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Study of the inflammatory activating process in the early stage
of Fusobacterium nucleatum infected PDLSCs
Yushang Wang1,2, Lihua Wang2, Tianyong Sun2, Song Shen2, Zixuan Li2,3, Xiaomei Ma2, Xiufeng Gu2, Xiumei Zhang2, Ai Peng2,
Xin Xu1✉ and Qiang Feng2,4✉

Fusobacterium nucleatum (F. nucleatum) is an early pathogenic colonizer in periodontitis, but the host response to infection with
this pathogen remains unclear. In this study, we built an F. nucleatum infectious model with human periodontal ligament stem cells
(PDLSCs) and showed that F. nucleatum could inhibit proliferation, and facilitate apoptosis, ferroptosis, and inflammatory cytokine
production in a dose-dependent manner. The F. nucleatum adhesin FadA acted as a proinflammatory virulence factor and increased
the expression of interleukin(IL)-1β, IL-6 and IL-8. Further study showed that FadA could bind with PEBP1 to activate the Raf1-MAPK
and IKK-NF-κB signaling pathways. Time-course RNA-sequencing analyses showed the cascade of gene activation process in
PDLSCs with increasing durations of F. nucleatum infection. NFκB1 and NFκB2 upregulated after 3 h of F. nucleatum-infection, and
the inflammatory-related genes in the NF-κB signaling pathway were serially elevated with time. Using computational drug
repositioning analysis, we predicted and validated that two potential drugs (piperlongumine and fisetin) could attenuate the
negative effects of F. nucleatum-infection. Collectively, this study unveils the potential pathogenic mechanisms of F. nucleatum and
the host inflammatory response at the early stage of F. nucleatum infection.
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INTRODUCTION
Periodontitis is a widespread chronic immunoinflammatory
disease of periodontal tissues, that affects more than 60% of the
global adult population.1,2 The pathogenesis of periodontitis is
convoluted, which involves microbial challenges, host genetic
variations, and acquired environmental stressors.3,4 Among the
numerous risk factors, the increase in pathogenic microbes in
the subgingival plaque is widely accepted as a necessary
prerequisite for the development of periodontitis. Fusobacterium
nucleatum (F. nucleatum) is one of the most frequently detected
pathogens and has attracted increasing attention in recent years
as an opportunistic pathogen in many systematic diseases, such as
colorectal cancer,5 cardiovascular diseases,6 Alzheimer’s disease,7

and adverse pregnancy outcomes.8

F. nucleatum is an invasive bacterium that can induce a variety
of host responses.9 Clinical studies have shown that the
prevalence of F. nucleatum increases with the severity and
progression of periodontitis.10,11 F. nucleatum can invade various
host cells, such as epithelial and endothelial cells, monocytes and
fibroblasts, to initiate a cascade of inflammation and induce the
secretion of the proinflammatory chemokines interleukin(IL)-6
and IL-8.12,13 Toxic proteins are an important way for bacteria to
exert pathogenicity, and F. nucleatum expresses a variety of
virulence factors to induce various host responses.14 For
instance, RadD and Fap2 induce lymphocyte apoptosis,15 and

FadA mediates host-cell binding and invasion in epithelial
cells.16,17 This evidence indicates that F. nucleatum might have
different pathogenic mechanisms to exert its pathogenic effect
on different cell types.
As a main cell type in the periodontal ligament, periodontal

ligament stem cells (PDLSCs) play an indispensable role in
maintaining periodontal homeostasis.18 According to emerging
evidence, the inflammatory environment caused by periodontitis
leads to dysfunction and pyroptosis in PDLSCs.19 Zhao et al.
demonstrated that treatment with butyrate, a secondary meta-
bolite of periodontal pathogens, could induce ferroptosis in
periodontal ligament fibroblasts and regulate cell survival and
death.20 However, the biological characteristics and changes in
gene regulation in PDLSCs caused by F. nucleatum have not yet
been fully clarified.
In this study, we explored the pathogenic effects of F.

nucleatum and the host response of PDLSCs in the early stage
of infection. We evaluated the changes in the biological activities
in PDLSCs during F. nucleatum infection and examined the
virulent effect of the F. nucleatum adhesin FadA. Time-course
gene expression analysis was used to reveal gene regulation in
response to F. nucleatum infection. Finally, coexpression-based
computational drug repositioning was used to identify drug
candidates to attenuate the pathogenic effects of F. nucleatum
on PDLSCs.
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RESULTS
Human PDLSCs from healthy and young volunteers were
successfully isolated and cultured as described in the Materials
and Methods. The cultured PDLSCs exhibited a spindle-shaped
fibroblast-like morphology (Fig. S1a). In the multidifferentiation
assay, Alizarin Red–positive mineralized matrix and Oil Red
O–positive lipid droplets were observed (Fig. S1b, c). Immuno-
phenotypic analysis showed that PDLSCs expressed MSC-specific
surface markers, but not hematopoietic or endothelial cell-specific
markers (Fig. S1d).

F. nucleatum inhibits proliferation, and facilitates apoptosis,
ferroptosis, and inflammatory cytokine production in PDLSCs
To determine the pathogenic effect of F. nucleatum on PDLSCs, we
first evaluated the viability of PDLSCs exposed to different MOIs of
F. nucleatum. The results showed that F. nucleatum significantly

inhibited the proliferation of PDLSCs in a time- and dose-dependent
manner (P< 0.001) (Fig. 1a–c). Proliferation was almost blocked at
MOIs of 200 and 400. Next, we evaluated the apoptosis ratios
of F. nucleatum-infected PDLSCs. As shown in Fig. 1d and Fig. S2,
F. nucleatum significantly increased the apoptosis rate of PDLSCs in a
dose- and time-dependent manner (P < 0.05). Notably, early
apoptosis mainly occurred at 6 h, while late apoptotic cells accounted
for a substantial portion of total apoptotic cells at 24 h and 48 h.
Ferroptosis, which is a novel necrotic cell death pathway, is

triggered by iron overload.21 Perturbations in iron homeostasis are
major pathogenic strategies for bacterial infection.22 To investi-
gate whether F. nucleatum induced ferroptosis in PDLSCs, we
compared intracellular free iron levels between normal and
F. nucleatum infected PDLSCs. The fluorescence intensity of Fe2+

was significantly enhanced in the F. nucleatum-infected group
(P < 0.01) (Fig. 1e, g). Iron overload leads to mitochondrial
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Fig. 1 F. nucleatum inhibits proliferation, facilitates apoptosis, and ferroptosis in PDLSCs. a Cell-counting assay of PDLSCs cocultured with or
without F. nucleatum. b, c Cell proliferation rate of PDLSCs detected by EdU assay. Scale bar: 100 μm. d Cell apoptosis examined using Annexin
V/PI staining. Annexin V-/PI- represents live cells, Annexin V+ /PI- early apoptosis, Annexin V+ /PI+ late apoptosis, and Annexin
V-/PI+ necrosis. e Intracellular Fe2+ detected by FerroOrange. Scale bar: 20 μm. f Confocal images of JC-1 in PDLSCs. Scale bar: 20 μm.
g Quantitative assessment of FerroOrange and JC-1 fluorescence. h The ratio of JC-1 monomers/aggregates. Data were expressed as
mean ± SD. (n= 3) (*P < 0.05; **P < 0.01; ***P < 0.001, compared with the control group)
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dysfunction, which mainly manifests as mitochondrial membrane
potential (MitoMP) depolarization.23,24 Therefore, we evaluated
the intracellular MitoMP of PDLSCs using JC-1 fluorescent dye and
observed that F. nucleatum treatment reduced the fluorescence
intensity of JC-1 aggregates and enhanced the green fluorescence
of JC-1 monomers (Fig. 1f-g). Quantitative analysis showed that
the JC-1 monomer/aggregate intensity ratio was increased after F.
nucleatum infection, indicating that F. nucleatum-induced iron
overload may impair mitochondrial function in PDLSCs (Fig. 1h).
These results first showed that F. nucleatum treatment could
increase the intracellular labile iron levels and promote MitoMP
depolarization in host cells.
We next evaluated whether F. nucleatum could trigger

inflammatory responses in PDLSCs by qRT-PCR and ELISA. As
shown in Fig. 2a, the gene expression levels of IL-1β, IL-6, and IL-8
increased with increasing stimulation time and peaked at 6 h in a
dose-dependent manner, and they regressed with the duration of
stimulation. At the protein level, IL-1β, IL-6, and IL-8 were also
consistently increased with increasing stimulation time in the early
stage and reached a maximum level at 12 h (Fig. 2b). These results
suggest the potential immunomodulatory effect of PDLSCs under
the stimulation of periodontal pathogens.

FadA activates NF-κB and MAPK signaling pathways by interacting
with PEBP1
Fusobacterium adhesin A (FadA) has been reported to be one of
the most important adhesins and virulence factors of F.
nucleatum.16 To explore the molecular mechanism of F. nucleatum

infection, we investigated the pathogenic effect of FadA on
PDLSCs. We obtained recombinant histidine (His)-tagged FadA
through an E. coli expression system (Fig. S3a–b). After the
addition of 0.5 mg·mL−1 FadA protein, the mRNA levels of IL1β,
IL6, and IL8 were significantly increased compared with the
controls (P < 0.001) (Fig. 3a). At the protein level, the IL1β level
increased at 1 h, while IL6 and IL8 increased at 3 h after FadA
stimulation (Fig. 3b).
Next, we isolated FadA-binding proteins by a His pull-down

assay, and identified all pull-down proteins by mass spectrometry.
Among the candidates (Table S3), a cytoplasmic protein
phosphatidylethanolamine-binding protein 1 (PEBP1), which is
also known as Raf1 kinase inhibitory protein (RKIP),25–27 was
proven to be co-immunoprecipitated with FadA by Co-IP assay
(Fig. 3c). The direct binding of PEBP1 to FadA was further
confirmed by surface plasmon resonance (SPR) analysis (Fig. S3c, d
and Fig. 3d).
To study whether FadA induces the inflammatory response by

interacting with PEBP1, we first evaluated the phosphorylation
state of PEBP1. Figure 3e shows the binding of FadA-PEBP1
phosphorylated PEBP1 at S153. As the devitalization of PEBP1
could activate Raf1 and IKK, we hypothesized that FadA promoted
the production of proinflammatory cytokines by activating the NF-
κB and MAPK signaling pathways by binding to PEBP1. Western
blot analysis showed that Raf1 and IKK were both significantly
activated, and ERK-JNK-p38 MAPKs and NF-κB-p65 were subse-
quently significantly activated in PDLSCs (P < 0.05) (Fig. 3e–g).
These findings suggest that FadA acts as a pathogenic effector of
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F. nucleatum and can initiate intracellular immune signal
transduction in PDLSCs.

F. nucleatum infection induces dynamic gene activation in PDLSCs
At present, the gene regulation process in oral cells in the early
stage of F. nucleatum infection is unknown. We performed time
course RNA-seq analysis of PDLSCs under F. nucleatum infection
for 1 h, 3 h, 6 h, and 12 h. Principal component analysis (PCA)
showed that the transcriptomes of the control groups exhibited a
stable gene expression state, while the F. nucleatum-infected
groups changed continuously in a particular pattern (Fig. S4). The
gene expression profiles of the control group and experimental
group at 1, 3, 6, and 12 h were compared by DESeq2, and 25, 271,
495, and 619 differentially expressed genes (DEGs) were identified
at each time point, respectively (Fig. 4a). Among these genes, 18,
235, 415, and 495 were upregulated, while 7, 36, 80, and 124 were
downregulated at each time point (Fig. 4b). Notably, the Venn
diagram showed that 4 DEGs were consistently upregulated in the
F. nucleatum-stimulated group across the four time points (Fig. 4a
and Fig. S5). CXCL1 and CXCL2 are two vital neutrophil
chemoattractants. The continuous upregulation of these two
chemokines indicated the key role of PDLSCs in recruiting immune
cells during F. nucleatum infection.
To reveal the gene expression patterns related to the

cytological phenotypes that are altered by F. nucleatum, we
clustered all the genes into 30 expression patterns in control

group and 20 clusters in F. nucleatum group by Mfuzz analysis
(Fig. S6). As shown in Fig. 4c, we found several proliferation-
inhibition genes that showed a continuous upregulation trend
after F. nucleatum infection, including IFIT3, ING1, and EIF2AK2.
Apoptosis-related gene such as IFI27 and PML showed a consistent
increasing trend. Notably, some genes related to iron metabolism
(such as TFRC and TF) were continuously upregulated while those
associated with ROS detoxification (such as GPX4) were gradually
decreasing, suggest that F. nucleatum could induce ferroptosis
by aggravating intracellular iron overload and inhibiting lipid
hydroperoxide detoxification. With respect to inflammation-
related DEGs, various proinflammatory cytokines were classified
into cluster 20 in F. nucleatum group (such as IL-1β, IL-6, and IL-8),
which showed a gradual increasing trend. The expression levels of
these genes gradually increased during infection. Some of the
genes were validated by qRT-PCR, and the expression levels were
consistent with the RNA-Seq results (Fig. S7).

Inflammatory genes are expressed sequentially in response to
F. nucleatum infection
To explore the intracellular cascade induced by F. nucleatum-
infection, we further analyzed the coexpressed genes at two
adjacent time points. As shown in Fig. 5a, 9 members of the CXC
chemokine subfamily, 11 members of the CC chemokine
subfamily, and some proinflammatory cytokines formed a
coexpression network. Interestingly, all of the chemokines in this
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network are inflammatory chemokines and are mainly involved in
the recruitment of leukocytes to inflamed tissues.28 In addition,
CCL11 and CCL20 have homeostatic functions and act as dual-
function chemokines. The inflammatory chemokines CXCL1,
CXCL2, CCL3L1, and CCL3L3 and inflammatory cytokine TNF were
first released in response to F. nucleatum stimulation. With
increasing duration of infection, the types and expression levels
of chemokines increased gradually, which suggesting the
potential of PDLSCs to recruit immune cells.

Additionally, several transcription factors were differentially
expressed at 3 h and regulated a series of target genes among
DEGs at 3 h, 6 h, and 12 h. Notably, NFKB1 and NFKB2, two central
activators of genes involved in inflammation and immune
function, were significantly upregulated at 3 h after F. nuclea-
tum-infection and showed sustained activation at 6 h and 12 h.
The increases in NFKB1 and NFKB2 sequentially regulated
downstream target genes of the NF-κB signaling pathway, such
as MAP3K8, NFKBIA, and REL (Fig. 5b).
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To improve our understanding of the biological functions of
DEGs, we further performed Metascape analysis and displayed the
top 20 enriched clusters in Fig. 6a. The regulation of cytokine
production, the MAPK cascade, the apoptotic signaling pathway
and the negative regulation of cell proliferation were highlighted
in the network. Consistent with these results, GO analysis of the
DEGs indicated that they were involved in the inflammatory
response process (GO:0006954) and chemokine-mediated signal-
ing pathway (GO:0070098) during F. nucleatum infection. Immune-
related processes were changed in the initial phase of infection.
With increasing duration of infection, genes were enriched in the
apoptotic process (GO:0006915) and the negative regulation of
cell proliferation (GO:0008285) (Fig. 6b and Fig. S8).
The top 10 abundant KEGG pathways are displayed in Fig. 6c,

which shows that F. nucleatum stimulation mainly resulted in
changes in immune-related pathways. DEGs at 1 h were mainly
enriched in the cytokine receptor pathway, while at the three
other time points, the IL-17, TNF and NF-κB signaling pathways
were prominent. Pathview analysis showed the activated genes in
the TNF, IL-17, and NF-κB signaling pathways. Most of the
significantly altered genes were associated with survival and
inflammation (Fig. S9). These findings suggested that the reactions
of PDLSCs to F. nucleatum infection involved the recognition of
bacterial surface epitopes by host receptors at 1 h, followed by
activation of the host defense system within 12 h after infection.
These results collectively indicated that F. nucleatum could induce
an inflammatory response in PDLSCs associated with activation of
the NF-κB signaling pathway and the production of inflammatory
chemokines.

Screening miRNAs and transcription factors and constructing the
gene regulatory network of PDLSCs
Next, we sought to identify the miRNAs and their target mRNAs
that were specifically expressed during F. nucleatum infection as
described in the Materials and Methods. The differentially
expressed miRNAs at each time point are listed in Table S4. After
matching the differentially expressed miRNAs with their predicted
target genes, we constructed networks containing 3 upregulated
miRNAs and 1 downregulated miRNA associated with a total of 22
target genes at 6 h, and 3 downregulated miRNAs associated with
23 target genes at 12 h (Fig. 7a). Notably, target genes of miR-4257
were significantly enriched in cysteine-type endopeptidase
activity involved in apoptotic process; target genes of miR-4696
were significantly enriched in iron ion homeostasis and positive
regulation of MAPK cascade (Fig. S10).
Next, we clustered the DEGs by the similarity of expression

patterns to investigate gene regulation during F. nucleatum
infection. As shown in Fig. 7b, all DEGs were grouped into 5
clusters, which were named Module 1- Module 5 (M1-M5): (1)
genes in Module 1 were continuously downregulated during F.
nucleatum infection; (2) genes in Module 2 were upregulated in
the early stages of F. nucleatum infection and downregulated at
the following time points; (3) genes in Module 3 was gradually up-
regulated within 6 h after infection; (4) genes in Module 4 were
upregulated after 1 h; and (5) and genes in Module 5 were
downregulated between 1 h and 3 h and recovered after 3 h
(Fig. 7c). To reveal the overall regulatory relationships of the F.
nucleatum-infected PDLSCs, we constructed a regulatory network
between modules using high-dimensional ordinary differential
equations,29 as shown in Fig. 7d.
At the functional level, GO analysis confirmed that genes in M1

were involved in signal transduction, genes in M5 were enriched
in activating G-protein coupled receptor signaling pathway, and
genes in M4 were involved in the defense response to virus and
the innate immune response. To decipher the inter-module
regulatory relationships, we integrated the regulatory linkages
between the TFs and their target genes, and constructed
regulatory networks (Fig. 7e and Fig. S11). Consistent with

previous results, NFKB1 was predicted in all of the modules.
Taken together, these results indicate the pivotal role of NFKB1
and revealed the gene regulation process at different time points
of F. nucleatum infection.

Identification of the therapeutic targets to attenuate the negative
effects of F. nucleatum infection
We used cogena30 to perform coexpression analysis and divided
the DEGs into three clusters (Fig. 8a). KEGG pathway enrichment
analysis of the coexpressed genes showed that genes in clusters 1
and 2 were highly enriched in immune-related pathways, while
genes in cluster 3 were enriched in calcium signaling pathway and
inositol phosphate metabolism (Fig. 8b). Considering the major
pathological changes in F. nucleatum-infected PDLSCs, we further
performed drug repositioning analysis of clusters 1 and 2 to identify
potential drug candidates. The list of drug candidates targeting the
coexpressed genes in clusters 1 and 2 is shown in Fig. 8c. Pathway
enrichment analysis of the target genes of each candidate drug was
performed to narrow the field of candidates (Fig. S12). Based on the
enrichment results, we ultimately selected six drugs and assessed
the therapeutic value of these six candidates.
Cytotoxicity assays helped us to select the drug concentrations

that cells could tolerate for the follow-up experiments (Fig. S13a).
After 12 h of F. nucleatum infection, PDLSCs had significantly
elevated mRNA expression of IL1β, IL6 and IL8 (P < 0.05), and all six
candidates significantly reduced the expression level of these
inflammatory genes (P < 0.05) (Fig. S13b). These results validated
the efficacy of our predicted agents.
Among the drugs investigated, piperlongumine and fisetin

exhibited the best attenuating effects, which prompted us to
further assess their effects on FadA-induced inflammation.
Similarly, piperlongumine and fisetin significantly decreased the
FadA-induced proinflammatory cytokine production (P < 0.001)
(Fig. 9a, b). Considering the ferroptotic effects of F. nucleatum on
PDLSCs, we further examined the effects of piperlongumine and
fisetin on ferroptosis. As shown in Fig. 9c–f, piperlongumine and
fisetin reversed this trend, reduced the level of intracellular Fe2+,
and ameliorated the impairment in mitochondrial function. As the
IL-17 signaling pathway and NF-κB signaling pathway were
enriched by KEGG analysis, we used molecular docking to
simulate the binding of piperlongumine or fisetin with key protein
targets of the IL-17 and NF-κB signaling pathways. The predicted
hub targets of piperlongumine are displayed in the 3D results in
Fig. 9g. To validate these prediction results, we next evaluated the
effects of piperlongumine on the F. nucleatum-induced expression
of downstream markers. Western blot analysis showed that F.
nucleatum infection increased the phosphorylation of IKK, p65 and
p38, and piperlongumine treatment significantly inhibited the F.
nucleatum-induced activation of IKK, p65 and p38 (Fig. 9h–i).

DISCUSSION
Recent studies indicate that PDLSCs play a crucial role in the
maintenance of periodontal homeostasis.31The normal period-
ontal milieu is in a dynamic equilibrium of cell proliferation and
apoptosis,32 and the invasion of periodontal pathogens could
impair the self-renewal function of PDLSCs.33 In our study, we
demonstrated that F. nucleatum inhibited cell proliferation and
promoted apoptosis in PDLSCs and first showed that F. nucleatum
could induce ferroptosis by intervening in iron metabolism in
PDLSCs. As a bacterial virulence strategy, programmed cell death
in response to bacterial infection is a complex process, involved in
apoptosis, pyroptosis, necroptosis and ferroptosis.34 Further
studies are needed to illuminate the intersections between
apoptosis and ferroptosis, or with other programmed cell death
pathways.
FadA was reported to mediate the pathogenic effect of F.

nucleatum on colorectal cancer cells.16 In this study, we showed
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that FadA acted as a virulence factor and increased the expression
levels of inflammatory cytokines in PDLSCs. We first identified
PEBP1 as a FadA-interacting protein and showed that binding
with FadA could deactivate PEBP1 to activate the IKK-NF-κB and

Raf1-MAPK signaling pathways. It has been reported that PEBP1 is
involved in inflammation-related diseases,35 including autoim-
mune diseases36 and antiviral innate immune responses.37 Our
findings further confirmed the pivotal effect of PEBP1 on
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inflammation, and revealed a previously unrecognized molecular
mechanism of F. nucleatum pathogenicity.
Cytokine secretion is the first wave of the host immune

response to periodontal pathogen challenge.38 Our study showed
that F. nucleatum infection stimulated the secretion of IL-1β, IL-6,
and IL-8 in the very early stage. The results of RNA-seq also proved
that ample cytokines and chemokines were released in the
initial stage of F. nucleatum infection. These findings proved that
PDLSCs have immunoregulatory capacity and that F. nucleatum
could aggravate periodontal inflammation by impairing the

immunosuppressive function of PDLSCs. However, the prolonga-
tion of F. nucleatum infection did not lead to the continuous
secretion of these inflammatory cytokines. This is probably
because of the limitations of the in vitro cell model as it cannot
perfectly replicate the conditions found within living organisms. In
addition, F. nucleatum has limited survival time in the aerobic
environment,39 which may also limit its pathogenicity.
Drug repositioning is a tool for exploring new uses for

approved or investigational drugs. The coexpression-based drug
repositioning prediction and experimental validation findings
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suggest that piperlongumine and fisetin could be candidate
drugs to treat F. nucleatum-infected PDLSCs. Our results are
important in identifying drugs to treat periodontal pathogen
infection, but the evaluation of drug effects requires more
profound and systematic research.
In summary, our study provides more specific evidence of the

host’s early immune response to F. nucleatum infection and provides
novel insight into the pathogenic mechanism of periodontitis.

MATERIALS AND METHODS
Bacteria and cell culture
This study was approved by the Ethics Committee of Stomatology
Hospital of Shandong University (Protocol Number: 20170303) and
all volunteers signed the informed consent before providing the
oral tissue samples. Fusobacterium nucleatum ATCC 25586 was
provided by the Shandong Key Laboratory of Oral Tissue
Regeneration (Jinan, China). Human PDLSCs obtained from
healthy premolars and third molars were freshly extracted as
described in the previous study.40

Cell phenotype analysis and multilineage differentiation assays
To identify the cell phenotype of PDLSCs, BD StemflowTMhMSC
Analysis Kit (BD Biosciences, California, USA) was implemented
according to the manufacturer’s instructions. For multilineage
differentiation assays, PDLSCs were cultivated in 6-well plates at
2 × 105 cells per well. At 80%–90% density, the corresponding
differentiation medium was replaced to assess osteogenesis and
adipogenesis. After 21 days, the cells were stained by Alizarin Red
(Sigma‐Aldrich, Missouri, USA) to observe the mineralization.
After 28 days, the adipogenesis was detected by Oil Red O
(Sigma) staining.

Cell viability assays and cell apoptosis analysis
The number of cells was counted using Countstar (Shanghai,
China). The proliferation rate was detected using an EdU Apollo
DNA in vitro kit (RiboBio, Guangzhou, China) and observed by a
fluorescent microscope. Cell viability was estimated by Cell
Counting Kit-8 (Boster, Wuhan, China). In accordance with the
manufacturer’s instructions, Annexin V-FITC/PI double staining kit
(Dojindo, Kumamoto, Japan) was used to detect apoptosis.

Enzyme-linked immunosorbent assay (ELISA)
The proinflammatory cytokine concentrations were evaluated
using the specific ELISA kits (Biolegend, California, USA). The
optical density values were measured at 450 nm and 570 nm by a
microplate reader.

Real-time quantitative PCR Analysis
Total RNA was isolated with TRIzol reagent (CWBIO, Beijing, China),
and cDNA was reverse transcribed using a HiFiScript cDNA
Synthesis kit (CWBIO). Real-time quantitative PCR (qRT-PCR) was
performed using UltraSYBR Mixture (CWBIO). The relative mRNA
expression levels were analyzed by the 2^(-ΔΔct) method and
normalized by the GAPDH level. The sequences of the primers
used in the experiment are listed in Table S1.

Western Blot analysis
Cells were lysed in a RIPA lysis containing PMSF (Solarbio, Beijing,
China). Protein concentration was measured with a BCA Protein
Assay Kit (Cwbio). Equivalent amounts of proteins were loaded onto
SDS-PAGE gels and transferred to PVDF membranes (Millipore,
Massachusetts, USA). After blocked with 5% milk in TBST and
incubated with primary antibodies listed in Table S2 overnight, the
membranes were incubated with HRP-conjugated secondary
antibodies (Proteintech, Indiana, USA). The immunoreactive bands
were visualized by an Immobilon Western HRP Substrate (Millipore)
and determined using ImageJ gel analysis software.

Detection of intracellular Fe2+ amount and Mitochondrial
Membrane Potential (MitoMP) Assessment
Intracellular Fe2+ levels were examined using FerroOrange
(Dojindo) according to the manufacturer’s instructions. Mitochon-
drial membrane potential was detected by a MitoMP assay Kit
with JC-1 (Solarbio). The fluorescent intensity was measured using
the EnVision multimode microplate reader (PerkinElmer, Massa-
chusetts, USA). The fluorescence images were obtained by
Dragonfly 200 high speed confocal microscope (Andor Technol-
ogy, Belfast, UK).

Recombinant protein production and purification
FadA and PEBP1 were purified as previously described.17,41 The
entire fadA gene of F. nucleatum ATCC 25586 and the entire
pebp1 gene of Homo sapiens were synthesized by Sangon
Biotech (Shanghai, China). After verification, the prokaryotic
expression vector was transformed into E. coli BL21(DE3). E. coli
was grown in LB medium to an OD600 of 0.6. Then the cultures
were induced by 0.5 mmol·L-1 isopropyl β-d-1-thiogalactopyr-
anoside (IPTG) (Aladdin, Shanghai, China) for 2.5 h. An His-tag
Protein Purification Kit (Byotime, Shanghai, China) was used for
FadA purification, and Amicon® Ultra-15 Centrifugal Filters
(Millipore) were used for desalting, diafiltration and concen-
trated. The concentration of FadA for further cellular experi-
ments was chosen based on the concentrations reported in
the literature.16

Pull-down assay
The specific method of His pull-down refers to Pierce pull-down
polyhis protein: protein interaction kit (Thermo Fisher Scientific,
MA, USA). The pull-down proteins were digested into proteolytic
peptides and identified using Liquid chromatography and mass
spectrometry (Thermo Fisher Scientific).

Co-immunoprecipitation (Co-IP) assay
To check whether FadA/PEBP1 interaction occurs in vivo, PDLSCs
were preincubated with FadA. Total protein from PDLSCs was
extracted using NP-40 solution (Boster) containing 1mmol·L-1

PMSF. A total of 1 000 μg of cell lysate was incubated with 5 μg
anti-His antibody (Proteintech) or IgG (Santa Cruz Biotechnology,
Texas, USA) at 4 °C overnight. The protein complex was captured
overnight by Protein A/G agarose (Santa Cruz Biotechnology) at
4 °C. The beads were collected by centrifugation at 12 000 × g,
followed by 3 washes and Western blot analysis.

Surface plasmon resonance (SPR) analysis
We performed SPR analysis using a Biacore T200 (GE Healthcare,
MA, USA). Approximately 200 RU of His-tagged recombinant FadA
was immobilized on a sensor chip CM5 using amine coupling
chemistry. Unreacted moieties were blocked with ethanolamine.
Recombinantly purified PEBP1 was passed over the sensor chip in
different concentrations from 0 μmol·L-1 to 640 μmol·L-1, with the
40 μmol·L-1 concentration as internal control. All binding curves
were normalized to a baseline of 0 and the reference flow cell
value was subtracted.

RNA-sequencing analysis
A total of 45 samples from 5 individuals co-cultured without or
with F. nucleatum at an MOI of 100) for 0, 1, 3, 6, and 12 h were
analyzed by RNA-Sequencing (RNA-seq) at LC-BIO (Hangzhou,
China). The raw sequence data reported in this paper have been
deposited in the Genome Sequence Archive (Genomics, Proteo-
mics & Bioinformatics 2021)42 in National Genomics Data Center
(Nucleic Acids Res 2022),43 China National Center for Bioinforma-
tion/Beijing Institute of Genomics, Chinese Academy of Sciences
(GSA-human: HRA002672) that are publicly accessible at
https://ngdc.cncb.ac.cn/gsa-human. R package DESeq2 (version)44

was used for screening differential expression genes by setting
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statistical significance value (P-value) <0.01 and absolute value of
log2 (fold change) >1. We used R package Mfuzz (version 2.50.0)45

to classify the gene expression clusters. DAVID46 and R package
clusterProfiler (version 3.18.1)47 were used for GO and KEGG
enrichment analysis. R Pathview (version 1.30.1)48 was used to
visualize significant KEGG signaling pathways.

Construction of miRNA-mRNA network and regulatory network
The has.gff3 annotation files were downloaded from the miRbase
database, and the microRNA expression was obtained using
FeatureCounts. R package DESeq2 (version) was used for screen-
ing differential expression miRNAs by setting statistical signifi-
cance value (P-value) < 0.05. The potential target genes of miRNAs
were predicted by miRWalk2.0. The miRWalk, miRanda, miRMap,
and Targetscan database were added to help predicting supposed
target genes.
The module regulatory relationships were calculated using

the reported method.29 We used TRRUST49 to explore the TF
targets and used RegNetwork50 to construct a TF-miRNA-gene
regulatory network.

Computational drug repositioning analysis
The drug repositioning for the coexpressed genes were performed
using the cogena package (version 1.24.0).30 The SwissTargetPre-
diction database was used to predict potential effector targets.51

The SMILES format of candidate drugs obtained from ZINC15 was
inputted into this database to obtain the potential effector targets
of the candidate drugs.
We performed molecular docking using the program AutoDock

Vina (version 1.1.2).52 The 3D structure of the candidate drugs was
obtained from the ZINC15 and the structures of target proteins
were obtained from PDB database or uniport database. Auto-
DockTools (version 1.5.6) was used to process the ingredients and
protein structures. PyMOL (version 4.6.0) was used to visualize the
combinations.

Statistical analysis
All experiments were repeated independently at least three
times with cells from three volunteers, and the data were
plotted as mean ± standard deviation (SD). Data were analyzed
using GraphPad Prism (version 8.0). Differences among
multiple groups were assessed using one-way or two-way
ANOVA followed by Tukey’s honestly significant difference
comparison test. Differences were considered statistically
significant at P < 0.05.
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