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Single-cell transcriptomic analysis uncovers the origin and
intratumoral heterogeneity of parotid pleomorphic adenoma
Xiuyun Xu1,2,3, Jiaxiang Xie1,2,3, Rongsong Ling 4, Shengqi Ouyang1,2,3, Gan Xiong1,2,3, Yanwen Lu1,2,3, Bokai Yun1,2,3, Ming Zhang1,2,3,
Wenjin Wang1,2,3, Xiqiang Liu5, Demeng Chen6✉ and Cheng Wang 1,2,3✉

Pleomorphic adenoma (PA) is the most common benign tumour in the salivary gland and has high morphological complexity.
However, the origin and intratumoral heterogeneity of PA are largely unknown. Here, we constructed a comprehensive atlas of PA
at single-cell resolution and showed that PA exhibited five tumour subpopulations, three recapitulating the epithelial states of the
normal parotid gland, and two PA-specific epithelial cell (PASE) populations unique to tumours. Then, six subgroups of PASE cells
were identified, which varied in epithelium, bone, immune, metabolism, stemness and cell cycle signatures. Moreover, we revealed
that CD36+ myoepithelial cells were the tumour-initiating cells (TICs) in PA, and were dominated by the PI3K-AKT pathway.
Targeting the PI3K-AKT pathway significantly inhibited CD36+ myoepithelial cell-derived tumour spheres and the growth of PA
organoids. Our results provide new insights into the diversity and origin of PA, offering an important clinical implication for
targeting the PI3K-AKT signalling pathway in PA treatment.
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INTRODUCTION
Pleomorphic adenoma (PA), as the most common tumour
occurring in salivary glands, accounts for two-thirds of all salivary
gland lesions, especially in the parotid gland.1 It is a benign
neoplasm but has a high recurrence rate and the potential for
malignant transformation.2 The term “pleomorphic adenoma” is
defined due to variable cytomorphological and architectural
features, which mainly contain three components: epithelial cells,
myoepithelial cells and mesenchymal-like cells. Pathologically, PA
presents diverse appearances with different ductal epithelial cells
and myoepithelial cells growing in a variety of patterns embodied
in mucoid-like tissue, myxoid-like tissue, and chondroid-like tissue,
indicating that a huge intratumor heterogeneity exists. Consistent
with these findings, intratumor molecular heterogeneity has been
observed by evaluating the loss of heterozygosity and PLAG1 gene
rearrangements in PAs.3,4 Due to diverse tissue architecture and
intratumor heterogeneity, the cellular origin in PAs containing
morphologically distinct components has been a controversial
issue. Interestingly, a previous study showed that both the
epithelial and mesenchymal elements were monoclonal using
clonal analysis based on random inactivation of one of two
x-chromosomes by methylation, suggesting that the original cells
for both elements are identical.5 Lee et al. further confirmed that
both stromal and epithelial cells in PAs arose from the same origin
using a human androgen receptor gene (HUMARA) assay.6

Notably, recent studies have shown that epithelial cells or
myoepithelial cells can transdifferentiate into mesenchymal cells
in PAs, suggesting that epithelial-mesenchymal transition (EMT)

might be the basic principle of tissue heterogeneity in PAs.7–10

These findings support the notion that PA is a monoclonal tumour
with a pure epithelial origin despite its diverse intratumor
heterogeneity and complex tissue architecture. However, the
intratumor heterogeneity of PAs is still largely unknown and there
is no convincing experimental evidence to clarify the origin of PAs.
Here, we described a complete atlas of PA and uncovered its

cellular complexity and intratumor heterogeneity at single-cell
resolution. Our data revealed the transcriptomic profiles of the
multicellular ecosystem of PA and showed that PA included acinar,
ductal and basal/myoepithelial cells similar to normal parotid
glands, along with two PA-specific epithelial (PASE) cell popula-
tions. Interestingly, PASE cells varied within tumours in their
expression of gene signatures related to epithelial development
(Cluster 0, C0), bone formation (Cluster 1, C1), immunity (Cluster 2,
C2), metabolism (Cluster 3, C3), stemness (Cluster 4, C4), and the
cell cycle (Cluster 5, C5). Of note, we observed that C4 cells had
higher ‘differentiation’ potency and represented the starting state
during PA development. Then, we revealed that CD36, a marker
gene of C4 cells, was a functional cell surface marker for the
enrichment of TICs in PA. In addition, activation of PI3K-AKT
signalling was observed in CD36+ PA cells and inhibition of the
PI3K-AKT pathway suppressed the initiation and growth of PA.
Taken together, these results uncover the cellular heterogeneity
and the origin of PA and highlight potential intracellar signals
controlling the initiation and progression of PA, which serve as a
resource for further developing novel therapeutic strategies to
manage PA in the future.
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RESULTS
A single-cell atlas of the PA and parotid gland
To explore the cellular landscape of PA, we generated single-cell
RNA-seq profiles using 1 normal parotid gland (PG) and 3 PA
samples (Fig. 1a). As shown in Fig. S1a, H&E staining showed that
the pathological structure of PA varied in different samples,
reflecting pleomorphic architecture features. After removing low-
quality cells and performing gene expression normalization, a total
of 35662 single cells were processed for further analysis and 8 cell
clusters were observed according to graph-based clustering and
dimensional reduction with UMAP (Fig. S1b, c). As shown in
Fig. S1d, e, the UMAP displayed that the cell distribution was

similar in different PA samples, but dramatically different in PA
compared with the PG. This finding indicated that PA might have a
unified cellular landscape despite the variable morphological
architectures. Then, 7 major cell types were annotated based on
the expression of canonical gene markers and assessment using
the SingleR package (Fig. 1b–d, Fig. S2 and Supplementary Table 1),
including epithelial cells expressing KRT8, KRT14, KRT5, EPCAM,
KRT18 and AQP5; endothelial cells expressing PECAM1, ENG and
CDH5; fibroblasts expressing COL3A1 and DCN; NK/T cells expres-
sing CD3D, CD3E, CD8A, NKG7 and GNLY; B cells expressing CD79A
and CD79B; plasma cells expressing MZB1; and myeloid cells
expressing CD68, CD74, CLEC9A and CD163. Of note, we observed
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Fig. 1 A single-cell atlas of PA and PG. a The workflow of single-cell RNA sequencing. b UMAP plot of 35 662 single cells from scRNA-seq
labelled by cell type. c A heatmap of marker genes for each cell type. d StackedVlnPlot of classic genes of each cell type. e The cell numbers
and proportions of PA cell types in different samples and tissue types
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that each of the 7 clusters contained cells from different samples
despite differing cell type proportions, indicating that the major
cell types are largely consistent across the PA and PG (Fig. 1e).

Molecular characteristics of PA and PG epithelial cells
As shown in Fig. 2a, the UMAP showed a substantial difference in
the distribution of epithelial cells from PG and PA. To characterize
the PG and PA epithelial cells, we inferred copy-number variations
(CNVs) in epithelial cells of each sample based on smoothed
expression profiles across chromosomal intervals.11 We found that
PA epithelial cells exhibited remarkably higher CNV levels than PG
epithelial cells (Fig. 2b). The inferred CNV data analysis revealed
significant copy number amplification on chromosomes 1, 9, 19,
22, but significant deletions along chromosomes 4, 16, 18 and 20

were observed (Fig. 2c). Of note, dramatic alterations were
observed on chromosome 12. Similar genomic alterations were
also observed in previous studies12–14 and several other adeno-
genic tumours, such as breast cancer and pancreatic ductal
adenocarcinoma,15,16 indicating that adenogenic tumours might
share some common genomic alterations. Subsequently, a panel
of marker genes were identified to be upregulated in PA and PG
epithelia cells. As expected, high expression of marker genes
related to the secretion of salivary gland and saliva enzymes was
observed in PG epithelial cells, such as PRB1, CLDN3, PRB3, SMR3B,
HTN1 and PIGR,17,18 while several oncogenes that have been
confirmed to promote PA development were increased in PA cells,
including PLAG1, WIF1, S100B, CDK4, LIFR and NFIB (Fig. 2d, e and
Fig. S3a–c).14,19–23 Gene ontology (GO) enrichment analysis was
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performed based on the differentially expressed genes (DEGs) and
revealed that matrix formation-related pathways were involved in
the tumour epithelium, such as extracellular matrix organization
and skeletal system development, suggesting that abnormal
matrix formation occurred in the PA epithelium (Fig. 2f). In
contrast, several pathways related to the physiological function of
salivary glands were mainly enriched in the PG epithelium,
including salivary secretion and detection of chemical stimuli
involved in sensory perception of bitter taste (Fig. 2g)

PA-specific epithelial cell subpopulations
After reclustering PG epithelial cells, three major cell types were
identified in the PG, including acinar cells expressing AQP5,
ductal cells expressing KRT18, WFDC2, KRT8, and KRT7 and basal

cells/myoepithelial cells expressing KRT14 and ACTA2, which
were consistent with the known functional cells within the
salivary gland.24 Similarly, reclustering of PA cells produced 5
major cell types and three of them were also observed in PG,
including acinar cells (AQP5), ductal cells (KRT18, KRT8, KRT7,
WFDC2) and basal/myoepithelial cells (KRT14, ACTA2), suggest-
ing that PA tumour cells broadly recapitulated the PG cell
subpopulations with shared several common marker genes
across normal PG and PA (Fig. 3a). Interestingly, two distin-
guished epithelial cell clusters specific to PA were discovered,
which were named the PA-specific epithelial cell (PASE)
subpopulations and exhibited high expression of MUCL1 (PASE1)
and COMP (PASE2) (Fig. 3b). Strikingly, PASE subpopulations
accounted for 86.5% of tumour cells in PA.
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To further investigate the heterogeneity and molecular
characteristics of PASE cells, we performed analysis of 19360
PASE cells at higher resolution, which yielded 6 prominent cell
subpopulations with different transcriptional profiles (C0-C5),
reflecting the heterogeneity of PASE cells (Fig. 3c). It has been
suggested that epithelial-mesenchymal transition (EMT) repre-
sents the basic principle of tissue heterogeneity in PA.7–9

Importantly, EMT has been suggested to be responsible for
generating tumor-initiating cells in many tumors.25–27 Then, we
first detected the EMT state in these six PASE cell populations and
found that C0, C1, C2, C4 and C5 cells all exhibited high EMT
scores (n= 200 genes, P < 2.2 × 10−16) (Fig. 3d). Notably, C4 cells
had the highest EMT score but C3 cells had the lowest EMT score.
These results indicated C4 cells were the undifferentiated cells, C3
cells were highly differentiated, and C0, C1, C2 and C5 cells
showed the transition or intermediate states. Furthermore, all
PASE subpopulations except C3 cells expressed high levels of
EMT-related genes, such as COL1A1, COL1A2, COMP, MMP2 and
EMP3 (Fig. 3e). Interestingly, several master transcription factors of
EMT were also increased in C0, C1, C2 and C4 cells, including SOX4,
SIX1, ZEB1 and TWIST1 (Fig. 3f). These results suggest that EMT
occurs widely and plays a critical role in PA development, which
may contribute to the generation of TICs and the formation of
stromal-like components, such as myxoid-like and chondroid-like
components.
Then, the transcription states of PASE subpopulations were

annotated according to well-known marker genes and functional
enrichment analysis. As shown in Fig. 4a, b and Supplementary
Table 2, we observed that C0 cells expressed acinar cell markers
(AQP5, AQP1) and basal cell markers (KRT5, KRT14)28,29 with
properties of epithelium development and fluid secretion,
indicating that C0 cells demonstrated a hybrid state. C1 cells
showed high expression of SFRP2 and CTGF, which have been
reported to enhance osteogenic differentiation.30,31 Functional
enrichment showed that C1 cells were correlated with extra-
cellular matrix organization, bone development and cartilage
development, implying that C1 cells were chondroid-like compo-
nents. C2 cells expressed IGLC2 and exhibited immune and
inflammation signatures, implying that these cells might trigger
immune reactions and inflammatory responses. Based on the
features mentioned above, we defined C0, C1 and C2 cells as
mesenchymal-like cells due to high EMT scores and the
characteristics of stromal cells. In addition, C3 cells expressed
MUCL1 and the canonical ductal cell markers KRT7, KRT18 and
KRT19 (Fig. 4c). Functional enrichment showed that C3 cells were
characterized by metabolic reprogramming. C5 cells expressed
high levels of proliferation-related genes (such as MKI67 and
TOP2A) and had the highest cell cycle score, which were also
correlated with the cell cycle gene signatures (Fig. 4d, e). Notably,
we observed that C4 cells exhibited high expression levels of
myoepithelial cell markers (ACTA2),24 myogenesis-related genes
(CASQ2, IGFBP7, MYL9),32–34 angiogenesis-related genes (SPARCL1,
ITGA7, CALD1)35–37 and stemness-related genes (CD36, THY1,
ITGA7).38–43 Functional enrichment showed that C4 cells were
correlated with blood vessel development and muscle structure
development, implying that C4 cells might have multidifferentia-
tion potentials. However, C4 cells lacked expression of the classic
stemness-related transcription factors, including SOX2, BMI1, GLI1,
NANOG, and OCT4 (Fig. 4f). Therefore, we performed single-cell
regulatory network inference and clustering (SCENIC), which
nominated MAFB, LEF1 and TBX2 as master TFs potentially
controlling C4 cells (Fig. 4g), which have been confirmed to be
associated with stemness and EMT.44–46 These findings indicated
that the C4 subpopulation was a unique myoepithelial cell
population with tumour-initiating potential in PA. Collectively,
we then defined C0-C5 cells as hybrid, chondroid, immune
modulatory, MUCL1+ ductal, progenitor and cycling PASE cells,
respectively (Fig. 4h).

Tumour-initiating cells in PA
Histologically, PA is characterized by a biphasic architecture with
both “epithelial” and “stromal” regions.47 Currently, several studies
have indicated that the epithelial and stromal elements are
monoclonal and derived from the same precursor cells.5,6

However, it is still not clear which cell is responsible for tumour
initiation and produces the epithelial and stromal components in
PA. We showed that C4 PASE cells might have tumour-initiating
potential in PA, as mentioned above. To further investigate the
origins and developmental trajectory of PA cells, we performed
trajectory analysis using the top 100 DEGs of PASE cells. This
unsupervised approach identified a continuum of cell states and
showed two distinct trajectories beginning at state 2 (pre-branch)
and gradually branching to state 1 and state 3 corresponding two
distinct cell fates (cell-fate 1 and cell-fate 2), revealing a common
origin with divergent fates (Fig. 5a, b). In the pseudotime
trajectory, we investigated the distribution pattern of the six PASE
subtypes. As shown in Fig. 5c and Fig. S4a, C4 cells were
predominantly observed in the end of state 2 with the lowest
pseudo-time position and C3 cells were mostly found in the end of
state 1 with the highest pseudo-time position, supporting our
previous notion that C4 cells were the progenitor cells of PA and
C3 cells were the highly differentiated ductal cells. C0, C1, C2 and
C5 cells were scattered along the trajectories, reflecting their
transition or intermediate states. Notably, the highly expressed
gene markers of C4 (ACTA2, IGFBP7, THY1) were located at the low
pseudotime position, further indicating that C4 cells were the
progenitor cells in PA. The markers that represented the
differentiated epithelial cells (KRT19, EPCAM, KRT18) and
mesenchymal-like cells (CNMD, COMP, SOX9) were also located
at the appropriate pseudotime position (Fig. S4b–d). Moreover, C4
cells exhibited high expression of the stemness-related gene
signature and tumorigenesis-related gene signature by referring
to gene sets that have been reported and included in GSEA48–50

(Fig. 5d–f). Taken together, these results suggested that C4 cells
were the tumor-initiating cells in PA.
To study potential changes in global expression dynamics along

the trajectory, we ordered the genes expression by pseudotime
and conducted the enrichment analysis to investigate the precise
impact of the alterations in cell fate. We found that there were 6
gene expression patterns (P1-P6) accounting for the distinctions
(Fig. 5g, Supplementary Table 3). Cells undergoing cell-fate1
expressed highly homeostatic associated molecules enriched for
the salivary gland function, including salivary secretion and
monocarboxylic acid metabolic process (P1, P3). Cells undergoing
cell-fate2 expressed high level of genes enriched for skeletal
system development, extracellular matrix organization, inflamma-
tory response and cytokine signaling in immune system (P2, P6),
which were consistent with the signatures of mesenchymal-like
cells mentioned above (Fig. 5g, Fig. S5). These functional
enrichments reflected the cell components of PA in the two
developmental routes, supporting the notion that TICs of PA could
develop into the highly differentiated epithelial cells to form the
duct structures and the mesenchymal-like cells with transitional
states to form the stroma, including myxoid, chondroid or
myxochondroid.

CD36+ was a functional surface marker of tumour-initiating cells
in PA
To further identify and isolate TICs of PA, C4 cell-specific
markers were screened. Notably, we observed that CD36, a cell
surface marker, was specifically expressed in PA epithelial cells
(Fig. 6a, b) and involved in the regulation of stemness,39,40

indicating that CD36 might be a functional cell surface marker
for the enrichment of TICs in PA. As shown in Fig. 6c, we further
confirmed that CD36 was mainly expressed in myoepithelial
tumour cells in PA tissue by using Pan-Keratin (PCK), ACTA2 and
CD36 multiple immunostainings. Then, primary PA epithelial
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cells from different patients were freshly isolated and cultured,
which were further confirmed using PCK staining (Fig. 6d). Next,
CD36+ and CD36− PA epithelial cells were sorted using
fluorescence-activated cell sorting (FACS) (Fig. 6e). To evaluate
the tumorigenic potential of sorted cells, a tumour sphere
formation assay was performed using the collected CD36+ and
CD36− PA cells. As shown in Fig. 6f, CD36+ PA epithelial cells
were able to form more and larger spheres than those
generated from CD36− PA epithelial cells. More importantly,
we performed RNA-seq by using CD36+ and CD36− cells
isolated from primary PA cells. GSEA results showed that the
genes upregulated in CD36+ cells were enriched for the

regulation of stemness, supporting that CD36 was a cell surface
marker for the enrichment of TICs in PA (Fig. S6a, b).

Targeting the PI3K-AKT pathway eliminated tumour-initiating cells
and suppressed tumour growth in PA
Next, to clarify the key signalling pathway controlling TICs in PA, we
performed Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis based on our scRNA-seq data, which indicated that PI3K-AKT
signalling pathway was activated in C4 cells (Fig. 7a). Similar results
were also observed in our RNA-seq data generated from CD36+ and
CD36− PA cells (Fig. 7b). Then, two small molecular inhibitors
MK2206 and GDC0068 were used to validate the functional role of
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the PI3K-AKT pathway in PA tumorigenesis. As shown in Fig. S7a,
inactivation of the PI3K-AKT pathway with MK2206 and GDC0068
dramatically inhibited sphere formation generated from CD36+ PA
cells. These findings suggested that targeting the PI3K-AKT pathway
may be an effective therapeutic strategy for the treatment of PA. To
further evaluate the therapeutic value of targeting the PI3K-AKT
pathway in PA, PA patient-derived organoids (PPDOs) were cultured
and confirmed by H&E staining and double staining of PCK and CD36
(Fig. 7c, d). As expected, we observed that pharmacological inhibition
of the PI3K-AKT pathway significantly impaired the formation and
growth of PPDOs (Fig. 7e).

DISCUSSION
The complex cytomorphological and architectural features of PA
have been well recognized in past decades. However, the
landscapes of cell constituents and their genetic heterogeneities
are still mysterious and have never been documented. In the
present study, we employed scRNA-seq technology to generate a
comprehensive gene expression atlas of PA and identify seven
major cell types with UMAP clustering that contribute to PA
lesions. Notably, we showed that PA epithelial cells were
dramatically different from their normal counterparts. High copy
number variations were observed in PA epithelial cells compared
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to normal salivary epithelial cells despite the benign nature of PA.
Obvious CNVs were detected on chromosomes 1, 4, 9, 12, 19 and
22, implying that the occurrence of PA results from multiple
genomic alterations. It has been confirmed that PA is character-
ized by recurrent chromosome rearrangements, particularly
translocations with breakpoints at 8q12 and 12q13-15, which
activate the overexpression of PLAG1 and HMGA2.14,51 In our
study, the predominant copy number alterations were observed in
chromosome 12, in which some key genes driving tumorigenesis
of PA were located, including HMGA2, WIF1, MGP and MUCL1.
These findings suggest that the alteration of chromosome 12 may
be the genomic hallmark of PA.
Then, we characterized the features of gene expression profiles

in PA epithelial cells and revealed intratumor heterogeneity and
diversity. Consistent with a previous study in cutaneous squamous
cell carcinoma,52 we observed that several PA tumour subpopula-
tions (acinar, ductal and basal/myoepithelial cells) were also
similar to their normal counterparts, which shared several marker
genes across normal PG and PA, suggesting that PA might
recapitulate stages of PG development. Strikingly, two PA
subpopulations unique to tumour were identified, which
accounted for most of the tumour cells in PA. Then, we identified
six subgroups (C0–C5) with different transcriptomic characteristics

in tumour specific epithelial cells. C0, C1, C2, C4 and C5 cells were
all characterized with properties of EMT but exhibited different
differentiation degrees and proliferative activities, indicating that
EMT was widely activated during the tumorigenesis of PA. C0 cells
were associated with epithelial development, C1 cells were
correlated with chondrogenesis and osteogenesis, and C2 cells
displayed dual characteristics of epithelial cells and immune cells,
revealing a high degree of tumor heterogeneity. In addition, C3
was a ductal cell population with a low EMT score and high
expression of MUCL1 gene, which demonstrated obvious epithelial
features and might form the luminal structures of PA. Increasing
studies have confirmed that MUCL1 functions as a unique
oncogene to promote proliferation and metastasis in several
adenogenous malignancies, including breast cancer,53 gastric
adenocarcinoma,54 and colorectal adenocarcinoma,55 indicating
that the MUCL1 gene may be a potential marker to evaluate the
aggressiveness of PA. However, further studies are required to
examine the expression of MUCL1 and MUCL1+ ductal cell
subpopulations in PA.
It has been suggested that TICs or tumour stem cells are

responsible for tumour recurrence, metastatic spread and
resistance to treatment.56–58 Notably, we revealed that the C4
cluster housed the TICs based on single-cell algorithms rather than
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relying on predefined surface markers, which often target
unrelated cells.59,60 Then, we confirmed that the cells within
C4 showing high expression levels of CD36 were the tumour stem
cells resulting in the formation of PA. Similar results were also
observed in glioblastoma,39 oral carcinomas40 and leukaemia.61

Next, we further revealed that the PI3K-AKT pathway was
activated in C4 cells and CD36+ tumour cells, and inhibition of
PI3K-AKT signalling suppressed PA tumorosphere formation and
organoid growth. Currently, accumulating evidence has confirmed

that the PI3K-AKT pathway plays an important role in cell mitosis,
proliferation and apoptosis, especially in maintaining the plur-
ipotency of mesenchymal stem cells and embryonic stem
cells.62,63 Importantly, previous studies have shown that CD36
promotes tumour progression by activating PI3K/AKT in several
cancer types.64–67 These findings support the notion that TICs of
PA are controlled by PI3K-AKT signalling.
Taken together, our findings provide the first resource for

deciphering comprehensive gene expression landscapes of PA
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and reveal the intratumoral heterogeneity and origin of PA at a
single-cell resolution despite the small number of patients
enrolled. Furthermore, we identified a unique myoepithelial cell
population with high expression of CD36 and activation of PI3K-
AKT signalling that contributes to tumorigenesis of PA, which
provides a novel therapeutic target and lays a new foundation for
the development of precision therapies in PA.

MATERIALS AND METHODS
Salivary tumour specimens
In compliance with all relevant ethical regulations, we collected
fresh pleomorphic adenoma and adjacent nontumour tissue from
patients at the Hospital of Stomatology, Sun Yat-sen University.
Briefly, freshly harvested tissues were mechanically and enzyma-
tically digested into single cell suspensions with gentleMACS
(Miltenyi) according to the instructions of a tumour dissociation kit
(Cat #130-095-929, Miltenyi Biotec, Bergisch Gladbach, Germany).
Then, the dissociated cells were filtered with a 70-μm SmartStrai-
ner and centrifuged at 400 × g for 5 min to remove large pieces of
debris. After the supernatant was removed, the pelleted cells were
incubated with red blood cell lysis buffer (Thermo Fisher Scientific,
Carlsbad, CA) for 1–2min to lyse red blood cells. Finally, the cells
were washed twice with 1×PBS (GIBCO), and the cell pellets were
counted and tested for cell viability using trypan blue staining.

Tissue processing
The remaining tissues were fixed in 4% paraformaldehyde
(Biosharp, BL539A) for 48 h at 4 °C overnight. Dehydration and
embedding in paraffin were performed using routine methods.
Paraffin sections (5 μm) were cut and adhered to glass slides.
Then, the paraffin sections were placed at the room temperature.

Haematoxylin and eosin (H&E) staining
The paraffin sections were placed in a 70 °C oven for 15 min
before deparaffinization in xylene and successively hydrated in
100%, 90%, 80% and 70% alcohol. H&E staining was performed
according to a standard protocol (Solarbio, G1120-100), and
stained slides were dehydrated in ethanol and sealed in
neutral resin.

Immunofluorescence staining
Formalin-fixed paraffin-embedded sections of PA specimens were
collected at the Hospital of Stomatology, Sun Yat-sen University.
To detect the protein expression levels of marker genes, the PA
paraffin sections were stained four-color-multilabeled immuno-
fluorescence staining kit (Absin, Cat#abs50012) according to the
manuffacture’s protocols. Briefly, the sections were incubated in
3%H2O2 for 10 mins for the first time. Every time the sections were
incubated with antibodies against CD36 (ab17044, Abcam), Pan-
keratin (PCK) (26411-AP, Proteintech), ACTA2 (ab220179, Abcam).
After each incubation of the primary antibody, heat-induced
epitope recovery and 5% BSA blocking were performed. The HRP
conjugate and three wavelengths (520,570 and 650 nm) were
utilized to attach the different primary antibodies. Then, the slides
were counterstained with DAPI for nuclear visualization, and
subsequently coverslipped with fluorescence quenching mount-
ing medium. Images were acquired using a fluorescence
microscope. The organoid immunofluorescence staining was
performed as described previously with antibodies against CD36
and PCK68,69. All primary antibodies were used at a dilution
of 1:200.

10× library preparation and sequencing
According to the standard manufacturer’s protocol, single cells
were resuspended in DMEM buffer at 1 000 cells per μL and
loaded onto the Chromium chips. All the remaining procedures
including capturing, barcoding and cDNA library preparation were

carried out using the Chromium Single Cell 3’Library v3 chemistry
(10x Genomics).

Single cell RNA-seq data processing
Sequenced reads were aligned and quantified using the Cell
Ranger 4.0.0 pipeline against the GRCh38 human reference
genome. Next, by counting unique molecular identifiers (UMIs)
and removing low quality barcodes, a gene barcode matrix
containing the barcoded cells and gene expression counts was
generated. The expression matrix passed the quality control based
on three metrics step by step, including the total cell count,
number of detected genes and the proportion of mitochondrial
gene count per cell, by using the Seurat R package (v4.0)70,71 to
generate Seurat Objects for downstream analyses. High quality
cells (200 < nFeature_RNA < 9000, nCount_RNA > 1000 and per-
cent. mt < 10) were included. Then, the following Seurat functions
were performed on remaining 35662 cells using the scran and
scater packages in R.72

Integration of multiple scRNA-seq datasets
We ran the CCA+ anchors, an algorithm originating from Seurat
v3.0 that can identify the shared cell state among different scRNA-
seq datasets to remove the batch effects of 4 samples. The results
from CCA integration and batch correction were used as input
data for highly-variable gene identification and dimension
reduction.

Dimension reduction and unsupervised clustering
Single-cell data were processed for dimension reduction and
unsupervised clustering by following the workflow in Seurat v3.0.
In brief, 2 000 highly variable genes were summarized by principal
component analysis (PCA) and a total of 20 principal components
were selected for dimensional reduction using the default settings
of the RunPCA function. Finally, the dimensionality of each dataset
was further reduced using uniform manifold approximation and
projection (UMAP) for visualization.

Major cell types determination and marker genes identification
Doublets with mix features were deleted from further analysis
using the DoubletFinder (v2.0.3) function. The remaining cells
were used for the downstream analysis. We determined cell types
by using Seurat package in combination with the SingleR (v1.4.1)
package. The specific gene markers were identified using the
FindAllMarkers function. Cell clusters were annotated as biological
cell types according to canonical marker genes. To refine the
classification of various cell types, we further compared our cell-
type annotation to the reference by SingleR (v1.4.1).

Subclustering of some major cell types
To identify subclusters with some major cell types, we reclustered
cells belonging to epithelial cells, myeloid cells and NK/T cells
separately using the workflow in Seurat v3.0. Applying the graph-
based clustering approach, with a unique resolution and other
default parameters, they were reclustered by its principal
components. For visualization purposes, these informative princi-
pal components were converted into UMAP plots. To further
investigate the characteristics of various clusters, cluster marker
genes were detected using the FindMarkers function.

CNV estimation based on scRNA-seq data
Initial CNVs for tumour epithelial cells of each sample were
calculated by the inferCNV R package.73 For each sample, the CNV
from the single-cell RNA-seq dataset was explored by the
expression intensity of genes across positions of the genome
compared with a set of reference cells. We set 1 000 cells from
normal samples for reference, and 1 000 cells each from other
tumour samples for observations and ran inferCNV with cut-
off= 0.1. The expected output is a heatmap of observed
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expression relative to the reference, shedding light on regions of
chromosomal gain and loss.

EMT score, cell cycle score and stemness score
According to the reference gene sets, subsets were scored using
the Seurat function AddMouduleScore. We calculated the mean
abundance levels of the subset function-related mRNA genes
against the abundance of the control gene sets as the score of
each epithelial subset.

Delineation of cell differentiation trajectories
To uncover the cell state transition, the Monocle package74 was
applied to depict single cell trajectories. Briefly, the Seurat Object
was converted into the Monocle cell dataset using the ‘importCDs’
function. The top 100 differentially expressed genes in the
subclusters of epithelial cells were selected using the
differential-GeneTest function in pseudotime order. We then
applied ‘DDRtree’ to reduce dimensions and the visualization
functions ‘plot_cell_trajectory’ to plot the minimum spanning tree
on cells.

Analysis of transcription factor expression
To assess the transcriptional activity of tumour-specific epithelial
cells, single-cell regulatory network inference and clustering
(SCENIC) analysis was used to map the gene regulatory network
and identify stable cellular states by evaluating the activity of
GRNs (Gene Regulatory Networks) in each cell. The analysis used
the 20-thousand motifs database for RisTarget and GRNboost
(corresponding to GENIE3 1.4.3, AUCell 1.4.1 and RisTarget 1.2.1;
with hg19.motifDatabases.20k).75 The input matrix was normalized
expression matrix, output from Seurat.

Metascape analysis GO enrichment
We performed the analysis via website (https://metascape.org/gp).
Gene sets were input into the Metascape database for GO
enrichment analysis.

Flow cytometry
Fresh pleomorphic adenoma samples obtained from patients
were digested with collagenase IV (Thermo Fisher Scientific,
17104019) and a single-cell suspension was acquired. Then, we
cultured the cells in 10 cm petri dishes with common medium.
After two passages, tumour epithelial cells were purified. Next, we
obtained a single-cell suspension. Cells were sorted by PE anti-
human CD36 antibodies (Biolegend, Cat#336205) with FACS Aria I
(BD Biosciences, Germany).

Sphere culture
The sorted cells were seeded at 5 000 cells per μL in low-
attachment 96-well plate which added into DMEM/F12 (Thermo
Fisher Scientific, Cat#C11330500BT), supplemented with
20 ng·mL−1 human EGF (PeproTech, Cat#AF-100-15), 20 ng·μL−1

FGF2 (Sino Biological Inc, Cat#10014-HNAE) and
1×B27 supplement (Thermo Fisher Scientific, Cat#12587010). Cells
were cultured for 7 days before harvesting. Images were acquired
using an inverted microscope.

Organoid culture
For organoid culture, the tumour suspensions were seeded at 1 × 104

cells per well in 200 μL Matrigel (Corning, 354234) in 24-well plates.
After polymerization, organoids were cultured in self-configured
medium containing DMEM/F12 (Thermo Fisher Scientific,
Cat#C11330500BT), 1×B27 supplement (Thermo Fisher Scientific,
Cat#12587010), 1.25mmol·L−1 N-acetyl-L-cysteine (Sigma,
Cat#A7250), 10mmol·L−1 nicotinamide (Sigma, Cat#N0636),
50 ng·mL−1 human EGF (PeproTech, Cat#AF-100-15), 500 nmol·L−1

A83-01 (PeproTech, Cat#9094360), 10 ng·mL−1 human FGF10
(PeproTech, Cat#100-26-5), 5 ng·mL−1 human FGF2 (Sino Biological

Inc, Cat#10014-HNAE), 1 μmol·L−1 prostaglandin E2 (MCE, Cat#HY-
101952), 0.3 μmol·L−1 CHIR 99021 (Sigma, Cat#SML1046), 1 μmol·L−1

forskolin (Abcam, Cat#ab120058), 50 ng·mL−1 R-spondin (R&D
Systems Cat#3266-RS) and 25 ng·mL−1 Noggin (PeproTech,
Cat#120-10 C). The medium was changed twice a week.

Statistical analysis
Data are shown as the mean ± SD. Statistical analyses were
conducted by using Prism 8.0 (Graphpad Software). Statistical
comparisons were performed using Student’s test or one-way
ANOVA. P < 0.05 was considered to be statistically significant.
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