitory immune checkpoints is utilized to evaluate FAM3C
levels and pathological features of OSCC. Compared to healthy
mucosa and epithelial dysplasia, the level of FAM3C in OSCC
specimens increases, and patients with a higher FAM3C expression
are more likely to have a poor prognosis.442 In addition, the
expression of FAM3C correlates positively with immune checkpoints
such as PD-L1, VISTA, and B7-H4, the EMT marker Slug, and the CSC
markers SOX2 and ALDH1.442

CONCLUSION AND PERSPECTIVES
OSCC is typically associated with oral mucosa and a variety of risk
factors. To mitigate risks, it is now understood that electronic
cigarettes must be regulated similarly to traditional cigar-
ettes.443,444 It is also necessary to limit the consumption of
alcohol445 and BQ.446 Given that HPV is an influential risk factor for
OSCC,447 HPV vaccinations should be promoted globally.448

However, there is insufficient molecular evidence to support the
hypothesis that HPV+ OSCC is driven by HPV, as HPV is not
inherently an indicator of a biologically active virus.449 Besides,
OSCC risk factors include Epstein–Barr virus (EBV), which makes
early diagnosis of OSCC patients essential.450

Due to these risk factors, OPMDs may develop prior to the onset of
OSCC. To better stratify patients and follow their risk of malignancy,

pathology assessments of OPMDs must go beyond subjective
evaluation and be standardized.451 Furthermore, additional data
from epidemiologic studies are required to elucidate the population
of patients at current and future risk for OPMDs and subsequently
the progression of OSCC.452 Future research on the incidence of
OPMDs and OSCC will necessitate advances in molecular biology and
genetics to uncover more distinct indicators, as interventional
strategies based solely on histopathology are insufficient.453 In
addition, more exploration into the aberrant metabolism of OPMDs
and OSCC may shed new light on their pathogenesis.109,454

Through early diagnosis, oral cancer survival rates could reach up
to 80%-90%.455–460 It will be feasible to make more sensitive and
specific diagnoses of premalignancy and cancer through the
development and rigorous testing of new diagnostic tools.461–463

Specifically, accelerated advancements in artificial intelligence (AI)
hold promise for mass oral cancer screening. Currently, research is
being conducted to develop AI-based technologies for the
identification of oral malignancies with improved sensitivity and
specificity, and in the future, the use of AI-based mobile applications
will be advantageous for both frontline healthcare workers and the
general public.464–468 These technological advances may allow for
the early detection and management of suspicious lesions.469,470

Further explorations into the mechanisms of oncogenesis will assist
and promote the accuracy of early diagnosis. Through the
availability of a vast amount of information from transcriptomics,
genomics, proteomics, epigenomics, and metabolomics, high-
throughput sequencing technology will enable the development
of novel therapeutic approaches for the treatment of OSCC.
Furthermore, nanomedicine will provide efficient OSCC therapies
by generating multiple synergetic therapeutics.471–479 Already, oral
cancer treatment has undergone a substantial transformation,
leading to improved patient outcomes.480 A multidisciplinary team
will be required to manage these tumors, consisting not only of
surgeons and oncologists, but also of specialists evaluating the
nutritional, mental, social, and oral status of the individuals before,
during, and after treatment.481
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