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Wnt pathway inhibitors are upregulated in XLH dental pulp
cells in response to odontogenic differentiation
Elizabeth Guirado1, Cassandra Villani1, Adrienn Petho1, Yinghua Chen1, Mark Maienschein-Cline2, Zhengdeng Lei3, Nina Los4 and
Anne George1✉

X-linked hypophosphatemia (XLH) represents the most common form of familial hypophosphatemia. Although significant advances
have been made in the treatment of bone pathology, patients undergoing therapy continue to experience significantly decreased
oral health-related quality of life. The following study addresses this persistent oral disease by further investigating the effect of
DMP1 expression on the differentiation of XLH dental pulp cells. Dental pulp cells were isolated from the third molars of XLH and
healthy controls and stable transduction of full-length human DMP1 were achieved. RNA sequencing was performed to evaluate
the genetic changes following the induction of odontogenic differentiation. RNAseq data shows the upregulation of inhibitors of
the canonical Wnt pathway in XLH cells, while constitutive expression of full-length DMP1 in XLH cells reversed this effect during
odontogenic differentiation. These results imply that inhibition of the canonical Wnt pathway may contribute to the
pathophysiology of XLH and suggest a new therapeutic strategy for the management of oral disease.
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INTRODUCTION
X-linked hypophosphatemia (XLH) represents the most common
form of familial hypophosphatemia occurring in 1–5 per 100,000
annual births.1–3 Defective dentin, cementum, and alveolar bone
contribute to the disease’s significant morbidity.4–7 Dental pulp
necrosis in the absence of trauma or caries remains a significant
long-term side-effect in individuals receiving therapy, with
prevalence as high as 75% reported.6,8–10 These lesions present
as spontaneous dental abscesses and can lead to more severe
infections, tooth loss, occlusal disharmonies, and poor alveolar-
dental development. The disorganized odontoblast cell layer and
abnormal accumulation of non-collagenous extracellular matrix
proteins in the XLH tooth suggest that defects in odontogenic
differentiation may also be present in the disease.7,11,12

Odontoblast differentiation requires cell polarization and the
formation of membrane domains and cell junctions that ensure
the segregation and the unidirectional trafficking of molecules
for mineralization.13 Canonical Wnt signaling is involved in tooth
initiation and morphogenesis, correlating with odontoblast
differentiation and dentin deposition.14–16 Despite a gradual
decline in Wnt signaling with age, the conditional stabilization
of beta-catenin in the adult pulp leads to dentin formation.17,18

The structural changes that accompany cytodifferentiation and
tooth morphogenesis directly affect cell signaling and vice versa.19

E-cadherin is one component of adherens junctions necessary for
palisade formation that is transcriptionally regulated by the Wnt
pathway but also sequesters beta-catenin limiting its downstream
Wnt pathway functions.20 The importance of the Wnt pathway in
tooth development and regeneration has been well established;
however, the status of Wnt signaling within the context of XLH
remains unclear.21

Indication for deregulation of the Wnt pathway in XLH is
implied from that seen in autosomal recessive hypophospha-
temic rickets, a disorder phenotypically similar to XLH resulting
from dentin matrix protein 1 (DMP1) loss-of-function.22 Expres-
sion of canonical Wnt pathway inhibitors, such as the secreted
frizzled-related protein 4 (sFRP-4), have been reported in Dmp1
knockout mice.23 sFRP-4 has been associated with Wnt Family
Member 5A (WNT5A) expression and noncanonical Wnt signaling
pathway activity, as well as, activation of bone morphogenic
protein (BMP) signaling and sclerostin (SOST) gene expression,
contributing to decreased bone formation.24 Indeed, patients
with XLH are reported to have higher concentrations of
circulating sclerostin.25

Our group previously reported impaired matrix mineraliza-
tion in XLH dental pulp cell cultures that were corrected by the
constitutive expression of the full-length human DMP1 gene.26

The following study sought to identify the genetic pathways
affected by the induction of odontogenic differentiation in XLH
and XLH cells expressing DMP1 in an effort to explain how
DMP1 contributed to enhanced matrix mineralization in our
initial studies.

RESULTS
Differentiation significantly upregulates inhibitors of the canonical
Wnt pathway in XLH cells
Transcription profiles of XLH dental pulp cells cultured for eight
hours in differentiation media were analyzed. ANOVA multi-
group and multi-factor analyses revealed that disease status
affected the expression of 3832 genes, while constitutive DMP1
expression affected the expression of 3205 genes (Fig. 1a).
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When compared to control (Ctrl) patients, XLH patients
presented with significantly higher expression of sclerostin
(SOST), WNT Inhibitory Factor 1 (WIF1), dickkopf 3 (DKK3) a Wnt
signaling pathway inhibitor, and Wnt family members 5A and 16
(WNT5A and WNT16) (Fig. 1b).
K-means clustering (k= 9), gene ontology (GO), and pathway

analyses were performed to identify interesting biological processes
affected by disease and DMP1 expression. Cluster 4 genes were
significantly associated with GO terms of interest in odontoblast
differentiation, namely collagen fibril organization (GO: 0030199),
positive regulation of the Wnt signaling pathway (GO: 0030177), and
angiogenesis (GO:0001525). The heatmap representing cluster 4
genes highlights regions where DMP1 expression normalized gene
expression (Supplementary Fig. 1).

DMP1 reverses the expression of Wnt pathway inhibitors in XLH
cells
A post hoc pairwise comparison of differentially expressed genes
(DEGs) expressing at least twofold changes between Ctrl, XLH,
and XLHDMP1 was conducted. Out of the 778 DEGs, 336 genes
exhibited a reversal in expression pattern and have been
highlighted in blue (e.g., genes significantly downregulated in

XLH were now found to be upregulated in XLHDMP1) (Fig. 2). The
top DEGs have been labeled with their corresponding names.
WIF1 and SOST are among the highly expressed XLH genes
whose expression declined upon DMP1 expression.
A total of 778 DEGs between XLH and Ctrl cells were uploaded to

PANTHER for GO enrichment analysis. The chord diagram presents a
subset of highly enriched GO Biological Processes, their constituent
genes, and each gene’s corresponding expression pattern as log
fold-change (Fig. 3). Among the enriched GO terms were those for
collagen fibril organization (GO:0030199), osteoblast differentiation
(GO:0001649), odontogenesis (GO:0042476), negative regulation of
Wnt signaling pathway (GO:0030178), and regulation of angiogen-
esis (GO:0045765).
Real-time PCR was used to assess the expression pattern of

the validated genes WNT5A, DKK3, and WNT16 in response to
DMP1 expression (Fig. 4a, b). Gene expression was determined
at 0, 4, 8, 12, 24, and 48-h timepoints. WNT5A and DKK3 gene
expression increased significantly with time in XLH cells. DMP1
expression in XLHDMP1 cells resulted in a decrease in both
markers to levels comparable to Ctrl cells. No significant
differences were observed between Ctrl and XLH DKK3 levels
at 0 h (P= 0.9998) or between Ctrl and XLHDMP1 WNT5A levels at

multi-group analysis (false 
discovery rate (FDR) < 0.05) 
on the data set containing all 

samples (n=2/group)
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Fig. 1 Genomic profiles of transgenic cells in response to differentiation. a ANOVA multi-group and multi-factor analysis were conducted on
EdgeR to prioritize genes affected by disease and DMP1 status. Venn diagram represents transcripts with significant interaction and individual
main effects combined (false discovery rate, FDR < 0.01). Disease status affected the expression of 3832 genes, while constitutive DMP1
expression affected the expression of 3205 genes. K-means clustering, gene ontology, and pathway analyses were performed to identify
interesting biological processes affected by disease and DMP1 expression. b Volcano plots to present the distribution of differentially
expressed genes. Dots in gray are those genes that did not meet the criteria of being significantly expressed with a twofold change or greater.
Thresholds appear as red dashed lines on the y-axis for significance (FDR < 0.01), y-intercept at −Log10(FDR)= 2, and on the x-axis for fold-
change (FC), x-intercepts at Log2(FC)=−1 and 1 (twofold decrease or increase, respectively). Dots in green denote downregulated genes, and
dots in red denote upregulated genes
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12 h (P= 0.0725). WNT16 was not consistently expressed by all
cell types across timepoints and was undetectable in Ctrl cells at
4- and 48-h timepoints and in XLHDMP1 cells at the 0-h timepoint
(Fig. 4b). WIF1 and SOST were undetectable at the 8-h time point
using real-time PCR (data not shown). Further optimization of
primers and PCR conditions is needed to validate these two
important markers.

Inhibition of E-cadherin and activation of beta-catenin in response
to XLH differentiation
E-cadherin is one component of adherens junctions necessary
for palisade formation that is transcriptionally regulated by the
Wnt pathway but also sequesters beta-catenin limiting its
downstream Wnt pathway functions.20 Beta-catenin protein
levels decreased with the induction of differentiation (Min, pink
bars) in both Ctrl and CtrlDMP1 cells but increased in XLH
and XLHDMP1 cells (Fig. 4c). E-cadherin protein levels increased
with the induction of differentiation (Min, pink bars) in both Ctrl
and CtrlDMP1 cells but remained absent or decreased in the
remaining cell types (Fig. 4d). Under standard growth conditions
(No Min, black bars), protein levels were highest in Ctrl cells, and
higher in CtrlDMP1 and CtrlGFP cells than in XLH and XLHDMP1

cells. Corresponding interaction plots from the RNA-seq

multigroup analysis revealed that beta-catenin expression
differences between Ctrl and XLH cells (main effect Q= 1.23E
−05) depended on DMP1 status (interaction effect Q= 1.79E
−03). Under odontogenic differentiation culture medium con-
ditions, Ctrl cells expressed lower beta-catenin transcript counts
than XLH cells. This pattern was also observed with the protein
expression of beta-catenin. DMP1 expression resulted in greater
beta-catenin transcript levels in XLH cells and decreases in Ctrl
cells. This pattern was not observed in CtrlDMP1 and XLHDMP1

protein levels.

DISCUSSION
Transcriptomic analysis of XLH dental pulp cells has not been
previously reported. The following study proposes a mechanism
by which dentin formation and mineralization are affected in
XLH individuals. That is, a defect in the Wnt signaling pathway
responsible for odontogenic differentiation is present in the
disease. XLH is an inherited metabolic disorder of fibroblast
growth factor 23 (FGF23) excess that creates an antagonistic
environment to bone formation. Such an environment would
reasonably result in Wnt signaling pathway suppression, as this
pathway is intractably associated with bone formation.27

Despite an extremely limited sample size and a lack of age-,
sex-matching available, the similarities found in the Wnt profiles
of these patients suggest disruptions independent of these
parameters. Complete penetrance of the genotype without
differences between males and females may explain this
observation.28 Validation of the RNA sequencing data in the
second XLH patient suggests that further study should follow
to understand the effects of Phex dysfunction on the Wnt
pathway Table 1.
We showed that XLH pulp cells upregulate inhibitors of the

canonical Wnt pathway in response to the induction of
odontogenic differentiation. These genes included SOST, WIF1,
WNT16, WNT5A, and DKK3, the latter three of which have been
validated (Table 2). Time course experiments revealed that
WNT16, WNT5A, and DKK3 expression was highest in XLH cells,
peaking at 24-h (Fig. 4b). Despite this 24-h peak, which is also
seen in Ctrl cells, it is important to note that sufficiently
detectable differences in expression levels were observed at
baseline and with DMP1 expression in XLH cells. DMP1 was able
to suppress the transcription of these genes up until the 48-h
timepoint, at which point expression returned to XLH levels.
The return to baseline in XLHDMP1 cells may offer an explanation
for the failure to rescue the XLH phenotype in vivo using
DMP1.26 Future experiments should assess the time-dependent
expression of these proteins relative to their unique roles in
odontoblast differentiation. Despite increases in WNT5A, WNT16,
and DDK3, the accumulation of beta-catenin in XLH cells in
response to induction may suggest either faulty inhibition or
communication between established pathways leading to
canonical pathway activation (Fig. 4c). Future experiments
should differentiate between nuclear and cytoplasmic, active
and inactive, beta-catenin to better understand what was
observed in XLH cells since only nuclear beta-catenin can
mediate transcription.
Alternatively, a positive correlation between WNT5A activity,

Notch signaling, and dental pulp stem cell differentiation suggests
that other pathways may interconnect and play equally important
roles.29 We have previously shown that calcium-binding proteins,
such as DMP1, can activate the serine-threonine Ca2+/calmodulin-
dependent protein kinase II (CaMKII) and mediate odontoblast
differentiation.30–32 WNT5A has also been linked to Notch signaling
activation via CaMKII activity.33 Calcium ion homeostasis, another
putative biological process involved in XLH pathology (Fig. 3),
along with its role in non-canonical Wnt signaling and pathways
such as Notch signaling, must be considered in future studies.
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highlighted which exhibited a reversal in expression pattern with
DMP1 expression (e.g., in the upper left quadrant are genes
significantly downregulated in XLH vs. Ctrl cells, that were found
to be upregulated in XLHDMP1 vs. XLH cells)
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Previous reports of small interfering RNA (siRNAs) silencing of
the PHEX gene have revealed a subsequent downregulation of the
Wnt pathway upon WNT3A stimulation. Furthermore, genome-
wide RNA interference (RNAi) screens for Wnt/beta-catenin
pathway components identified PHEX as a positive regulator of
this pathway.34,35

Canonical Wnt signaling is important for the survival of
undifferentiated dental pulp cells and promotes odontoblast
differentiation and mineral formation, in vitro.36 Disruption of
canonical Wnt signaling results in defects in dentin apposition,
root and molar cusp development, and even tooth agenesis.37,38

WNT5A antagonizes canonical Wnt/beta‐catenin signaling and
stimulates non-canonical WNT siganling.39,40 Elevated levels of
other canonical Wnt pathway inhibitors, namely sclerostin (SOST),
have been identified in XLH patients.41 Immunotherapies neu-
tralizing sclerostin activity have, in fact, proven successful in

improving bone mass, formation rate, and strength in Hyp
mice.42,43 The effects of suppressing these Wnt signaling inhibitors
in the tooth may also prove a useful model for understanding the
pathophysiology of XLH.
Despite reports of downregulation of canonical Wnt pathway

inhibitors, DKK1, sFRP-2, sFRP-4, and WIF1, during osteoblastic
differentiation, absolute depletion of sFRP2 has been asso-
ciated with the inhibition of odontogenic differentiation in
mesenchymal stem cells.44,45 The upregulation of sFRP-2 was
observed during odontogenic differentiation of stem cells of
the apical papilla, resulting in increased DMP1 gene expression
among other markers of differentiation.45

In fact, studies in periodontal ligament stem cells have
shown that inhibition of Wnt signaling is required for the
maintenance of the osteogenic potential of these cells.46

Meanwhile, increased Wnt signaling, such as in klotho-deficient
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mice, results in accelerated cellular senescence.47 Furthermore,
constitutive activation of Wnt signaling, such as in NOTUM
knockout mice, manifests as dentin dysplasia, periodontal
inflammation, and periapical abscess formation.6,8–10 These
studies highlight the need for further investigation of the
temporal regulation of these pathways. The significance of our
observations would likely lie within the context of temporal
regulation.
Cadherins play a role in the cell–cell junctions of epithelial cells.

In vivo studies have shown that differentiating odontoblasts
express high levels of N-cadherin and no E-cadherin, while
functional odontoblasts express low levels of E-cadherin and high
levels of N-cadherin.48 In vitro studies, on the other hand, have
shown that induction with 10 mM beta-glycerophosphate results
in a gradual increase in E-cadherin and a gradual decrease in
N-cadherin.49 Our Ctrl cells corroborate the latter findings better
than the former.
E-cadherin is associated with the polarized epithelial pheno-

type. E-cadherin protein levels were highest in Ctrl cells under

standard conditions (No Min) and increased further with the
induction of differentiation in both Ctrl and CtrlDMP1 cells. By
contrast, a decrease in E-cadherin was observed in XLH and
XLHDMP1 cells with the induction of differentiation. This pattern
was observed in transcript numbers, as well. Through RNA-seq, we
find that N-cadherin (CDH2) is also downregulated in XLH cells.
Given the poorly polarized, disorganized odontoblast layer in XLH
teeth, it is possible that the observed reduction in E-cadherin may
be affecting XLH cell odontoblast layer formation.7 While
E-cadherin decreases in XLH and XLHDMP1 cells with differentia-
tion, beta-catenin protein levels increased in XLH and XLHDMP1

cells when compared to standard growth conditions. By contrast,
beta-catenin protein levels decreased after induction in Ctrl and
CtrlDMP1 cells, concurrent with the observed increase in E-Cadherin
protein. These changes could have downstream effects on cell
attachment, Wnt signaling, and cell differentiation.
Induction of odontogenic differentiation resulted in the

upregulation of inhibitors of the canonical Wnt pathway in
XLH cells, while constitutive expression of full-length DMP1 in
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multiple comparison test. b Time series (0, 4, 8, 12, 24, and 48-h timepoints) of validated genes WNT5A, DDK3, and WNT16. Within the group,
significance is denoted by asterisks of the corresponding color. The graph presents fold change (2−ΔΔCT) in gene expression; each timepoint
was normalized to 0 h (except for XLHDMP1 WNT16, which was undetectable at 0 h and was normalized to 4 h). WNT16 was not consistently
expressed by all cell types across timepoints, therefore we were unable to report statistical significance. Two-way ANOVA, alpha= 0.05, with
Tukey’s multiple comparisons. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. c, d Representative Western blot showing analysis of E-cadherin
and Beta-Catenin expression in response to differentiation, normalized to beta-actin loading control. c Under standard growth conditions (No
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decreased with the induction of differentiation (Min, pink bars) in both Ctrl and CtrlDMP1 cells, but increased in XLH and XLHDMP1 cells.
Interaction plots representing the RNAseq multigroup analysis. The multigroup analysis revealed that beta-catenin expression differences
between Ctrl and XLH cells (main effect Q= 1.23E−05) depended on DMP1 status (interaction effect Q= 1.79E−03). Under Min conditions, Ctrl
cells expressed lower transcript counts than XLH cells. This pattern was also observed in protein expression. DMP1 transduction resulted in
greater beta-catenin transcript levels in XLH cells and decreases in Ctrl cells. This pattern was not observed in CtrlDMP1 and XLHDMP1 protein
levels. d Under standard growth conditions (black bars), E-cadherin protein levels were highest in Ctrl cells. E-cadherin protein levels increased
with the induction of differentiation (Min, pink bars) in both Ctrl and CtrlDMP1 cells, but remained absent or decreased in the remaining cell
types. Interaction plots representing the RNAseq multigroup analysis. The RNAseq multigroup analysis revealed significant individual main
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lower in XLHDMP1 cells. CPM, counts per million, in log2-scale, with a pseudo-count added to prevent taking the log of 0. Negative numbers
indicate lower expression. Min, mineralization/differentiation conditions. No Min, standard growth conditions. Western blots for the second
set of experiments can be found in Supplementary Materials
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XLH cells reversed this effect (Fig. 5). The question that arises is
that of DMP1’s role in restoring Wnt signaling in these cells. The
answer to this question may be more challenging than we
would like. The markers implicated in this disease, namely

FGF23, Vitamin D, parathyroid hormone, and the
sodium–phosphate co-transporters, are all part of a bigger
network for calcium and phosphate metabolism. Defining PHEX
function and its interaction with DMP1 would thus require a
thorough understanding of the physiology of mineral metabo-
lism and its relationship to Wnt signaling.

MATERIALS AND METHODS
Cell culture
Dental pulp cells were isolated from the third molars of XLH and
healthy controls (N= 2 per genotype) and stable transduction of
full-length human DMP1 gene was achieved, as previously
described, producing control (Ctrl) and XLH cells overexpressing
DMP1 (CtrlDMP1 and XLHDMP1).26 Empty vectors were transduced as
controls, producing CtrlGFP cells. Cells (under seven passages) were
plated at a density of 3.125 × 104 cells per cm2 and cultured in
odontogenic differentiation media (Dulbecco’s Modified Eagle
Medium 1 g·L−1

D-Glucose (DMEM; Invitrogen, Grand Island, NY,
USA) supplemented with 10% fetal bovine serum (Invitrogen), 1%
antibiotic–antimycotic 100× (Gibco/Invitrogen, Cat. 15240062),
ascorbic acid (0.50 mmol·L−1), β-glycerophosphate (10 mM), and
dexamethasone (10 nmol·L−1)) for 8 h, 37 °C, 5% CO2. Conditions
were repeated in duplicates. After 8 h, RNA was isolated with the
miRNeasy Mini Kit (Cat. No. 217004). No DNase treatment was
performed. One microgram of RNA was submitted to the RNA-
sequencing core facility. Real-time PCR validation of RNA-
sequencing data was performed using a second patient sample.
Eight hours was the earliest timepoint at which gene expression
changes occurred, per our preliminary studies. Where applicable, a
series of collection timepoints were used to evaluate changes in
gene expression over time (Fig. 6).

Table 1. Real-time PCR primers for RNA sequencing validation

Target Accession number Forward primer sequence Reverse primer sequence

GAPDH NM_002046.7 ATCCCATCACCATCTTCCAG GAGTCCTTCCACGATACCAA

ACTB NM_001101 AAACTGGAACGGTGAAGGTG AGAGAAGTGGGGTGGCTTTT

WNT5A NM_003392 GCCAGTATCAATTCCGACATCG TCACCGCGTATGTGAAGGC

DKK3 NM_013253 ATGTGTGCAAGCCGACCTT CCTCAGCGCCATCTCTTCA

WNT16 NM_016087 GCAGAGAATGCAACCGTACAT CACATGGGTGTTGTAACCTCG

Table 2. Negative regulators of the canonical Wnt signaling pathway

Gene name XLH/Ctrl:
logFCa

XLH/Ctrl: Q
valueb

XLHDMP1/XLH:
logFCa

XLHDMP1/XLH:
Q valueb

SOST 5.67 2.07E−65 −5.02 2.19E−60

WIF1 4.36 3.79E−04 −6.69 4.13E−05

WNTl6 2.66 4.22E−121 0.33 4.01E−04

WNT5A 0.67 5.04E−53 −0.48 l.32E−12

DKK3 1.09 1.18E−166 0.41 5.30E−10

aLog2 Fold-change (e.g., 0= no change, 2= 4-fold increase, −2= 4-fold
decrease, etc). To reverse the order of the comparison, reverse the sign
(+2 becomes −2; e.g., logFC is calculated as Disease/Control, but you want
to see Control/Disease)
bCorrected P-value (i.e., false discovery rate)
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Fig. 5 Constitutive expression of DMP1 promotes canonical Wnt signaling. XLH dental pulp cells exhibited impaired differentiation due to the
upregulation of inhibitors of the canonical Wnt pathway, such as WNT5a, WNT16, WIF1, and SOST. Constitutive expression of full-length DMP1
(fl-DMP1) resulted in the downregulation of these Wnt inhibitors, restoring differentiation potential. Constitutive DMP1 expression in XLH
dental pulp cells resulted in improved mineralization. BMP1 bone morphogenetic protein 1, DKK3 Dickkopf-related protein 3, MMP3 matrix
metalloproteinase 3, WIF1 Wnt inhibitory factor 1, SOST sclerostin. Created with BioRender.com
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Protein isolation and Western blot analyses
Cell pellets were resuspended in 500 μl RIPA buffer (10× RIPA buffer
with protease inhibitors). Lysates were incubated on a shaker for one
hour at 4 °C, after which they were centrifuged for 30min at 19
467 × g to remove cell debris. Supernatant protein concentration
was assessed using the Bradford assay, 20 μg total protein was
resolved using a 10% SDS-PAGE gel at 180 V for 50min and then
transferred onto PVDF membranes at 22 V overnight. Membranes
were blocked in 5% dried milk in phosphate-buffered saline (PBS).
Primary antibodies against beta-catenin (Sigma-Aldrich No. 04-958;
dilution 1:1 000) and E-cadherin (Santa Cruz No. sc-8426; dilution
1:200), and HRP-conjugated secondary antibodies were resus-
pended at the appropriate concentrations in 5% dried milk in PBS.
Western blot was developed using Pierce enhanced chemilumines-
cence (ECL) Plus western blotting substrate (ThermoFisher, Cat. No.
32106). Western blot analysis was performed on ImageJ.50 Scanned
western blot film images were uploaded to ImageJ, image type was
changed to 8-bit to allow for light background subtraction. Lanes
were plotted using the Gel Analysis Tool, and the area under the
curve was calculated. Standardization of each lane was done
accordingly to their corresponding loading control (β-actin). The
second experiment can be found in supplementary materials.

RNA sequencing quality control and quantification
RNA sequencing was conducted at the UIC Research Resources
Center (GEO accession GSE201313). RNA integrity was assessed
using Agilent TapeStation 4200 (all samples had RIN scores above
nine). Library construction was based on Universal Plus mRNA-seq
chemistry by NuGEN. Sequencing was performed on the NovaSeq
6000 instrument with SP flow cell (2 × 50 reads), 380+ million
reads per lane, and approximately 23 million clusters/sample.
Raw sequencing reads were aligned to the human reference

genome (HG38) using the STAR aligner and ENSEMBL gene and

transcript annotations.51 Gene expression levels were quantified
using FeatureCounts52 as raw read counts and as normalized reads-
per-million. Normalized expression (in counts per million) accounts
for differences in sequencing depth across libraries, allowing
expression levels to be directly compared between samples.
Quality control was performed to confirm the depth and quality

of the raw sequencing data and the absence of sequencing
artifacts and to confirm that the number of reads aligning to the
reference genome mapping to coding sequences was sufficient
for expression estimates. Prior to differential expression analysis,
principal component analysis (PCA) was performed to identify
biological outliers that should be removed or further investigated.
PCA plots and RNA integrity information can be found in
Supplementary Materials.

Bioinformatics analysis
Additional normalization with TMM (trimmed mean of M-values)
scaling was performed in edgeR. TMM normalization is more
robust to outlier features and seeks to ensure that the average
log-fold change across samples is 0. Pseudo-counts were added to
prevent taking the log of 0. Negative numbers simply indicate
lower expression. Differential expression statistics (fold-change
and p-value) were computed from raw expression counts using
edgeR.53,54 Multi-group and multi-factor analyses and post-hoc
pairwise analyses were performed. The false discovery rate (FDR)
correction of Benjamini and Hochberg was used to correct for
multiple comparisons.55 Significant genes were determined based
on an FDR threshold of 5% (0.05) in the multi-group comparison.

GO analysis
GO enrichment analysis was conducted on PANTHER.56 Analysis
type utilized PANTHER Overrepresentation Test (Released
20210224). The complete GO biological process annotation data
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Fig. 6 Experimental design. Dental pulp cells were isolated from the third molars of XLH and healthy controls. The calcium phosphate transfection
method was used to transfect full-length human DMP1 cDNA into low-passage 293FT cells using a lentivirus plasmid (pLenti-DMP1-GFP-2A-Puro),
together with the psPAX2 (Addgene), pMD2.G (Addgene), and pHPV17 plasmids. Stable transduction of the full-length human DMP1 gene was
achieved by producing control (Ctrl) and XLH cells overexpressing DMP1 (CtrlDMP1 and XLHDMP1)(Guirado et al., 2020). Odontogenic differentiation
of the cells was performed, and RNA was isolated at 4, 8, 12, 24, and 48 h of culture. Eight-hour samples were chosen for RNA sequencing as this
was the earliest time point at which gene expression changes were observed. Protein was isolated at the 48-h timepoint
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set was used, including both manually curated and electronic
annotations (GO Ontology database https://doi.org/10.5281/
zenodo.5228828 Released 2021-08-18). All Homo sapiens genes
in the database were used as the reference list.
The Fisher’s exact test with FDR correction (FDR-adjusted

P-value < 0.05) was used to identify the top three significantly
enriched GO biological processes. Fold enrichment is presented as
the number of genes in the cluster divided by the expected number
of genes based on the reference list. Fold enrichment greater than
one indicates that the GO term is overrepresented in the cluster.

Pathway analyses
Qiagen Ingenuity Pathway Analysis software was utilized.57

Pairwise comparisons were matched to the Ingenuity Pathway
Analysis library of canonical pathways. A Fisher’s Exact test
(alpha= 0.01) was performed, generating a −log(P-value), and a
cutoff of 2 was chosen. DEGs from our data (FDR < 0.01) that were
associated with a canonical pathway in the Ingenuity Knowledge
Base were considered for the analysis.
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GSE201313. Additional data may be made available upon request.
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