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Mutation-associated transcripts reconstruct the prognostic
features of oral tongue squamous cell carcinoma
Libo Liang1, Yi Li 2, Binwu Ying3, Xinyan Huang4, Shenling Liao3, Jiajin Yang4 and Ga Liao 2,5✉

Tongue squamous cell carcinoma is highly malignant and has a poor prognosis. In this study, we aimed to combine whole-genome
sequencing, whole-genome methylation, and whole-transcriptome analyses to understand the molecular mechanisms of tongue
squamous cell carcinoma better. Oral tongue squamous cell carcinoma and adjacent normal tissues from five patients with tongue
squamous cell carcinoma were included as five paired samples. After multi-omics sequencing, differentially methylated intervals,
methylated loop sites, methylated promoters, and transcripts were screened for variation in all paired samples. Correlations were
analyzed to determine biological processes in tongue squamous cell carcinoma. We found five mutated methylation promoters
that were significantly associated with mRNA and lncRNA expression levels. Functional annotation of these transcripts revealed
their involvement in triggering the mitogen-activated protein kinase cascade, which is associated with cancer progression and the
development of drug resistance during treatment. The prognostic signature models constructed based on WDR81 and HNRNPH1
and combined clinical phenotype–gene prognostic signature models showed high predictive efficacy and can be applied to predict
patient prognostic risk in clinical settings. We identified biological processes in tongue squamous cell carcinoma that are initiated
by mutations in the methylation promoter and are associated with the expression levels of specific mRNAs and lncRNAs.
Collectively, changes in transcript levels affect the prognosis of tongue squamous cell carcinoma patients.
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INTRODUCTION
Oral tongue squamous cell carcinoma (OTSCC) is the most common
cancer in the oral cavity and is characterized by insidious and high
lymphatic metastasis. Consequently, OTSCC has a higher risk and
worse prognosis than other oral cancers.1 Initially, OTSCC incidence
was thought to be higher in the elderly population owing to the
accumulation of genetic mutations and risk factors such as long-
term smoking, alcohol consumption, and betel nut use.2–4 However,
recent reports have suggested increasing OTSCC incidence among
younger age groups.5 The lack of precancerous staging and practical
early diagnostic markers for OTSCC has prevented the establishment
of an efficient and accurate early warning system. The early warning
system, which should be noninvasive or minimally invasive, can be
used in high-risk groups to enable a diagnosis before the lesions are
fully formed or after surgery. The detection of cancer risk before the
lesions are fully formed or before the metastases become
established after surgery is of great clinical significance.
Currently, no effective diagnostic technology can meet the needs

of early clinical diagnosis. The biggest problem is the lack of molecular
diagnostic markers specific to OTSCC. Therefore, it is necessary to
identify critical molecular markers with high sensitivity and specificity
that can be monitored, screened, and diagnosed in a noninvasive or
minimally invasive manner to accurately assess the disease status,
improve the prognosis, and provide a better understanding of OTSCC.
In addition, the development of new targets is crucial for early
diagnosis, precise drug use, accurate prognosis, and understanding of

OTSCC pathogenesis. Therefore, searching for practical OTSCC-specific
molecular diagnostic markers and establishing rapid, sensitive, simple,
and noninvasive diagnostic tests have become the focus of research
in OTSCC prevention and treatment.
Using high-throughput sequencing technology, researchers

have obtained complete expression profiles, genome-wide data,
and genome-wide methylation profiles. Whole-transcriptome
sequencing provides access to numerous differentially expressed
genes and metabolic pathways; however, genes do not always
represent the entire molecular mechanism, and critical signaling
pathways are challenging to identify with too many differential
genes. Therefore, transcriptome analysis often falls short of the
intended research purpose.6

DNA methylation is a common alteration at the molecular level
and can be readily detected in various states of cell differentiation,
especially among cancer cells.7 Analyses of DNA methylation have
the potential to predict differences in survival and can help detect
susceptibility to therapeutic approaches.8 In recent years, the use
of mRNA markers in serum or tissues as diagnostic or therapeutic
targets for OTSCC has been gaining attention because of their
effectiveness, utility, and ability to identify mutations with high-
throughput screening. Circulating mRNA markers in serum and
plasma have been extensively studied as tumor markers.9 Long-
stranded non-coding RNAs (lncRNAs) play an essential role in the
development and prognosis of cancer, but their pathology has
been poorly studied.10 Transcriptome-wide analysis has shown
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that 90% of human genetic DNA is transcribed into non-coding
RNAs (ncRNAs) lacking protein-coding potential, while lncRNAs are
ncRNAs ranging from 200 to 100 kb in length. In malignant
tumors, the abnormal expression of numerous lncRNAs is
associated with cancer development, including lung, breast, and
prostate cancer.11,12 Abnormal lncRNA expression has been found
in patients with OTSCC and OTSCC metastasis, and lncRNA
detection in saliva may potentially be used as a noninvasive rapid
diagnostic marker for oral cancer.12 DNA methylation plays a vital
role in normal mammalian development, but aberrant methyla-
tion has been associated with various differentiation-related
diseases, including several human cancers. Early epigenetic
alterations may contribute to the abnormalities in cellular genes
that cause tumorigenesis. Thus, identifying methylation genes
may provide a means of preventing and treating OTSCC.13

Therefore, in addition to analyzing transcriptomic data from
OTSCC and adjacent normal tissue (ANT), this study combined
whole-genome sequencing (WGS) and whole-genome bisulfite
sequencing (WGBS) to investigate variations in expression profiles.
This joint analysis allows greater precision in targeting vital
regulatory genes associated with tongue cancer development and
progression. We also explored the upstream and downstream
regulatory relationships of critical genes. In addition, while some
studies have investigated the molecular mechanism of this cancer,
few have combined WGS, WGBS, and transcriptome sequencing.
The lack of such a joint analysis prompted us to conduct this
study. Given the complexity of our analyses and the results
obtained, we have created a flow chart for straightforward
interpretation (Supplementary Fig. S1).

RESULTS
Sample information
Sample information regarding HE-stained tissue sections obtained
from five patients is shown in Supplementary Fig. S2. All five

samples were squamous cell carcinomas of the floor of the mouth
or tongue, and three had lymph node metastasis. The patient
clinical information is summarized in Supplementary Table S3.

Results of the differentially methylated site (DMS) and
differentially methylated promoter (DMP) screening
The analysis of different cytosine methylation sites (CG, CHG, CHH,
and C) identified 291 mC-, 2 262 mCG-, 1 mCHH-, and 0 mCHG-
types among the five groups of samples. The CHH-type DMS was
not located in the coding or promoter region, while some C- and
CG-type DMSs were. Statistical analysis identified 82 shared C-type
DMSs in the coding region and 9 in the promoter region,
1138 shared CG-type DMSs in the coding region, and 160 in the
promoter region.
The DMP analysis for different types of cytosine methylation

modification sites showed a shared significant difference in
methylation sites in all five groups of OTSCC and ANT samples,
yielding a total of 5 837 mC-, 1 804 mCG-, 633 mCHG-, and 5 872
mCHH-types (Table 1).

Results of the differential transcriptional analysis
The results of the differential expression analysis of OTSCC and
ANT transcripts revealed significant differences (Fig. 1a); 1213
mRNAs were significantly upregulated, and 1 768 mRNAs were
significantly downregulated (Fig. 1b). Moreover, 93 lncRNAs were
significantly upregulated and 259 lncRNAs were significantly
downregulated (Fig. 1c); 128 micro-RNAs (miRNAs) were signifi-
cantly upregulated, and 117 miRNAs were significantly down-
regulated (Fig. 1d).

Methylation promoter and transcriptome correlation
Among the different types of cytosine methylation sites with
common DMPs in the five groups of samples, corresponding
mRNA transcripts were also significantly different in all the
groups; there were 5 CG-type, 7 CHG-type, 40 CHH-type, and 39
C-type DMPs. The results showed that SDR9C7 and MAPK8IP2
expression was significantly correlated with the corresponding
C-type DMPs; HAND2 and SEPP1 expression levels were signifi-
cantly correlated with the corresponding CG-type DMPs, and
GALNT2 expression was significantly correlated with the corre-
sponding CHH-type DMPs. None of the genes had expression
significantly correlated with the corresponding CHG-type DMPs.
Based on the human transcription factor target gene data
included in the TRRUST database, HAND2 was identified as a
transcription factor with four well-defined target genes (DBH,
GATA4, NPPA, and PHOX2A) and was positively correlated with all
of them except GATA4.

Table 1. Number of CG-, CHG-, CHH-, and C-type DMSs in the coding
or promoter regions of genes, along with the number of DMPs

Type CG CHG CHH C

DMS 2 262 0 1 291

DMS located in the coding region of
the gene

1 138 0 0 82

DMS in the promoter region 160 0 0 9

DMP 1 804 633 5 872 5 837
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Fig. 1 Differential expression of the transcriptome. a Heatmap of gene consistency clustering analysis for significant differences between
groups of OTSCCs and ANTs. Volcano plots of significantly different expressions of mRNAs (b), LncRNAs (c), and miRNAs (d)
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Fig. 2 Correlation of methylated promoters with the transcriptome. a Correlations of shared DMPs with significantly associated mRNAs and
LncRNA. b LINC00885 and 45 target genes with a significant association
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Among the different types of cytosine methylation sites with
common DMPs in the five sample groups, lncRNA transcripts were
also significantly different in all groups; there were no CG-type,
three CHG-type, eight CHH-type, and six C-type DMPs. The result
showed that LINC00885 expression was significantly correlated
with the corresponding C-type DMPs (Fig. 2a). LINC00885 had 45
target genes, and its expression was significantly correlated with
the expression of the 45 target genes (Fig. 2b). The correlations of
these six C-type DMPs with gene transcripts and their correspond-
ing promoters are shown in Table 2.

Functional enrichment analysis of shared DMP-related transcripts
and differential mRNA
Gene ontology (GO) analysis of mRNA transcripts significantly
associated with shared DMPs revealed six pathways containing
more than two genes: positive regulation of stress-activated
mitogen-activated kinase (MAPK) cascade, positive regulation
of stress-activated protein kinase signaling cascade, regulation
of stress-activated MAPK cascade, regulation of stress-activated
protein kinase signaling cascade, stress-activated MAPK cas-
cade, and stress-activated protein kinase signaling cascade
(Fig. 3a). Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis revealed only two signaling pathways (Fig. 3b); the
target genes of the lncRNA transcripts correlated with shared
DMPs were significantly enriched in arginine and proline
metabolism (Fig. 3c).
The results of mRNA transcriptome analysis identified 2981

differentially expressed genes between the five groups of OTSCC
and ANT samples. According to GO analysis, the main functions of
these genes were the formation of extracellular matrix tissues and
structural tissues, the promotion of myoblast development and
formation, and the mediation of myofiber movement (Fig. 4a).
KEGG analysis revealed the interaction between tumor cells and
the extracellular matrix, which constitute the tumor metastasis
channel, the formation of adhesion spots, and the formation of
proteoglycans in the extracellular matrix of tumor cells (Fig. 4b).

The Cancer Genome Atlas (TCGA) cohort validation
Among the LINC00885 target genes, the expression levels of
HNRNPH1, SEMA6D, and NTRK2 were significantly associated with
prognosis (Fig. 5a–c). For head and neck squamous cell carcinoma
(HNSCC) cohort data from TCGA, we selected eight genes with the
most considerable significant differences in the distribution of
differentially expressed genes between ANT and OTSCC tissues, as
well as in the Kaplan–Meier survival curve results. Among them,
TMPRSS11B and GAS2 expression was significantly higher in ANT
samples than in OTSCC samples (Supplementary Fig. S4a).
Accordingly, patients with high TMPRSS11B and GAS2 expression
had a better prognosis than those with low expression. In contrast,
MMP11, TMBIM6, NOMO2, LAMC2, HMGA2, and CSF2 expression
was significantly lower in ANT samples than in OTSCC samples
(Supplementary Fig. S4a). Accordingly, patients with low expres-
sion of these genes had a better prognosis than patients with high
expression (Supplementary Fig. S4b).

In the TCGA-HNSCC cohort, the difference in LINC00885
expression between OTSCC and ANT samples was statistically
significant (Fig. 6a). Twelve of the LINC00885 target genes were
upregulated in cancer tissues, whereas 16 were downregulated
(Fig. 6b). The upregulated genes were PLK4, RHOC, CHEK1, P4HA2,
LEMD1, TMEM244, MICAL2, SLC15A3, FOXI3, PNCK, and NELL2. The
downregulated genes were FAM149A, BOLL, RBPMS, ALDH3A2,
GALNT1, B9D1, ZNF85 SMAD3, NEDD4L, WDR81, PGAP1, PRPF40A,
PALM2, KIAA1429, CLPB, PCYT1A, and HNRNPH1 (Fig. 6c). A
prognostic signature was developed based on the 45 target
genes, using the minor absolute shrinkage and selection operator
Cox (LASSO-Cox) analysis shows that the results of the LASSO
regression analysis contained two genes (Supplementary Fig. S5a,
b). Furthermore, two survival-associated target genes, WDR81, and
HNRNPH1, were selected in the final prognostic signature, and the
coefficients were obtained from the LASSO algorithm. The
signature calculated the risk score for each patient using the
function predict, and each patient was grouped into a high- or
low-risk group according to the median risk score. The
Kaplan–Meier survival analysis showed that the HNSCC patients
in the high-risk group had a significantly shorter OS than HNSCC
patients in the low-risk group (Fig. 6d). The area under the receiver
operating characteristic (ROC) curve (AUC) of the prognostic
signature model (0.75) indicated an acceptable prediction
efficiency (Fig. 6e). Single-factor random forest plots showed that
patient age, pathological grade, pathological TNM stage, and risk
score (RS) reduced survival time and promoted adverse prognostic
events (Fig. 6f). Multi-factor random forest plots showed that the
model’s RS significantly reduced survival time and promoted
adverse prognostic events after association with the patient’s
clinical phenotype (Fig. 6g). The combined clinical phenotype-
genetic prognostic risk model divided patients into high-risk and
low-risk groups based on the median RS. Table 3 shows the risk
coefficient corresponding to each clinical phenotype and gene.
The LASSO analysis for the clinical phenotype–gene prognostic
model shows that there were 14 factors in the regression model
(Supplementary Fig. S5c, d). Kaplan–Meier survival curves showed
a significant difference in survival time between the high-risk and
low-risk groups, with a significantly higher overall 5-year survival
rate for patients in the low-risk group than for those in the high-
risk group (Fig. 6h). The AUC of the prognostic signature model
(0.817) indicated a higher prediction efficiency than the prog-
nostic risk model built on genes alone (Fig. 6i). The final
nomogram was constructed based on the factors included in
the gene–clinical phenotype-based prognostic characteristics
model (Fig. 7a). The closer the red line matches the black diagonal
line, the closer the predicted result is to the actual situation
(Fig. 7b–d).

Summary of Cancer Cell Line Encyclopedia (CCLE) lineage analysis
WDR81 expression in HNSCC tissues was lower than that in many
other diseases. In addition, WDR81 expression was high in skin
cancer and myeloma and, conversely, low in diseases such as
cervical cancer and teratoma (Supplementary Fig. S6a). HNRNPH1

Table 2. Six significantly correlated transcripts and their corresponding DMPs

Methylation type Transcript id Cor P value Gene id Gene name Gene description

C ENST00000293502 0.895 0.040 ENSG00000170426 SDR9C7 Short-chain dehydrogenase/reductase family 9C,
member 7

C ENST00000329492 −0.904 0.035 ENSG00000008735 MAPK8IP2 Mitogen-activated protein kinase 8 interacting protein 2

CG ENST00000359562 0.928 0.023 ENSG00000164107 HAND2 Heart and neural crest derivatives expressed 2

CG ENST00000514985 −0.899 0.038 ENSG00000250722 SEPP1 Selenoprotein P, plasma, 1

CHH ENST00000366672 0.933 0.020 ENSG00000143641 GALNT2 Polypeptide N-acetylgalactosaminyltransferase 2

C ENST00000457079 −0.892 0.042 ENSG00000224652 LINC00885
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expression was significantly lower in HNSCC tissues than in various
other diseases but higher in gallbladder cancer and teratoma.
Furthermore, HNRNPH1 was significantly highly expressed in
leukemia and embryonal cancer tissues (Supplementary Fig.
S6b). Our sequencing results for WDR81 and HNRNPH1 are
consistent with the mRNA expression interval of the CCLE pan-
cancer spectrum results.
The expression levels of WDR81 and HNRNPH1 differed

significantly in various cell lines of HNSCC. We selected 20 cell
lines with the highest and lowest expression for each gene
separately for demonstration (Supplementary Fig. S6c, d).

DISCUSSION
Studies on tongue cancer are lacking; with no apparent marker
genes, prognosis and progression are difficult to predict, and low
drug sensitivity during treatment is a challenge. Prior research
addressing the role of single transcripts in the treatment of OTSCC
has failed to elucidate their effects at the genetic level. Reviews
examining the relationship between clinical phenotype and tumor
have also been unsuccessful at answering this question.14–17 The
incidence of tongue cancer is increasing1–4; however, no credible
association between clinical phenotypes and OTSCC prognosis has
been found among patients.18,19 Therefore, the discovery of novel
omics biomarkers is sorely needed, as they may contribute to the
prediction of prognosis. This is the focus of this study.
Here, we demonstrated the MAPK cascade involvement of all

target genes corresponding to mutant methylation promoters
simultaneously present in the tumors of five patients with OTSCC.
To date, no other studies have found abnormalities in the expression
of genes involved in MAPK cascade signaling pathways in OTSCC
tissues. The MAPK pathway mediates cell proliferation, differentiation,
and chemotaxis. The negative feedback regulation of the MAPK
cascade in cancer cells reduces the sensitivity and efficacy of cancer
therapeutic agents.20,21 Moreover, the pathway influences essential
physiological processes (e.g., neuronal function, immune response,

and embryonic development) through regulating gene expression,
cytoskeletal protein dynamics, and cell proliferation or apoptosis
pathways.22,23 Based on our findings and previous reports, we
propose a preliminary hypothesis that the MAPK cascade is deeply
involved in the biological variation of oral cancer development,
migration, and drug resistance. The results of this study suggest that
the mutation of methylated promoters triggers aberrant expression of
mRNA transcripts, ultimately activating the MAPK cascade. Therefore,
if we can target and block specific methylated promoter mutations
and the resulting MAPK cascade, we may be able to reduce the
likelihood of adverse events in OTSCC.
The occurrence of extracellular matrix heterogeneity is inex-

tricably linked to tumors. The precipitation and mechanical
sclerosis of the extracellular matrix are considered key factors
leading to tumor infiltration and metastasis.24–27 Here, we
confirmed that, in tumor samples of patients with OTSCC, an
abnormal extracellular matrix is associated with cancer progres-
sion. Recent research suggests that activation of the PI3K-Akt
signaling pathway promotes epithelial-mesenchymal transition
(EMT), ultimately resulting in tumor invasion, metastasis, and drug
resistance.28 Studies have also confirmed that some specific
inhibitors of the PI3K-Akt signaling pathway (e.g., marine drugs)
can reverse EMT and thus reduce drug resistance in tumor tissue
during treatment.29,30 Similar to these previous results, we also
noted activation of the PI3K-Akt signaling pathway in OTSCC.
Thus, further investigation is needed to determine whether drugs
acting on this pathway can inhibit EMT and improve patient
prognosis.
Human papillomavirus (HPV)-negative tumors are believed to

be associated with the development of oral squamous cell
carcinoma, including that of the tongue, and are predictive of
poor prognosis and treatment resistance.31,32 In our study, HPV
infection was the KEGG pathway with the second-highest number
of aberrantly expressed transcripts enriched in OTSCC tissue.
Another pathway of importance was the calcium signaling
pathway, which is involved in crosstalk with reactive oxygen
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species (ROS) signaling pathways leading to tumorigenesis.33,34

Inhibition of calcium signaling can inhibit cancer cell proliferation
and metastasis in some cancers.35 Consistent with previous
findings, our study confirmed the activation of the calcium
signaling pathway in OTSCC tissues.

Data from the TCGA-HNSCC cohort were used to verify whether
our results aligned with previous extensive sample analyses.
Notably, the most differentially expressed transcripts in OTSCC
were correlated with prognosis in the TCGA-HNSCC cohort.
Nevertheless, the potential heterogeneity between HNSCC and
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OTSCC, ethnic differences in the patients studied, and differences
in sequencing methods can explain why some of our results were
inconsistent with the results of the HNSCC cohort analysis. With
the use of a larger sample size in future research, the credibility of
our findings will also increase.
LINC00885 promotes tumor cell proliferation and invasion.36

Current research has focused on breast and cervical cancers, but
LINC00885 expression in OTSCC remains unclear.37,38 Our findings
revealed that LINC00885 is also upregulated in OTSCC. Therefore,
the prognostic signature model based on the target gene of
LINC00885 has high predictive efficacy in predicting the patient’s
prognosis after surgery or treatment. Notably, since both
HNRNPH1 and WDR81 have risk coefficients less than 0 in the
risk profile model, the patients’ risk scores are the absolute value
of the actual risk score. In this study, HNRNPH1 and WDR81 were
highly expressed in OTSCC tumor samples and were protective
genes for predicting prognosis. The combined clinical
phenotype–gene model has a more reliable predictive efficacy

than gene-based models, but more complex information needs to
be collected.
Our study found no correlation between mutations occurring in

the genome and differences in the transcriptome. However, this
does not mean that genes are not mutated in OTSCC tissues or that
gene mutations do not affect the transcriptome, thereby leading to
functional changes. On the contrary, genomic sequencing of OTSCC
tissue samples from five patients showed many genomic mutations
in tumor tissues compared to that in ANT samples.
Our study found that 2 mC-, 2 mCG-, and 1 mCHH-type

methylation mutations cause aberrant expression of the transcrip-
tome in OTSCC. Mapping such molecular changes to cellular functions
revealed differences in MAPK cascade pathways. Further, lncRNAs and
their target genes in the variants were used to predict the prognostic
risk of patients. Ultimately, such changes lead to cancer development,
increased drug resistance, and suboptimal prognosis in patients with
OTSCC. Analysis of transcripts showed that five patients with OTSCC
had differential genes mainly clustered in pathways with multiple
functions. These pathways include deposition and mechanical
sclerosis of extracellular matrix tissue, PI3K-Akt signaling pathway
leading to EMT, HPV infection, and interaction of calcium signaling
with ROS signaling.
In conclusion, this study provides a theoretical basis for follow-

up research on experimental etiology or interventions. Targeted
blockade of specific methylated promoter mutations and the
resulting MAPK cascade may be a new direction for reducing
adverse events in OTSCC. The prognostic signature models
constructed based on WDR81 and HNRNPH1 and the combined
clinical phenotype–gene prognostic signature models show high
predictive efficacy and can be used to predict patient prognostic
risk in the clinical setting.

MATERIALS AND METHODS
Sample and data collection
Five patients with OTSCC were enrolled, and paired OTSCC and
ANT samples were surgically excised from each patient. After
washing off bloodstains with saline while removing non-essential
tissues, samples were dried with gauze, cut into tissue blocks less
than 0.5-cm thick, and placed into labeled RNase-free cryotubes or
EP tubes. The tubes were snap-frozen in liquid nitrogen and stored
at −80 °C. Next, we sequenced the whole transcriptome of the ten
samples via RNA sequencing (RNA-seq), WGS, and WGBS.

Differential methylation sites and promoter methylation screening
Based on the WGS results, we screened for mutations co-existing
in the five sets of paired samples. We next screened and
genetically annotated the differentially methylated regions in all
paired samples. We then screened for DMSs and DMPs common
to the five sets of paired samples based on the WGBS results. Loci
and promoters with statistically significant differences between
OTSCC and ANT samples were considered DMSs and DMPs,
respectively. Statistical significance was set at P < 0.05.

Differential expression of the transcriptome
We further analyzed and collated whole-transcriptome sequencing
data, including lncRNA, mRNA, and miRNA sequences. Differential
expression analysis between groups was performed with the OTSCC
and ANT samples separately using DESeq2, and software used to
detect differentially expressed genes with duplicate samples.39 The
screening was conditioned on differential ploidy of ≥2 and P < 0.05.

Correlation between DMPs and the transcriptome and gene
function prediction
Based on the DMPs shared by the five sets of paired samples, we
further analyzed the effect of their modifying effects on the
transcripts. Transcript data were obtained through differential
genes analysis. We extracted mRNA and lncRNA transcripts with
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Fig. 5 TCGA cohort survival analysis for the Hub genes. a–c Three
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significantly different expressions in the five sets of paired samples
during the analysis. Their expression was subjected to Pearson
correlation analysis with their corresponding shared DMPs. The
relationships between DMPs and transcripts were considered
significant at P < 0.05, with the absolute value of correlation
coefficients greater than 0.9. Screened transcripts were signifi-
cantly correlated with their corresponding shared DMPs, indicat-
ing that DMPs regulated the expression of these transcripts in
tumor tissues.
We used the R packages “org.Hs.eg.db”40 and “clusterProfiler”41

to perform GO and KEGG enrichment analyses of transcripts
associated with shared DMPs to determine their functional
pathways. Similarly, we performed GO and KEGG enrichment
analyses on differentially expressed transcripts co-occurring in the
five paired samples to understand how biological functions vary
across OTSCC and ANT.
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Fig. 6 The clinical phenotype–gene model for the survival analysis. a Differences in LINC00855 expression in normal tissues compared to that
in tumor tissues in the TCGA-HNSCC cohort. b Differential expression of LINC00855 target genes in normal versus tumor tissues of the TCGA-
HNSCC cohort. Each red dot represents a gene that is upregulated in tumor tissue. Each blue dot represents a downregulated gene.
c Heatmap showing the expression of each gene in normal and tumor tissues. d The Kaplan–Meier survival analysis curve of the prognostic
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Table 3. The risk coefficient corresponds to each clinical phenotype
and gene

Clinical phenotype Coefficient Gene Coefficient

Age 0.017 P4HA2 0.014

Gender −0.058 RBPMS −0.025

Stage 0.189 PGAP1 −0.082

M 0.043 FAM149A 0.073

N 0.287 RHOC 0.001

PRPF40A 0.028

SMAD3 0.001

WDR81 −0.051

USP35 0.003
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TCGA cohort validation
We downloaded HNSCC cohort mRNA transcriptome data and
follow-up data using the TCGA database. We used Perl software to
organize the data initially. We organized the data using the R
package “survival”42,43 and performed survival analysis with
“survminer”.44 We verified whether the expression of lncRNA
target genes associated with shared DMPs impacts the prognosis
of patients with HNSCC. The Least Absolute Shrinkage and
Selection Operator (LASSO) can retain the most representative
variables, which is valuable for the model’s accuracy.
Consequently, it is considered by researchers an effective high-

dimensional predictive regression method to avoid over-fitting
of the model variables. First, a Multivariate Cox analysis was
performed to determine whether the selected gene is a
prognostic factor in patients with HNSCC. We used the LASSO-
Cox regression model to show the ideal risk coefficient of each
prognostic feature for the genes in the HNSCC prognostic
signature model. In addition, the RS was calculated by the
function PREDICT. Patients were defined as high risk if their RS was

above the median and low risk if their RS was below the median.
Risk coefficients were used to distinguish between protective or
risk factors and to determine the ability of each factor to affect
prognosis. A factor more significant than 0 was considered a risk
factor, and a factor less than 0 was a protective factor. A more
considerable absolute value indicated that the factor had a
more significant impact on prognosis. The next step was to
observe whether the prognosis between the two groups was
different over time. The Kaplan–Meier survival analysis with a
two-sided log-rank test was performed to assess the difference in
the prognosis between the two groups. Next, the ROC curve was
used to determine the accuracy of the model’s prediction. Next,
univariate and multivariate Cox regression analyses were
performed to identify the independent prognostic factors for
the HNSCC cohort. The survival difference between the high-risk
and low-risk groups was stratified based on age, gender,
histologic grade, tumor stage, and pathological T/N/M stage.
Finally, the prognostic risk of a combined gene–clinical pheno-
type was modeled similarly.
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The prognostic impact of transcripts was verified using box
plots showing differential gene expression in cancer and adjacent
tissues and Kaplan–Meier survival curves. Ultimately, the nomo-
gram was constructed based on the factors included in the model.
Finally, the calibration curve was used to determine how well the
predicted results match the formal situation.

CCLE for showing the pan-cancer and cell lineages
We downloaded gene expression across the cancer spectrum from
the CCLE database into the prognostic risk model. We visualized
the results to present the expression levels of these genes in each
cancer type or different cells of HNSCC.

Statistical analysis and data processing
For all statistical analyses, statistical significance was set at a
P < 0.05. All statistical analyses were performed using the software
Perl and R. The graphs were plotted based on the packages
“ggpubr” and “ggplot2”.45,46 Analysis of variance was performed
with the program package “edgeR”.47 The package “survival” was
used for the integration of survival times and ending events,48 the
package “glmnet” was used for the LASSO regression analysis,49,50

and the package “survminer” was used to plot Kaplan–Meier
survival curves.51 The final patient RS was calculated by the
function to predict, whereas the function coef algorithm calculated
the coefficients of each factor in the prognostic risk profile model.
The plotting of ROC curves and the calculation of AUC values were
implemented by the package “survivalROC”.52 The plotting of the
random forest plot was performed with the package “forestplot,”
and the function forestplot was used for plotting.53 Finally, the
program package “rms” was used to construct the nomogram.
Since quantitative numerical data are required in the random
forest analysis, we transformed the TNM staging according to the
staging values and kept only numerical data. For gender, we
defined female as 0 and male as 1. The details of the statistical
analysis tools were shown in Supplementary Table S7.
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