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Specific RNA m6A modification sites in bone marrow
mesenchymal stem cells from the jawbone marrow of type 2
diabetes patients with dental implant failure
Wanhao Yan1, Xiao Lin2, Yiqian Ying3, Jun Li2✉ and Zhipeng Fan 1,4✉

The failure rate of dental implantation in patients with well-controlled type 2 diabetes mellitus (T2DM) is higher than that in non-
diabetic patients. This due, in part, to the impaired function of bone marrow mesenchymal stem cells (BMSCs) from the jawbone
marrow of T2DM patients (DM-BMSCs), limiting implant osseointegration. RNA N6-methyladenine (m6A) is important for BMSC
function and diabetes regulation. However, it remains unclear how to best regulate m6A modifications in DM-BMSCs to enhance
function. Based on the “m6A site methylation stoichiometry” of m6A single nucleotide arrays, we identified 834 differential m6A-
methylated genes in DM-BMSCs compared with normal-BMSCs (N-BMSCs), including 43 and 790 m6A hypermethylated and
hypomethylated genes, respectively, and 1 gene containing hyper- and hypomethylated m6A sites. Differential m6A hypermethylated
sites were primarily distributed in the coding sequence, while hypomethylated sites were mainly in the 3′-untranslated region. The
largest and smallest proportions of m6A-methylated genes were on chromosome 1 and 21, respectively. MazF-PCR and real-time RT-
PCR results for the validation of erythrocyte membrane protein band 4.1 like 3, activity-dependent neuroprotector homeobox (ADNP),
growth differentiation factor 11 (GDF11), and regulator of G protein signalling 2 agree with m6A single nucleotide array results; ADNP
and GDF11 mRNA expression decreased in DM-BMSCs. Furthermore, gene ontology and Kyoto Encyclopedia of Genes and Genomes
analyses suggested that most of these genes were enriched in metabolic processes. This study reveals the differential m6A sites of
DM-BMSCs compared with N-BMSCs and identifies candidate target genes to enhance BMSC function and improve implantation
success in T2DM patients.
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INTRODUCTION
Diabetes mellitus (DM) is a chronic metabolic disease identified by
high blood glucose levels, which can impair the blood vessels,
kidneys, heart, eyes, and nerves.1 Type 2 DM (T2DM) exceeds 90%
of diabetes mellitus case and is characterised by a lack of insulin
secretion from pancreatic islet β-cells, insufficient compensatory
insulin secretory responses, and tissue insulin resistance (IR).2

According to research on both humans and animals, T2DM causes
an increase in the susceptibility and severity of periodontal disease,
increases inflammatory events in periodontal tissues, impairs the
formation of new bone, and increases RANKL expression in
response to bacterial challenge. Increased nuclear factor-kappa B
(NF-κB) activation and the expression of inflammatory cytokines like
tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN‐γ)
result from these responses, which can ultimately lead to tooth
loss.3 Currently, the main clinical methods for tooth loss repair
include fixed, removable, and implant dentures, and implant-based
dental restorations have become the primary treatment option for
patients who are missing all or part of their teeth due to
advancements in surgical techniques and implant design. Our
previous study shows that the failure rate of patients with DM, who

have well-controlled glucose before implantation, was 10.77%,
while that of non-diabetic patients was 0.75%.4 A previous study
also reported that insulin-treated T2DM rats had improved bone
regeneration and trabecular microstructure to some extent, but not
comparable to the control group.5 Furthermore, a recent clinical
study discovered that T2DM patients with good glycaemic control
had lower implant stability during the healing stage than patients
without diabetes.6 It is thus clear that we need to improve our
knowledge regarding the key factors that affect implant failure in
patients with diabetes in order to improve the success rate of
implantation. In a previous study, the site-specific characteristics of
bone marrow mesenchymal stem cells (BMSCs) derived from the
iliac crest and jawbone marrow of the same person were described.
It was found that BMSCs from the jawbone marrow had a higher
proliferation, delayed senescence, and greater osteogenic differ-
entiation ability when compared to those from the iliac crest.
Additionally, BMSCs derived from the jawbone marrow have a
lower potential for adipogenesis than those derived from the iliac
bone marrow, which can reduce fat generation during the
regeneration of bone tissue.7 After implant surgery, The character-
istics of BMSCs from the jawbone marrow may be thought to be
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advantageous for alveolar bone regeneration after implant surgery.
BMSCs start to congregate around the implant surface as soon as
the implant is inserted into the jawbone. Following BMSC adhesion
to the implant surface, osteogenic differentiation is induced, and
new bone is gradually formed with the aid of cells, blood, and
associated cytokines.8 These findings indicated that BMSCs in the
jawbone marrow play a crucial role in implant osseointegration.
However, our previous study revealed that the migration, prolifera-
tion, and osteogenic differentiation ability of BMSCs derived from
the jawbone marrow of T2DM patients (DM-BMSCs) was signifi-
cantly diminished compared to the BMSCs from normal controls
(N-BMSCs).9,10 Therefore, enhancing the function of DM-BMSCs and
improving the implant success rate are critical for implant surgery.
RNA N6-methyladenine (m6A) is the most prevalent form of

methylation modification, which accounts for 0.1%–0.4% of
adenosine,11 and it is widespread in eukaryotic mRNA. Specifically,
m6A methylation refers to the modification of an adenosine to an
m6A adenine, which occurs at the N6 site of the adenine base in
RNA.12 RNA m6A methylation is mainly catalysed by methyltrans-
ferase and demethylase, which is similar to DNA methylation;13 the
methyltransferases, known as “writers”, mainly include methyl-
transferase like 3 (METTL3), Wilms tumour 1-associated protein
(WTAP), and so on. Through demethylases called “erasers”, such as
ALKB family member 3 (ALKBH3), ALKBH5, and fat mass and
obesity-related protein (FTO), m6A methylation is dynamically
reversible and can return the modified RNA to its original RNA. In
addition, m6A binding proteins act as “readers”, and these mainly
include the YT521-B homology family (YTH), the insulin-like growth
factor-2 binding protein family (IGF2BPs), and heterogeneous
nuclear ribonucleoprotein families (HNRNP), which recognise m6A
modified RNA and regulate mRNA metabolism and function.14 M6a
participates in almost every process of mRNA metabolism,
including RNA transcription, translation, and degradation. Sequen-
cing analysis revealed that most m6A modifications were
concentrated in the RRACH motif (R=G/A, H= A/C/U), and within
this motif, it was primarily concentrated near the 3′-untranslated
region (UTR), followed by the coding sequences (CDS) and 5′-UTR
regions.14 A previous study found that the m6A level of T2DM
patients and diabetic rats was significantly lower compared with
the control group, and that T2DM could be characterised by the
m6A content. The increased mRNA expression of FTO may be to
blame for the reduction of m6A in T2DM, which may further
increase the risk of T2DM complications. As potential novel T2DM
biomarkers, low m6A levels should be further researched.15 A
previous study reported that the m6A reader protein YTHDC1,
which interacts with SQSTM1 mRNA, was decreased in diabetic
keratinocytes during both the acute and long-term effects of
hyperglycaemia. The depletion of YTHDC1 enhanced apoptosis
rates and impaired wound-healing capacity of diabetic keratino-
cytes.16 The above studies indicate that m6A alterations are closely
related to T2DM and may thus be a key target for future prevention
and treatment methods. Furthermore, Liu et al. reported that m6A
is required for the differentiation of hBMSCs, and that the m6A
“reader” YTHDF1 could promote the osteogenesis of BMSCs
through the translational control of ZNF839.17 Li et al. found that
the osteogenic differentiation of BMSCs is negatively regulated by
the m6A demethylase ALKBH5 via PRMT6.18 This above indicates
that different biological functions can be produced by m6A
modifications in BMSCs, and that m6A alterations can regulate
BMSC function. In addition, in mice with diabetic foot ulcers (DFUs),
adipose-derived mesenchymal stem cells (ADSCs) were found to
promote lymphangiogenesis through the METTL3 pathway and
improve wound healing by regulating VEGF-C through the METTL3/
IGF2BP2-m6A pathway.19 However, how to regulate m6A modifica-
tions in DM-BMSCs to enhance impaired function and improve the
implant success rate is currently unclear.
In this study, we used an m6A single nucleotide array to analyse

the changes in the m6A sites of BMSCs in well-controlled T2DM

patients and non-diabetic patients. To identify the potential biological
functions of the target genes, bioinformatics analysis including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were also carried out.

RESULTS
Differential m6A sites and differentially m6A-methylated genes
Using the filtering criteria of |FC| ≥ 1.5 and a P-value < 0.05, based on
“m6A site methylation stoichiometry”, 986 differential m6A-
methylated sites were identified in the BMSCs of the T2DM group
when compared with the control group; of which 44 were m6A
hypermethylated sites (Table S1; including the 3’UTR of EPB41L3,
CDS of YTHDC1, 3’UTR of NAA60, CDS of DIDO1, and 3’UTR of MAFK)
and 942 were m6A hypomethylated sites (Table S2; including the
3’UTR of ADNP, CDS of YTHDF3, CDS of YTHDF2, CDS of GDF11, and
3’UTR of RGS2) (Fig. 1a), and hierarchical clustering was done based
on all notable m6A-methylated sites to speculate on the relationship
between samples (Fig. 1b). In addition, 834 differential m6A-
methylated genes in the BMSCs were identified in the T2DM group
when compared with the control; of which 43 were m6A
hypermethylated genes (including those in ZNF12, MAFK, NCOA7,
EPB41L3, and TIFA) and 790 were m6A hypomethylated genes
(including those in TM4SF1, PRPSAP1, OTUD5, GTPBP4, and TAF3).
PRRC2C has both hyper- and hypomethylated m6A sites.
Similarly, using the filtering criteria of |FC| ≥ 1.5 and a P-value <

0.05, based on “m6A site abundance”, 800 differential m6A-
methylated sites in the BMSCs were identified in the T2DM group
when compared with the control; of which 44 were m6A
hypermethylated sites (Table S3; including the 3’UTR of SPEN, CDS
of INF2, CDS of ZFYVE19, CDS of ZNF394, and 3’UTR of BORCS8) and
756 were m6A hypomethylated sites (Table S4; including the 3’UTR
of METTL14, 3’UTR of YTHDC2, CDS of YTHDF2, CDS of TRMT61B,
and 3’UTR of RARRES3). In addition, 710 differential m6A-methylated
genes in BMSCs were identified in the T2DM group when compared
with the control using the array analysis; of which 38 were m6A
hypermethylated genes (including LRIG3, BICD2, KLF12, ZFYVE19, and
RPUSD4) and 666 were m6A hypomethylated genes (including
LURAP1L, TRIB3, RCAN1, PRPSAP1, and RRAGC). Furthermore, 6 genes
were identified as having both hyper- and hypomethylated m6A
sites (TRIAP1, ZNF623, FOXK2, PDE4B, SPEN, and GCC1).
We then analysed the proportion of m6A methylation sites in

different gene structures based on the “m6A site methylation
stoichiometry”. The differentially m6A hypermethylated sites were
mainly distributed in the CDS (61.90%; including NCOA7, TIFA, SPAG5,
BIRC6, and FAM83H), followed by the 3ʹ-UTR (33.33%; including
ZNF12, MAFK, EPB41L3, ZBTB37, and SMIM13), and the 5ʹ-UTR (4.76%;
including PCED1A and MAGI1; Fig. 2a). The differentially m6A
hypomethylated sites were distributed with similar percentages in
the 3ʹ-UTR (51.97%; including TM4SF1, PRPSAP1, OTUD5, GTPBP4, and
PCYT1A) and the CDS (46.53%; including TAF3, CDYL, C1orf50,
CCDC14, and CORO1C), with the fewest located in the 5ʹ-UTR (1.49%;
including CNPY2, DDX6, EPN2, SLC20A2, and HSBP1; Fig. 2b).
Additionally, we analysed the distribution of genes with differential
m6A-methylated sites in the chromosomes (Fig. 2c). The chromo-
some circos diagram showed that there were multiple differentially
m6A-methylated genes on most chromosomes. The largest amount
was 4 m6A hyper-regulated genes and 96 m6A hypo-regulated
genes on chromosome 1, and the smallest amount was 12 m6A
hypo-regulated genes and no m6A hyper-regulated genes on
chromosome 21, and both were in the T2DM group. There were no
m6A hyper- and hypo-regulated genes on chromosome Y (Fig. 2c).

MazF-polymerase chain reaction and real-time reverse
transcriptase-polymerase chain reaction of genes with differential
m6A modifications and mRNA expression
To further validate the m6A single nucleotide array results,
MazF-polymerase chain reaction (MazF-PCR) and real-time reverse
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transcriptase-polymerase chain reaction (RT-PCR) were used to
verify the m6A methylation and mRNA levels for EPB41L3, ADNP,
GDF11, and RGS2. The m6A methylation level for EPB41L3 was
significantly upregulate in the T2DM group when compared with
the control group, in accordance with the m6A single nucleotide
array results (Fig. 3a), whereas there was no significant difference
in mRNA levels (Fig. 3e). On the contrary, the m6A methylation
levels of ADNP, GDF11, and RGS2 were significantly downregulated
in the T2DM group when compared with the control group
(Fig. 3b–d), and the mRNA levels of the ADNP and GDF11 were
decreased in accordance with the m6A single nucleotide array
results (Fig. 3f, g), and there was no significant difference in the
mRNA levels of the RGS2 (Fig. 3h).

Protein–protein interactions of the differentially m6A-methylated
genes
Based on “m6A site methylation stoichiometry” and interactions
with combined scores ≥0.7,20 using the STRING online database and
Cytoscape software, a total of 564 differentially m6A-methylated
genes of the 834 commonly altered differentially m6A-methylated
genes were filtered into the protein–protein interaction (PPI)
network complex, consisting of 564 nodes and 3684 edges (Fig. 4a).
Information on the differentially m6A-methylated genes in the PPI
network is shown in Table S5. The top ten hub genes were
HSP90AA1, UBC, ACTB, RPL3, RPS15, CTNNB1, HSP90AB1, RPLP0, RPS4X,
and RPL19, and they were identified using the cytoHubba plug-in as
having a higher degree of connectivity (Fig. 4b).

Functional enrichment analysis of the differentially m6A-
methylated genes
Based on “m6A site methylation stoichiometry”, the GO analysis
results show a significant level of m6A-methylation for the
upregulated genes with differential expression in the T2DM group,
which were enriched in 188 GO terms. These included 125 GO terms
related to biological processes, mainly distributed in cellular
component biogenesis, cell-cell junction assembly, and the internal
protein amino acid acetylation pathway (Fig. 5a); 32 terms related to
cellular components which participate in the intracellular, nucleus,
and nuclear lumen pathways (Fig. 5a); and 31 terms related to
molecular function categories, mainly heterocyclic compound
binding, protein C-terminus binding, DNA-binding transcription
repressor activity, and the RNA polymerase II-specific pathway
(Fig. 5a). Similarly, significant m6A-methylated downregulated genes
with differential expression in the T2DM group were enriched in
1605 GO terms. These included 1205 GO terms related to biological
processes, mainly distributed in primary metabolic processes,
cellular macromolecule metabolic processes, and protein metabolic
process pathways (Fig. 5b); 230 terms related to cellular components
which are involved with intracellular, organelles and intracellular
organelle pathways (Fig. 5b); and 170 terms related to molecular
function categories, mainly binding, protein binding, and nucleic
acid binding pathways (Fig. 5b).
The KEGG results show that the main pathways enriched for the

m6A-methylated upregulated genes involved tight junctions and
the Rap1 signalling pathway (Fig. 6a), while neurodegeneration,
amyotrophic lateral sclerosis, and salmonella infection pathways
were mainly enriched among the top ten pathways based on the
m6A-methylated downregulated genes (Fig. 6b).

DISCUSSION
In this study, we selected two groups of five BMSCs from implant
failure well-controlled T2DM patients and non-diabetic patients
and used m6A single nucleotide arrays to investigate the hub
mRNAs and the changes in the m6A sites of the BMSCs. On
average, m6A modifications on each mRNA occurred in the
order of three.21 While most mRNAs have only one m6A site,
some can carry >20 m6A modifications.22 If there were no other
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m6A sites upstream or downstream of a particular site, it was
defined as an ‘m6A single nucleotide site’.23 Studies have shown
that m6A single-nucleotide sites are involved in molecular
functions and processes, such as mRNA translation, initiation,

and elongation. These sites also regulate non-coding RNA activity
and degradation.24 In addition, the present study revealed that
m6A single-nucleotide sites have significant functions at the
molecular, cellular, and organismal levels.25–27 In summary, m6A
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Fig. 5 GO analyses of the differentially m6A-methylated genes. Top 10 enriched items obtained from the GO analyses of the differentially
expressed m6A (a) hypermethylated and (b) hypomethylated genes
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single-nucleotide modifications are closely associated with the
occurrence and progression of numerous diseases. Furthermore,
m6A modification reportedly impacts BMSC proliferation, differ-
entiation, and apoptosis by regulating the expression of ALP,
RUNX2, OSX, VEGF, and other related genes.28 M6A also regulates
SOX9 translation during the chondrogenic differentiation of
BMSCs, and, thus, represents a potential therapeutic target for
repair of cartilage defects.29 Moreover, METTL3 knockdown
decreases the osteogenic differentiation ability of BMSCs via the
PI3K-Akt signalling pathway.30 Taken together, these findings
indicate that RNA m6A methylation could regulate the fate of
BMSCs. In our study, based on “m6A site methylation stoichio-
metry”, our finding found the DM-BMSCs had 986 differentially
m6A-methylated sites and 834 differentially m6A-methylated
genes when compared with the N-BMSCs. Analysis of the
differential m6A site methylation stoichiometry genes in the
DM-BMSCs and N-BMSCs groups, showed that hypomethylated
genes were much more abundant than hypermethylated genes in
the T2DM group. Our results showed that the RNA m6A readers,

YTHDF2 and YTHDF3, were hypomethylated in DM-BMSCs. Zheng
et al. found that YTHDF2 was a crucial gene in the emergence of
T2DM, and it could thus be used as a biomarker and therapeutic
target.31 In addition, the increased adipogenic differentiation
ability of METTL3-depleted porcine BMSCs is partially inhibited by
the overexpression of YTHDF2.32 Furthermore, YTHDF3 levels were
also found to be upregulated in the placentas of gestational
diabetes mellitus (GDM), showing excellent classifying power for
the GDM and control groups.33 These findings indicate a critical
role for the m6A readers YTHDF2 and YTHDF3 in the occurrence,
progression, and prevention of DM, and could thus help to restore
the damaged functions of DM-BMSCs to improve the success
rate of implantation. However, the role of YTHDF2 and YTHDF3 in
DM-BMSCs and their effects on the implant success rate require
further exploration.
Moreover, analysis of the differential m6A sites in the T2DM

and control groups, showed that the hyper- and hypo-regulated
m6A sites were not the same, among which the differentially
m6A hypermethylated sites were mostly concentrated in the
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CDS, while m6A hypomethylated sites were mainly concentrated
in the 3ʹ-UTR. In addition, the results showed that the
differentially hypermethylated genes were mainly located on
chromosomes 1, 6, 16, 17, and 20, whereas the differentially
hypomethylated genes were mainly located on chromosome 1.
The most hypermethylated gene, ZNF12 was located on
chromosome 7, and the most hypomethylated gene, TM4SF1
was located on chromosome 3. In summary, chromosomes 1 has
the largest number of differentially m6A-methylated genes, as
well as some osteogenesis differentiation related and m6A
related genes, such as YTHDF2 and RGS2, indicating that it should
be the focus of further research.
According to their biological functions, we selected EPB41L3,

ADNP, GDF11, and RGS2 for further analysis. The MazF-PCR results
showed that the m6A methylation level of EPB41L3 was
significantly higher in the T2DM group when compared with
the control group accord with m6A single nucleotide array
results, while the real-time RT-PCR results revealed that there
was no discernible difference in mRNA levels. The m6A
methylation levels of ADNP, GDF11, and RGS2 were significantly
downregulated in the T2DM group when compared with those
in the control group, while the mRNA levels of ADNP and GDF11
were decreased, and there was no discernible difference in the
mRNA levels of RGS2. M6a is involved in almost all mRNA
metabolism-related processes, including its regulation, transcrip-
tion, maturation, translation, degradation, and stability.34 When
m6A sites simply affect the translational efficiency, but not the
stability of the mRNA, mRNA levels can remain unchanged, and
m6A sites on EPB41L3 and RGS2 may precisely do so. Thus, there
were no discernible changes in the mRNA levels of EPB41L3 and
RGS2. Erythrocyte membrane protein band 4.1 like 3 (EPB41L3)
has been approved as a biomarker to identify high-grade
intraepithelial lesions and cancers in the cervical region, and for
distinguishing between these lesions and those that are most
likely to clear.35 Likewise, it has been demonstrated that there is
a strong correlation between the degree of EPB41L3 methylation
and anal disease.36 EPB41L3 methylation was significantly higher
in oropharyngeal cancer (OPC), which can maximise specificity
and sensitivity for early OPC detection, regardless of the stage of
early vs. late disease.37 In conclusion, these results show that
EPB41L3 is closely associated with the occurrence and progres-
sion of cancer. Activity-dependent neuroprotector homeobox
(ADNP), a transcription factor and cytoskeletal-binding protein,
plays a crucial role in cellular growth and proliferation.38 Wound
healing experiments have shown that ADNP promotes cell
migration.39 NAP, a brief peptide with eight amino acids derived
from ADNP, acts as a protective agent against cerebral
ischaemia, central nervous system complications of DM, and
retinal damage induced by different insults.40–42 A previous
study found that NAP inhibits hyperglycaemia/hypoxia-induced
retinal pigment epithelium barrier breakdown via modulating
HIFs and VEGF production.43 Additionally, it also has antioxidant
properties, metal-chelating, prevents ROS formation, anti-
apoptotic activity, and anti-inflammatory properties.43–46 As a
member of the transforming growth factor-β (TGF-β) super-
family, growth differentiation factor 11 (GDF11) was first
identified in preodontoblasts at the late cap stage.47 A portion
of the human pulp tissue, particularly the odontoblast layer,
which is the outermost pulp layer, showed GDF11-positive
staining.48 Nakashima et al. showed that exogenous GDF11 gene
delivery could positively upregulate the odontogenic differentia-
tion of dental pulp stem cells (DPSCs).49–51 Qi et al. reported that
endogenous GDF11 could enhance the odontogenic differentia-
tion of DPSCs,48 indicating that GDF11 plays a crucial role in MSC
differentiation. Moreover, GDF11 attenuated the progression of
T2DM by enhancing islet β-cell function and survival.52

Recombinant GDF11 (rGDF11) has been reported to reduce
body weight and improve glucose homeostasis in mice,53

suggesting that it also regulates diabetes. In addition, GDF11
has anti-inflammatory and antioxidant properties and inhibits
cell apoptosis and anti-ageing properties.54–57 Moreover, the
GDF11-FTO-PPARγ axis prompted the shift of BMSC commitment
to adipocyte and inhibited bone formation during osteoporosis,
as a result of the imbalance between bone mass and fat,
indicating that m6A “eraser” can affect the function of GDF11 in
BMSCs.58 These results indicate that GDF11 may be an important
target gene by which to improve the implant success rate in
patients with T2DM. Regulator of G protein signalling 2 (RGS2)
belongs to the B/R4 subfamily of the RGS protein family and is
reportedly expressed in osteoblasts and induced by the cAMP-
PKA pathway.59 Studies have shown that RGS2 is highly
upregulated in human dental follicle cells (hDFCs) and in
hADSCs undergoing osteogenic differentiation.60,61 RGS2 was
also reported to be expressed in rat metaphyseal and diaphyseal
bones, as well as in cultured mouse osteoblasts, suggesting that
it may play a role in bone development.62 In summary, previous
studies reported that the function of DM-BMSCs was
impaired,9,10 the data indicates the m6A hypomethylation levels
of ADNP and GDF11 may be related to the mRNA levels, then
further influence the impaired BMSC function of patients with
T2DM. This may be because they are associated with the
osteogenic differentiation and proliferation of BMSCs around
implants, the promotion of implant osseointegration and
regulation of alveolar bone remodelling after implantation
surgery, and they may have anti-inflammatory, antioxidant,
and protective roles. Therefore, we may increase the level of
ADNP and GDF11 m6A methylation modification in DM-BMSCs
and, subsequently, restoring the impaired BMSC function in
T2DM patients, then influence the implant success rate of
patients with T2DM.
Furthermore, the differentially expressed m6A methylated

genes were analysed using GO and KEGG methods. Among the
GO terms enriched in hypomethylated genes of DM-BMSCs,
biological processes and pathways were associated with primary
metabolic processes, cellular macromolecule metabolic processes,
and protein metabolic process pathways. Previous studies have
shown that IR sequelae include chronic inflammation, oxidative
stress status imbalance, and the occurrence of metabolic
syndrome.63 Aguilar-Recarte et al. reported that metformin lowers
glucose through by inhibiting mitochondrial respiratory chain
complex 1 and activating AMP-activated protein kinase (AMPK),
which has been recognised as a potential IR-related pathway.64

Similarly, Entezari et al. also showed that AMPK signalling
improves insulin sensitivity and prevents oxidative stress and cell
death in cells. Entezari et al. also showed that AMPK signalling
improves insulin sensitivity and prevents oxidative stress and cell
death in β cells.65 These results suggest that metabolic processes
play an crucial role in the occurrence, development, and
treatment of T2DM. In addition, mitochondrial dysfunction and
the oxidative stress in osteoblasts at the titanium-bone interface
(TBI) are both important factors in diabetes-induced poor bone
repair and implant destabilization, and thus might be therapeutic
targets. Adiponectin, a cytokine, could also improve the osteoin-
tegration of implants by rescuing mitochondrial impaired through
the AMPK pathway under diabetic conditions, both in vivo and
in vitro.5,66 Selenomethionine, a naturally occurring amino acid-
containing selenium, could attenuate H2O2-induced suppression
of the osteogenic differentiation of BMSCs through an antioxidant
effect that was modulated by PTEN/PI3K/AKT pathway, which
could be a promising antioxidant candidate by which to reduce
oxidative stress during dental implant osteointegration process.67

Our study, in combination with previous studies, showed that
ADNP and GDF11 may affect the metabolic process and
antioxidant functions of DM-BMSCs, which could thus be a crucial
target by which to address implant stability and bone integration
in patients with T2DM.
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In conclusion, this study has identified the differential m6A
sites and m6A-methylated genes of BMSCs when comparing
T2DM and non-diabetic groups. The results reveal the potential
link between the RNA m6A-methylated modifications and
impaired BMSC function, as a result of T2DM. Furthermore, our
study indicated that ADNP and GDF11 m6A methylation levels
may be closely related to impaired BMSC function in T2DM
patients and could thus be utilised as targets in the future to
enhance function and improve the success of implantation in
patients with T2DM.

MATERIALS AND METHODS
Subject enrolment and ethics statement
With informed patient permission, the Ethics Committee of Beijing
Stomatological Hospital, Capital Medical University allowed
this study (approval no. CMUSH-IRB-KJ-PJ-2018-08). All subjects
recruited and the glycaemic control criteria for T2DM in this
investigation were also in accordance with our previous study.4

Five patients who met the glycaemic control standard, were ready
for implant surgery, but whose implant failed during the healing
period, were included in the study (T2DM group). The ratio of
healthy subjects (control group) to the T2DM group was 1:1. All
basic information, including age (T2DM group: 54.2 ± 8.1 years old;
control group: 54.6 ± 7.7 years old), sex (male), general health
status, implant system, and implant location, were matched to
minimise the impact of external factors. The other specific patient
inclusion criteria were the same as previously described.4

Implant insert, bone chip extraction, and cell culture
The same surgeon performed all of the implantation surgeries in this
study. The implants were placed as described in our previous study.68

The collection and resuspension of bone chips, and BMSC culture
and identification were also carried out as previously described.4,69

m6A single nucleotide array analysis
Total RNA from 10 BMSC samples, including five T2DM samples and
five control group samples, was extracted using Trizol (CWBIO,
Taizhou, China). RNA concentrations were measured using a
NanoDrop ND-1000 (Thermo Fisher Science, Walsham, Massachu-
setts, USA). Arraystar standard protocols were followed for sample
preparation and microarray hybridisation. To summarise, total RNA
was divided into two fractions. One fraction denoted as “MazF-
digested” was treated with RNA endoribonuclease MazF (Takara,
Shiga, Japan) to cleave the unmodified m6A sites; the other fraction
denoted as “MazF-undigested” was not treated with MazF at either
the modified or unmodified sites. The Arraystar Super RNA Labeling
Kit (Arraystar, Rockville, MD, USA) was used to label the “MazF-
digested” and “MazF-undigested” RNAs with Cy5 and Cy3 as cRNAs
separately. Then, The Arraystar Human m6A Single Nucleotide Array
(8 × 15 K, Arraystar) was used to combine and hybridise the “MazF-
digested” and “MazF-undigested” cRNAs. After washing the slides,
the arrays were scanned in two-colour channels by using an Agilent
Scanner G2505C (Agilent, Santa Clara, CA, USA).
The acquired array images were analysed by Agilent Feature

Extraction software (version 11.0.1.1). The average for the log2-scaled
spike-in RNA intensities was used to normalise the raw intensities of
the MazF-digested (Cy5-labelled) and MazF-undigested (Cy3-labelled)
samples. Then, probe signals with present (P) or marginal (M) QC flags
were retained for “m6A site methylation stoichiometry” and “m6A site
abundance” analyses. The “m6A site methylation stoichiometry” was
computed based on the percentage of modification at each site,
“m6A site abundance” was computed based on the m6A site
methylation amount. The fold change (FC) and P-value thresholds
were used to compile the differentially m6A-methylated sites
between DM-BMSCs and N-BMSCs. The m6A-methylation pattern
was visualised using hierarchical clustering among samples.

Differential m6A-methylated site and differential m6A site
abundance analysis
To compare the differential m6A modifications between the T2DM
and control groups, FC was determined for each probe. The
default thresholds were an |FC| ≥ 1.5 and P-value < 0.05.

Differential “m6A site methylation stoichiometry” profiling. The
differential “m6A site methylation stoichiometry” for an m6A site
is the percentage modified for the specified site (% modified),
and this is calculated based on the normalised intensities of the
MazF-digested RNA (Cy5-channel), the MazF-undigested RNA
(Cy3-channel), and the correction factor (ratio of MazF-
undigested sample amount to MazF-digested sample amount):

%modified ¼ modified site
total site

¼ Digested
Undigested

¼ Cy5 normalised intensity
Cy3 normalised intensity

� Correction factor
(1)

The raw intensities for the MazF-digested (Cy5-labelled) and
MazF-undigested (Cy3-labelled) were normalised using the
average for the log2-scaled spike-in RNA intensities:

log2 DigestedCy5 normalized intensity

� �
¼

log2 DigestedCy5 raw

� �
� Average log2 Digestedspike�in Cy5 raw

� �h i (2)

log2 UndigestedCy3 normalized intensity

� �
¼ log2 UndigestedCy3 raw

� �

�Average log2 Undigestedspike�in Cy3 raw

� �h i

(3)

The correction factor was the ratio of the RNA sample amount
used for MazF-undigestion (undigested sample amount) to the RNA
sample amount used for MazF-digestion (digested sample amount):

Correction factor ¼ Undigested sample amount
Digested sample amount

(4)

Methylation stoichiometry of single-m6A sites: Most m6A
modifications occur in m6A motifs with a core ACA sequence, and
these are collectively referred to as m6ACA sites.70 Most m6ACA
sites consist of a single ACA sequence that can be profiled for m6A
methylation at single-nucleotide resolution.

Single-m6ACA site: An ACA site with the closest neighbouring
ACA at least 40 nt away was defined as a quantifiable single ACA
site. An m6ACA site is interrogated by hybridisation with an array
probe across the (ACA) sequence in its middle (all of these probe
types were marked with “single”). If the site is unmethylated, MazF
cleaves the ACA to prevent or greatly reduce probe binding, thus
providing a way to quantify methylation levels. If there is another
ACA site in close proximity, it can interfere with, or even prevent,
the accurate detection and quantification of the interrogated site.
However, if the neighbouring ACA is > 40 nt away from the
interrogated site, it does not affect the probe signal. Thus, m6A
modification in single ACA sites can be quantitatively profiled at a
single-nucleotide resolution. We collected all quantifiable single
ACA sites based on transcript sequences from the latest Refseq
database.

Differential “m6A site abundance” profiling. The differential “m6A
site abundance” for an m6A site is the sites m6A methylation
amount, which is based on the MazF-digested (Cy5-channel)
normalised intensity. The quantity was expressed as a value relative
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to the spike-in reference in a designated sample.

m6A quantity ¼ DigestedCy5 normalized intensity (5)

which was calculated by normalising the log2 scaled raw intensities
of MazF-digested (Cy5-labelled) with the average of the log2-scaled
spike-in RNA intensities:

log2 DigestedCy5 normalized intensity

� �
¼

log2 DigestedCy5 raw

� �
� Average log2 Digestedspike�in Cy5 raw

� �h i (6)

MazF-PCR
The m6A methylation levels of the candidate genes were detected
by MazF-PCR. The RNA from the 10 BMSC samples was divided
into two fractions. One fraction denoted as “MazF-digested” was
treated with RNA endoribonuclease MazF to cleave the unmethy-
lated ACA site, while m6A-methylated sites are left unaffected; the
other fraction denoted as “MazF-undigested” was untreated with
MazF for both m6A-methylated and unmethylated sites. Then,
cDNA was synthesised from 500 ng aliquots of MazF-treated RNA
and untreated RNA using 5 × First-Strand Buffer (Invitrogen,
Carlsbad, CA, USA), 0.1 mol·L−1 DTT (Cat No.707265 ML, Invitro-
gen), RNase Inhibitor (Epicentre, Madison, Wisconsin, USA), and
SuperScriptTM III Reverse Transcriptase (Invitrogen). Real-time PCR
was performed using the 2× PCR master mix (Arraystar) and a ViiA
7 Real-time PCR System. Primers for specific genes are listed in
Table S6. We identified the m6A methylation modification site in
the candidate mRNA using MazF ability to distinguish between 5′-
ACA-3′ and 5′-(m6A)CA-3′. For real-time RT-PCR, 1 μL of each
sample was added, and MazF- served as a control. The MazF
correction formula was as follows:

%MazF� ¼ 2��CtMazFþ� �
= 2��CtMazF�� �

´ 100% (7)

RT-PCR and real-time RT-PCR
As previously described, RNA extraction, cDNA synthesis, and real-
time RT-PCR were carried out. Table S6 contains primers for the
candidate genes.

PPI network
The differentially m6A-methylated genes were entered into the
STRING database, which contains extensive information on PPIs,
to obtain the interaction relationships between the differen-
tially m6A-methylated genes.20 The data were imported into
Cytoscape 3.5.1, and a PPI network constructed and then
analysed using a network analyser. A protein–protein interac-
tion network diagram was created using the differentially m6A-
methylated genes that had interactions with combined scores
greater than 0.7. The hub genes were discovered using the
cytoHubba plug-in.

GO analysis and KEGG pathway enrichment analysis
The Gene Ontology (GO) project (http://www.geneontology.org)
provides a controlled vocabulary for describing gene and gene
product attributes in any organism. Biological process (BP),
cellular component (CC), and molecular function (MF) are the
three domains covered by the ontology. The statistical signifi-
cance of the differences between the DE list and the GO
annotation list was assessed using Fisher’s exact test in
Bioconductor’s topGO. The significance of the GO term enrich-
ment for DE genes is indicated by the P-value generated by
topGO. Genes are mapped to KEGG pathways in pathway
analysis. The ingenuity pathway analysis was used to perform
KEGG enrichment analysis, which linked differentially expressed
m6A methylation genes to biological pathways, and the

significance of the pathway correlated to the conditions is
represented by the P-value. For the differential m6A methylation
modification genes in the pathway, the statistical significance
thresholds were established as |FC| ≥ 1.5 and P-value < 0.05.
According to the P-values and degree of enrichment, the top 10
hyper- and hypo-GO terms and pathways were chosen.

Statistical analysis
The mean ± standard deviation (SD) was used to present
experimental data. SPSS 23.0 was used to conduct all statistical
analyses. To determine statistical significance, the student’s t-test
or one-way ANOVA were used, with P<0.05 considered significant.
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