
ARTICLE OPEN

Porphyromonas gingivalis bacteremia increases the
permeability of the blood-brain barrier via the Mfsd2a/
Caveolin-1 mediated transcytosis pathway
Shuang Lei1,2, Jian Li3, Jingjun Yu1, Fulong Li1, Yaping Pan 1, Xu Chen2, Chunliang Ma1, Weidong Zhao4 and Xiaolin Tang1✉

Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/
virulence factors have been found in the brain tissues from patients with Alzheimer’s disease (AD). The blood-brain barrier (BBB) is
essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB
permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis
three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We
found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain
tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after
P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1 (Cav-1) expression was enhanced after P. gingivalis infection.
Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be
colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain (RgpA) were detected.
Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a (Mfsd2a) expression. Mfsd2a
overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1
mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to
P. gingivalis/virulence factors entrance and the subsequent neurological impairments.
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INTRODUCTION
Periodontitis is a chronic infectious disease that occurs in
periodontal tissues, which eventually leads to tooth loss in adults.
As the sixth largest disease worldwide, it is estimated that severe
periodontitis affects 11% of the global population in 2021 and is
associated with more than 50 types of systemic diseases.1,2

Recently, a systematic review reported periodontitis was asso-
ciated with an increased risk of mortality due to cardiovascular
diseases, cancer, coronary heart diseases, and cerebrovascular
diseases.3 Among the closely related diseases, neurodegenerative
diseases, especially Alzheimer’s disease (AD), have become the
focus of research in the recent years.4,5

Porphyromonas gingivalis (P. gingivalis) is a keystone pathogen
associated with periodontitis and has been proved to be a risk
factor for AD.6,7 Recent studies have reported that P. gingivalis DNA
or its virulence factors, including lipopolysaccharide and gingipain,
have been detected in the brain tissues from patients with AD,8,9

and has been closely associated with AD pathological changes.9

However, how P. gingivalis/virulence factors enters the brain tissues
remains unclear. The blood–brain barrier (BBB) is a key structural
and functional barrier with low permeability, which is the first

defense barrier to prevent P. gingivalis or its virulence factors from
entering the brain tissues.10 The BBB is mainly composed of brain
microvascular endothelial cells (BMECs), astrocytes, pericytes, and
basement membrane. It exists between the blood circulatory
system and central nervous system, which prevents peripheral
toxic substances from entering the brain.11 Functional damage to
the BBB is involved in cognitive dysfunction and neuronal loss.12

BBB breakdown is mainly characterized by increased bulk flow
transcytosis (transcellular pathway) in BMECs and loss of inter-
cellular junction (extracellular pathway) between adjacent
BMECs.13 Recent studies have found that P. gingivalis virulence
factor outer membrane vesicles (OMV), LPS, and gingipains could
enhance the permeability of the in vitro BBB model by degrading
the intercellular junction proteins.14,15 However, the effect of P.
gingivalis infection on the transcytosis, or the transcellular pathway
of BMECs permeability has not been elucidated.
The first step of transcytosis is endocytosis, a process of cellular

uptake of extracellular materials within membrane-limited
vacuoles. Our previous studies found that P. gingivalis could be
internalized by epithelial cells and phagocytes and be embedded
in vacuoles surrounded by single or double-layer membranes.16,17
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Endocytosis is mainly mediated by clathrin-dependent and
caveolae-dependent pathways. Caveolaes, the typical structure
of transcytosis process, are flask-shaped organelles of approxi-
mately 50–100 nm that can regulate substance endocytosis, signal
transduction, and cytoskeleton.18,19 Caveolin-1 (Cav-1), the most
important structural protein of caveolae,20 has been shown to be
critical in mediating the internalization of P. gingivalis in human
oral epithelial cells.21 However, whether caveolae/Cav-1-mediated
transcytosis is critical for P. gingivalis infection to promote the
permeability of BMECs remains to be explored further.
Previous studies have established various P. gingivalis infection

models in animals, such as the bacteremia model,22 the period-
ontitis model by the local ligation combined with besmearing
bacteria23 or by the injection of virulence factors in the gingival
papilla,24 to study the effects of P. gingivalis on the brain tissues.
According to the concept of periodontal medicine, the primary
pathogenic mechanism, under which periodontitis compromises
systemic health, is that the subgingival plaque biofilm bacteria
directly invade the blood vessels, causing bacteremia.25 Our
previous research found that P. gingivalis bacteremia may reduce
the learning and memory abilities of wild-type rats, and may
reduce the protein expression levels of neuronal nuclei (NeuN) in
the hippocampus, indicating that P. gingivalis bacteremia may
result in neuron damage.26 Previous studies performed the high-
intensity P. gingivalis injection via tail veins,22,27,28 however, the
plaque accumulation of patients can significantly increase the
prevalence of bacteremia following such daily oral activities as
toothbrushing and the blood bacteria concentration is 0.97–32
CFU/mL,29 which is remarkably lower than the P. gingivalis
intensity of bacteremia used in previous reports. Therefore, for
the first time, we used the low-intensity P. gingivalis injection in
rats in our previous study26 to simulate the possible bacteria
intensity caused by oral daily activities, and we also found the
damage of the neural cells.
To observe the effect of P. gingivalis on BBB permeability, we

not only performed the in vivo experiments in rats with P.
gingivalis bacteremia, but also established an in vitro BBB model in
the present study. We further investigated the role and possible
molecular mechanism of caveolae and Cav-1 in the regulation of
BMECs permeability challenged with P. gingivalis infection. This
study will provide potentially important evidence to determine
the role of P. gingivalis bacteremia in increasing BBB permeability
and subsequent neurological impairments.

RESULTS
Porphyromonas gingivalis bacteremia enhanced the BBB
permeability of rats
To confirm whether P. gingivalis bacteremia can increase the BBB
permeability in rats, Evans blue was used to detect the BBB
integrity after P. gingivalis injection by vein tail for 8 weeks (refer
to Supplementary Fig. 1). With P. gingivalis infection, more Evans
blue infiltration were present, especially in the rat brains in the
high P. gingivalis group compared to those in the control group.
In detail, the color of the brains in the control group was gray
white, and it turned into gray in the low P. gingivalis group while
it was gray dark in the high P. gingivalis group. (Fig. 1a). Statistical
analyses for the protein expression related to BBB breakdown
demonstrated that P. gingivalis significantly increased expression
of Albumin by 1.83-fold and 1.26-fold respectively in the
hippocampus and cortex tissues (P < 0.001, P= 0.019) in the
high intensity group. And in the low-intensity group, P. gingivalis
only significantly increased the expression of Albumin by 1.62-
fold in the hippocampus (P= 0.001) while had no effect in the
cortex tissues (P= 0.838) (Fig. 1b). Immunofluorescence staining
results also showed that Albumin protein levels significantly
increased both in the hippocampus and cortex tissues in the
high-intensity group (Fig. 1c).

Porphyromonas gingivalis was able to pass through the BBB both
in vivo and in vitro
To explore whether P. gingivalis was able to pass through the BBB,
TEM was used to detect P. gingivalis bacteria in hippocampus.
P. gingivalis-like bacteria were detected both intravascularly and
extravascularly (Fig. 2a, b). To examine whether P. gingivalis
enhanced the permeability of the BBB of the in vitro model,
P. gingivalis (multiplicity of infection [MOI] 10, 100, or 500) was
added into the upper chamber to treat BMECs for 24 h. P. gingivalis
bacteria in the lower chamber were detected using the agar
culture method. The results are shown in Fig. 2c. P. gingivalis
colonies were detected at MOI 100 and 500, while no colonies
were detected at MOI 10. Therefore, MOI 100 was used in the
following experiments. FITC was used to detect the intercellular
P. gingivalis as well as the permeability of BMECs by the flow
cytometry method, which revealed that the percentage of FITC-
positive BMECs significantly increased in the P. gingivalis (MOI 100)
group (P= 0.026) compared with the control group (Fig. 2d).

Porphyromonas gingivalis significantly increased the number of
caveolar vesicles and caveolae-like structures while exerted no
effect on the expression of Occludin in the hippocampus and
cortex tissues of rats
To further explore the specific mechanism of P. gingivalis-enhancing
BBB permeability, mRNA transcriptomics high-throughput sequen-
cing of bEnd.3 cells infected with P. gingivalis (MOI 100) were
performed. As shown in Supplementary Figures, P. gingivalis
significantly promoted the transcytosis pathway while had no effect
on the extracelluar pathway. In animal experiments, we analyzed the
subcellular structures of endothelial cells using TEM. We further
found that the number of vesicles in the hippocampus and cortex
tissues of the P. gingivalis infection increased significantly (Fig. 3a).
All vesicles had a diameter range of 50–100 nm in line with that of
normal caveolae (Fig. 3a). Cav-1 is a major marker and component of
caveolar vesicles. Immunohistochemical staining showed that the
protein level of Cav-1 in the hippocampus and cortex tissues
significantly increased after P. gingivalis infection (P= 0.039,
P= 0.02, Fig. 3b). Besides the transcytosis pathway, loss of
intercellular junction is another important pathway for BBB break-
down. However, we further found that P. gingivalis had no effect on
Occludin (OCLD) protein expression in the hippocampus and cortex
tissues in rats of the high-intensity group (Fig. 3c). The above data
indicated that P. gingivalis may enhance the BBB permeability
mainly by the transcytosis pathway.

Cav-1 regulated the internalization of P. gingivalis into BMECs
We further explored the effect of caveolae/Cav-1 on the
internalization of P. gingivalis into BMECs. TEM results showed
that intact P. gingivalis was internalized into BMECs (Fig. 4a-I). We
further found P. gingivalis infection enhanced caveolae formation
on the surface of the cell membrane (Fig. 4 a-II). Simultaneously, P.
gingivalis infection significantly increased Cav-1 protein expression
by 1.9-fold in BMECs (P < 0.001) (Fig. 4b). The quantity of P.
gingivalis in the BMECssiCav-1 group was significantly decreased by
0.71-fold than that in the si-control group (Fig. 4c). Flow cytometry
revealed that the percentage of FITC-positive cells was lower in the
BMECssiCav-1 group than in the si-control group (P= 0.03) (Fig. 4d).

Cav-1 was able to bind with Porphyromonas gingivalis-RgpA
To further confirm the specific virulence factor of P. gingivalis
interacting with Cav-1, CLSM was conducted and revealed that Cav-1
was uniformly expressed in the cells at the 0 h time point in BMECs
infected with P. gingivalis. Three hours after infection, many bacteria
were found in the cells, and the co-localization of P. gingivalis/
gingipain and Cav-1 was also detected with further increasing Cav-1
expression on the cell membrane surfaces. Compared with the 3 h
P. gingivalis infection, the number of bacteria in BMECs remained
stable at 6 h, but Cav-1 expression continued to increase on the cell
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membrane (Fig. 5a). Immunoprecipitation (IP) and mass spectrometry
were conducted and showed that P. gingivalis-Rgp was listed with the
highest score among all the virulence factors of P. gingivalis
interacting with Cav-1 (refer to Supplementary Fig. 2). We further
assessed the protein–protein docking predictions of Cav-1 and RgpA.
The interaction distance of RgpA at 1048–1075 residual and Cav-1 at
115–130 residual was less than 4 Å and the geometric complemen-
tarity was more than 50% (Fig. 5b), which indicated that the two
proteins were relatively closely bound. In particular, Ser1050, Thr1075
residuals of RgpA and Tyr118 residual of Cav-1 were combined
through hydrogen bonding (Fig. 5b).

Porphyromonas gingivalis significantly inhibited the expression of
Mfsd2a
To demonstrate the molecular mechanism of P. gingivalis-
enhanced BBB permeability, high-throughput sequencing of
BMECs infected with P. gingivalis (MOI 100) was performed. To
analyze the specific molecular regulating permeability, cluster
analysis showed that transcytosis-related gene Mfsd2a expression
was downregulated significantly (refer to Supplementary Fig. 3).
We further verified that P. gingivalis inhibited Mfsd2a mRNA

expression by 0.44-fold (Fig. 6a) and protein expression by 0.57-
fold (Fig. 6b) at 24 h in BMECs (P < 0.01, P= 0.04). Similarly, the
confocal laser microscopy results also showed that P. gingivalis
bacteremia significantly inhibited Mfsd2a expression in the
microvessels of hippocampus and cortex tissues in the rats of
the high-intensity group (Fig. 6c). The above data indicated that
P. gingivalis was able to significantly inhibit Mfsd2a protein
expression in BMECs both in vivo and in vitro.

Porphyromonas gingivalis increased the permeability of brain
microvascular endothelial cells by the Mfsd2a/Cav-1 axis
To confirm the role of Mfsd2a in BMECs permeability and Cav-1
expression, overexpressed plasmids and siRNA of Mfsd2a were
transfected into BMECs (refer to Supplementary Fig. 4). After
transfection with the Mfsd2a plasmid, the percentage of FITC-
positive cells was remarkably lower in the BMECspcMfsd2a group
than that in the pc-control group after 24 h P. gingivalis infection
(P= 0.001). The quantity of P. gingivalis internalized into
BMECspcMfsd2a was also significantly lower than that in the empty
vector controls (P= 0.028, Fig. 7b). In contrast, the percentage of FITC-
positive cells in the BMECssiMfsd2a group was higher than that in the
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Fig. 1 Porphyromonas gingivalis (P. gingivalis) bacteremia enhanced the blood–brain barrier (BBB) permeability in rats. a Evans blue staining
was used to detect BBB permeability. b Western blot and quantification showed Albumin protein deposition in the hippocampus (I and II) and
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Values are expressed as the mean ± standard deviation. c Immunofluorescence showed Albumin (green) protein deposition increased both in
the hippocampus and in the cortex of the rat brain with P. gingivalis bacteremia. Low: the low-intensity group. High: the high-intensity group.
Scale bar, 500 μm. The results represent three independent experiments
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control group and the quantity of P. gingivalis in the BMECssiMfsd2a

group was higher than that in the si-control group (P= 0.005,
P= 0.011, Fig. 7a). These results indicated that Mfsd2a was involved in
P. gingivalis-enhanced cell permeability. Western blot showed that
P. gingivalis enhanced Cav-1 protein expression in BMECs. Mfsd2a
overexpression in BMECs decreased Cav-1 expression and attenuated
P. gingivalis-increased Cav-1 expression (Fig. 7c).

DISCUSSION
Recent studies have demonstrated an association between
periodontitis and cognitive impairment, such as AD.4,8,30 P.
gingivalis and its virulence factors (LPS, gingipain) can be detected
in the brain tissues of patients with AD,8,31,32 indicating that they
can enter the brain tissue. BBB is the first defense barrier to
prevent bacteria from entering. However, there are no relevant
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reports on the specific role of transcytosis in P. gingivalis
breakthrough BBB. This study proposes, for the first time, that P.
gingivalis infection enhances BBB permeability by regulating the
Mfsd2a/Cav-1 transcytosis pathway.
In the present study, the high intensity of P. gingivalis at 108 CFU

per injection was chosen according to previous studies on
AD.22,27,28 As for the low-intensity group, the bacteria intensity
has been reported to be 0.97–32 CFU per mL,29 which can be
converted into 103 CFU per injection having been used in our
previous study.26 Therefore, in the present study, 103 CFU and 108

CFU of P. gingivalis per injection were utilized.

This study confirms that P. gingivalis infection enhances BBB
permeability. We found that in the high-intensity group, P.
gingivalis bacteremia significantly enhanced BBB permeability so
that the deposition of Evans blue dye and Albumin, a neurotoxic
substance, significantly increased in the rat brain hippocampal and
cortex tissues. In addition, in the low-intensity group, P. gingivalis
bacteremia also significantly increased Albumin deposition in the
hippocampal tissues, while had little effect on that in the cortex
tissues and Evans blue dye deposition. The above data indicate
that low-intensity P. gingivalismay increase the BBB permeability to
some extent, which may further contribute to the subsequent
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neurological impairment in the long-term infection. However, since
the bacteremia due to oral daily activities could be induced by
mixed species of bacteria but not the single species of P. gingivalis,
the actual pathological effects of bacteremia due to oral daily
activities on BBB permeability should be carefully further explored
and explained. Also, we detected P. gingivalis-like bacteria
substances both within microvessels and in the brain parenchyma
in the TEM sections from the rats with the high-intensity P.
gingivalis injection. In addition, we found that P. gingivalis could
pass through the in vitro BBB model and increase BMECs
permeability. All the above data indicate that P. gingivalis may
enhance BBB permeability and help the entrance of P. gingivalis
/virulence factors into the brain tissues.
We further explored the possible mechanism by which P.

gingivalis enhances BBB permeability in BMECs. Microorganisms
can cause BBB disfunction and break through BBB to enter the

central nervous system, which is an important etiological factor in
AD. It has been reported that intestinal flora and respiratory flora
can destroy and break through BBB through transcellular
pathway or extracellular pathway.33–35 Our TEM results show
that P. gingivalis bacteremia increased caveolae-like structures in
the microvessels of the hippocampal and cortex tissues of rats. In
addition, caveolae-like structures were observed in BMECs
challenged with P. gingivalis infection. Studies have shown that
Cav-1 can promote the transport of Albumin.36 Therefore, P.
gingivalis bacteremia may promote the entry of Albumin into the
brain through the BBB by promoting the Cav-1 expression and
membrane localization in BMECs of the rats in the present study.
Furthermore, Cav-1 knock-down significantly decreased the
number of P. gingivalis internalized into BMECs. In addition, we
detected the co-localization of P. gingivalis and Cav-1 with
increased expression levels of Cav-1 on the cell membrane of
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RgpA/KgP

50 µm

0 h

3 h

6 h

a

b

RgpACav-1 Hydrogen Bonding

50 µm
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I II

Fig. 5 Cav-1 was able to bind with Porphyromonas gingivalis (P. gingivalis)-gingipain. a P. gingivalis promoted Cav-1 expression on surfaces of
the cell membrane and P. gingivalis/gingipain (RgpA/Kgp) were colocalized with Cav-1. Representative images of Cav-1 in brain microvascular
endothelial cells (BMECs) after infection with P. gingivalis of MOI 100 for 0, 3, and 6 h, respectively. (The red arrows indicate P. gingivalis/
gingipain (RgpA/Kgp.) in BMECs. The yellow arrows indicate Cav-1 expression on the cell membrane surfaces. Scale bar, 50 μm. b I: Protein-
protein docking of RgpA (green) and Cav-1 (blue). II: Ser1050, Thr1075 residuals of RgpA and Tyr118 residual of Cav-1 were combined by
hydrogen bonding (yellow)
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BMECs. Similarly, phosphatidylserine Cav-1 has been found to be
the key molecule for P. gingivalis to enter epithelial cells through
the cavernous membrane, and Cav-1 and P. gingivalis exist at the
same location on the cell surface.37 Although the classical theory
believes that caveolae mainly mediate the internalization of
nano-sized particles, studies have shown that caveolae can fuse
into a structure larger than 100 nm and bacteria can enter the cell
through caveolae. For example, Listeria can be mediated by
multiple caveolae structures and then internalized into
Madin–Darby canine kidney epithelial and HeLa cells. Based on
the above evidence, we believe that P. gingivalis may promote
caveolae formation and increase Cav-1 expression to enhance
BBB permeability in BMEC of substances such as Albumin, and
also the entry of P. gingivalis into the BMECs.

We further explored the virulent factors of P. gingivalis, which
may mediate the interaction of P. gingivalis and Cav-1 and
found that P. gingivalis-Rgp could be bound with Cav-1, which
may partly contribute to P. gingivalis and Cav-1 interaction.
Gingipain is one of the important virulent factor of P. gingivalis,
which includes three kinds of cysteine proteinases, RgpA and
arg-specific-gingipain B (RgpB) and lysine-specific-gingipain
(Kgp).38 We used the Kgp/RgpA-specific antibody in CLSM
observation and detected the co-localization of gingipain of P.
gingivalis and Cav-1 in BMECs. Further IP assay showed that Rgp
might be the key molecule bound with Cav-1. Therefore, we
deduced that RgpA might mediate the binding between P.
gingivalis and Cav-1. The subsequent protein docking assay
provided the possible binding amino sequences of Cav-1 within
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microvasculature co-localized with CD31 (red) in the rat brain tissues with P. gingivalis bacteremia was sigificantly lower than that in the
control group both in hippocampus and cortex tissues. I: Representative images of confocal laser microscopy in hippocampus. II:
Representative images of confocal laser microscopy in cortex tissues. Scale bar, 50 μm. High: the high-intensity group. The results represent
three independent experiments. *P < 0.05, **P < 0.01 when compared to the control group
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its transmembrane region39 and those of RgpA within its
hemagglutinin domain.40 Gingipain plays a central role in P.
gingivalis colonization, inactivation of host defenses and the
pathogenesis of AD.9 Therefore, we suggested that gingipain/
RgpA may be the critical molecule that mediates the interaction
between P. gingivalis and Cav-1, which should be proved in the
future experiments.
We further explored the possible molecular mechanism of P.

gingivalis-induced caveolae formation. P. gingivalis bacteremia
significantly inhibited Mfsd2a expression in rat brain tissue and
BMECs. We further found that Mfsd2a inhibited Cav-1 expression
and reduced the number of P. gingivalis-internalized cells. Mfsd2a
is a key molecule for the formation and function of the BBB. In
Mfsd2a knockout mice, transcytosis was significantly enhanced,
but the TJ structure was not significantly changed.41 Mfsd2a can
significantly inhibit the expression of caveolae-associated protein
Cav-1 and cell membrane localization, thereby inhibiting cell
cavernous formation.42,43 Based on the above evidence, we
suggest that P. gingivalis may promote caveolae formation by

inhibiting Mfsd2a expression and, in turn, increase BBB perme-
ability in BMECs.
In conclusion, our study indicates that P. gingivalis bacteremia

may promote the permeability of BBB in BMECs by the Mfsd2a
/Cav-1-mediated transcytosis pathway. In detail, decreased
expression of Mfsd2a in BMECs by P. gingivalis infection may
promote Cav-1 expression and caveolae formation, which in turn
promotes transcytosis, thereby enhancing BBB permeability. The
enhanced BBB permeability may promote the entrance of P.
gingivalis and its virulence as well as neurotoxic substances such
as Albumin into the brain tissues. Cav-1-mediated transcytosis
plays a key role in the enhancement of BBB permeability by
P. gingivalis. Furthermore, the interaction between Rgp and Cav-1
may take part in the endocytosis of P. gingivalis into BMECs. The
hypothesis of the possible mechanism about the effect of P.
gingivalis infection on BMECs permeability is concluded in Fig. 8.
Therefore, it can be aimed at increasing Mfsd2a and inhibiting Rgp
/Cav-1-mediated transcytosis to inhibit the injury of P. gingivalis
on the BBB function. However, the virtual role of Rgp-Cav-1
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interaction in P. gingivalis-induced increasing of BBB permeability
in BMECs remains to be further studied in the future.

MATERIALS AND METHODS
Establishment of P. gingivalis bacteremia model
The P. gingivalis bacteremia model was established according to
the methods described previously.22,25–27 This study was approved
by the Laboratory Animal Welfare and Ethics Committee of China
Medical University (Approval number: KT2021150). Eight-week-old
healthy SD rats (body weight 180–220 g) were purchased from
Changsheng Biotechnology Cable Company (Benxi City, Liaoning
Province, China). The P. gingivalis ATCC 33277 strain was obtained
from the American Tissue Culture Collection (Maryland, USA). The
bacteria were maintained anaerobically at 37 °C on brain-heart-
infusion (BHI) agar medium plates, supplemented with 5%
sterilized and defibrinated sheep blood, 5 µL·mL−1 hemin, and
1 µL·mL−1 Vitamin K. The P. gingivalis was cultured in a liquid BHI
medium for 16–18 h before experiments. All bacterial culture
reagents were purchased from Aobo Bio-tech (Beijing, China). The
experimental groups were injected intravenously with P. gingivalis
through the tail vein three times a week for eight weeks. In the
high-intensity group, the rats were injected with 200 µL PBS
containing 108 CFU P. gingivalis22 while in the low-intensity group,
the rats were injected with 200 µL PBS containing 103 CFU P.
gingivalis,26,29 and in the control group the rats were injected with
200 µL PBS (n= 6 in each group).

Transmission electron microscopy
The rats were injected with bacterial for 8 weeks by the tail vein.
After deep anesthesia, the cerebral cortex and hippocampus brain
tissues were taken out and fixed in 2.5% glutaraldehyde. The bEnd.3
were infected with P. ginigivalis for 24 h. The ultrathin sections were
prepared, and the ultrastructure was observed with a transmission
electron microscope (TEM, H7650, Hitachi, Tokyo, Japan).

Western blot
Western blot was detected with BIO-RAD protein analysis system
(BIO-RAD, USA). The primary antibodies were as follows: Cav-1
(Abcam, Cambridge, UK), Fibrinogen (Proteintech, Wuhan, China),
Albumin (ABclonal, Wuhan, China), Occludin (Proteintech, Wuhan,
China), anti-P. gingivalis (DSHB, Texas, USA), GAPDH (Proteintech,
Wuhan, China). The fluorescent secondary antibody (Proteintech,
Wuhan, China). Infrared fluorescence scanning imaging system
(Odyssey CLx, LI-COR USA) was used to detect protein bands.
ImageJ 1.52v software (NIH Image, Bethesda, MD, USA) was used
for protein semi-quantitative analysis.

Immunohistochemical
After deep anesthesia, the rats were perfused transcardially with
pre-cold PBS and 4% paraformaldehyde solution (PFA) succes-
sively. Brains were removed and fixed in PFA at 4 °C. Paraffin
sections were added with the primary antibody working solution
of Cav-1 (Abcam, Cambridge, UK) overnight at 4 °C. Each section
was added enzyme-labeled IgG polymer dropwise, incubated with
DAB at room temperature.

Immunofluorescence microscopy and laser confocal microscopy
After deep anesthesia, the rats were perfused transcardially with
pre-cold PBS and 4% PFA successively. Brains were removed and
fixed in PFA at 4 °C. Tissue paraffin sections were blocked and
then incubated with the anti-rat Albumin antibody (ABclonal,
Wuhan, China), anti-Mfsd2a antibody (Novus, Colorado, USA) and
anti-CD31 antibody (Santa, Texas, USA). Cell samples were
treated with P. gingivalis or with PBS, fixed with 4% PFA, treated
with TritonX-100. The primary antibody was anti-P. gingivalis
(DSHB, Texas, USA) and rabbit anti-mouse Cav-1 (Abcam,
Cambridge, UK). The sections were incubated with the goat
anti-mouse secondary antibody (Proteintech, Wuhan, China) and
the goat anti-rabbit secondary antibody (Proteintech, Wuhan,
China) for 2 h. The sections were stained with DAPI. Images were
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ultimately acquired with the aid of a fluorescence microscope
(ECLIPSE, Nikon, Japan) and a laser-scanning confocal micro-
scope (C2, Nikon, Japan).

Establishment of the transwell BBB model in vitro and the
permeability test
The mouse brain microvascular endothelial cell line bEnd.3 and
the human astrocytoma cell line U87 were purchased from the
Shanghai Cell Bank of the Chinese Academy of Sciences. Cells
were cultured in DMEM medium supplemented with 10% fetal
bovine serum (FBS) under the conditions of 37 °C with 5% CO2.
The BBB is comprised of three kinds of specialized cells,
including BMECs, astrocytes, and perivascular cells (pericytes).
The co-culture transwell BBB model established by BMECs and
astrocytes has been frequently reported in previous
papers.44,45 bEnd.3 cells were incubated on the bottom of
the upper transwell chamber (Corning 3402, Corning, USA), and
U87 cells were incubated on the bottom of the lower transwell
chamber. After 7 days, a certain amount of complete cell
culture medium was added to the upper and lower chambers
of the transwell unit to make the liquid level of the upper
chamber higher than that of the lower chamber by 0.5 cm.
After 4 h, if the original liquid level difference was maintained,
the transwell BBB model should be considered to be success-
fully established.46 And then, P. ginigivalis ((MOI: 10, 100, 500)
was added to the upper chamber for 24 h, and then the lower
chamber liquid was aspirated for bacteria detection with the
anaerobic culture method.

Transfection assays
For transfection, the bEnd.3 cells were plated on six-well flatbottom
plates at a seeding density of 2 × 105 and grew to 80% confluence.
The Mfsd2a plasmids were transfected into bEnd.3 cells for 24 h.
The Mfsd2a siRNA was transfected into bEnd.3 cells for 24 h. The
cells treated with empty vectors or scrambled siRNA were used as
the negative control.

Flow cytometry
For flow cytometry, cells were divided into six groups and
compared with each other in different experiments: control group,
P. gingivalis, empty vector plasmid transfection+ P. gingivalis,
Mfsd2a plasmid transfection + P. gingivalis, scrambled siRNA
transfection + P. gingivalis, and Mfsd2a-siRNA transfection + P.
gingivalis. After transfection, P. gingivalis was added to infect the
BMECs for 24 h. Fluorescein isothiocyanate (FITC) dilution was then
added to the wells for 10min. The fluorescence intensity of FITC of
the cells was detected by flow cytometry (FACS, Becton-Dickinson,
Islandia, NY, USA) and analyzed using FlowJovX0.7 software.

Quantitative real-time polymerase chain reaction
In this study, we established a bacterial internalization model by
the antibiotics protection assay. The bEnd.3 cells were infected
with P. gingivalis with a specific multiplicity of infection (MOI) for
6 h. Then cells were washed three times with PBS and were further
incubated in the culture medium containing 300 µg/mL of
gentamicin and 200 µg·mL−1 of metronidazole (Sigma, St. Louis,
MO, USA) for 2 h. Total RNA was extracted from cells using TRIzol
reagent (Invitrogen Life Technologies, Gaithersburg, MD, USA)
according to the manufacturer’s instructions. Real-time PCR
analyses were conducted on an ABI Prism 7500 Sequence
Detection System (Applied Biosystems, Foster City, CA, USA) in
combination with a SYBR Premix Ex TaqTM II PCR Master Mix
Reagents kit (Takara Bio, Inc., Dalian, China). P. ginigivalis 16s RNA
primer sequence: Forward Primer: AGGCAGCTTGCCATACTGCG,
Reverse Primer: ACTGTTAGCAACTACCGATG. Fold changes were
calculated through relative quantification (2−△△CT) as previously
reported. The quantity of P. gingivalis was displayed as the relative
ratio to GAPDH expression level according to the methods

reported in our previous studies.16,47 Each experiment was
performed in triplicates.

Immunoprecipitation and mass spectrometry analysis
The immunoprecipitation was conducted as the kit instructions
(Takara Bio, USA). Briefly, protein lysates were centrifuged,
and the supernatant was removed and kept. Incubate the
recommended amount of Cav-1 antibody overnight. The eluted
antibody-protein complex with the neutralization buffer in
the tube was collected. Subsequently, the sample was analyzed
by mass spectrometry (Beijing Protein Innovation Co. Ltd,
Beijing, China).

Protein–protein docking
The protein–protein docking was conducted by APExBIO Technol-
ogy LLC (Shanghai, China). Cav-1 and P. gingivalis-arg-specific-
gingipainA (RgpA) protein structures were queried from the
UniProt database and the structure files were saved in pdb format.
The pdb files were imported into the Maestro docking software.
Cav-1 and RgpA were set as a ligand and the receptor,
respectively, for the docking parameters. Thirty docking poses
were output after docking and the Protein Interaction docking
complex was used for interaction analysis. Protein docking data
were analyzed and the graphs were drawn.

Statistical analysis
Normally distributed data were expressed as the means ± standard
deviation (SD). Differences among the three group were analyzed
by multiple comparisons using one-way analysis of variance
(ANOVA). Differences among the two groups were analyzed by
an independent two-tailed t test. SPSS 22.0 software package (SPSS
Inc., Chicago, IL, USA) was used to perform the analysis. P < 0.05
was considered to be statistically significant.
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