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FGF8 induces epithelial-mesenchymal transition and promotes
metastasis in oral squamous cell carcinoma
Yilong Hao 1,2, Yanxuan Xiao2, Xiaoyu Liao2, Shuya Tang2, Xiaoyan Xie3, Rui Liu 2 and Qianming Chen2

Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide, and with 354 864 new cases each year.
Cancer metastasis, recurrence, and drug resistance are the main causes to cripples and deaths of OSCC patients. As potent growth
factors, fibroblast growth factors (FGFs) are frequently susceptible to being hijacked by cancer cells. In this study, we show that
FGF8 is upregulated in OSCC tissues and high FGF8 expression is related with a set of clinicopathologic parameters, including age,
drinking, and survival time. FGF8 treatment enhances the invasive capability of OSCC cells. Lentivirus-based FGF8 expression
promotes OSCC metastasis in a mouse lung metastasis model. Further, mechanistic study demonstrates that FGF8 induces
epithelial–mesenchymal transition (EMT) in OSCC cells. These results highlight a pro-metastatic function of FGF8, and underscore
the role of FGF8 in OSCC development.
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INTRODUCTION
According to the global cancer statistics 2018, lip and oral cavity
cancers are one of the most common cancers globally, and
approximately 354 864 new cases and 177 384 cancer-related
deaths are reported1. Over 90% of oral cancers are diagnosed as
oral squamous cell carcinomas (OSCC)2. Many systematic
therapeutic strategies have been applied in OSCC treatment3,
however, the overall 5-year survival rate is still less than 60%4–7,
and metastasis has been associated with a poor prognosis. Lymph
node metastasis is frequently detected in OSCC patients, and is
found to be associated with clinicopathological parameters, such
as tumor volume and histologic differentiation8. Although the
incidence of distant metastasis is rare compared to other cancers,
its occurrence is determinant to patient prognosis and clinical
outcome9–11. However, OSCC metastasis is a multiple and
complex process4,12–14, and the key oncogenic factors involved
in this process are not fully illustrated. Therefore, a better
understanding of the mechanisms underlying OSCC metastasis is
still needed.
There are 22 mammalian fibroblast growth factors (FGFs), which

can be subdivided into six subfamilies based on protein sequence
homology and phylogeny15,16. FGFs can act as morphogens,
mitogens, and inducers of angiogenesis, when FGFs bind and
activate FGF receptors (FGFRs), leading to activation of a series of
biological processes16–22. FGFs are frequently upregulated in
invasive tumors, making FGF signaling susceptible to be hijacked
by cancer cells, facilitating tumor metastasis15,18–20. It is reported
that FGF1, FGF7, and FGF10 can induce epithelial-mesenchymal
transition (EMT) in bladder carcinoma cells18. FGF1, FGF2, FGF6,
FGF9, and FGF17 are shown to be overexpressed in prostate
cancer18,19,23. FGF8, FGF9, FGF10, FGF18, and FGF23 are involved

in the progression of colorectal cancer, and FGF9 expression is
negatively correlated with patients’ survival19,21,24.
FGF8 is expressed in oral and maxillofacial tissues during embryonic

development, and regulates EMT and mesenchymal–epithelial
transition to facilitate organ formation. FGF8 expression disorder
can lead to a variety of oral and maxillofacial developmental defects.
In adults, FGF8 is associated with diverse physiologic processes,
including angiogenesis, wound repairing, homeostasis, cell differen-
tiation, and cell migration25. By contrast, FGF8 is rarely detected in
normal adult tissues. However, aberrantly increased FGF8 expression
is involved in the development of several forms of hormone
dependent cancers, and engineered overexpression of FGF8 is found
to promote cancer cell invasion in animal models20,21,26. FGF8 can
enhance the invasion and migration of prostate cancer cells and
promote bone metastasis26–28. In a previous study, we reported that
LRP6 promoted the expression of FGF8 in OSCC cells, and activation
of LRP6 contributed to metastasis and poor prognosis in patients with
OSCC. More importantly, in contrast to LRP6 expression alone, the
concurrent expression of LRP6 and FGF8 could act as a better factor
to predict OSCC patient prognosis12. However, the function of FGF8
alone in OSCC metastasis remains unclear.
In this study, FGF8 is found to be highly expressed in OSCC

tissues, and is linked with an index of histopathological
parameters. Further, we demonstrate that FGF8 treatment
promotes EMT and induces an invasive phenotype in OSCC cells.

RESULTS
FGF8 is overexpressed in OSCC
To investigate the potential clinical roles of FGF8 in OSCC,
immunohistochemistry staining was performed on a panel of 30
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OSCC specimens and 28 adjacent normal oral mucosa specimens.
As shown in Fig. 1a, FGF8 signal was positively detected in both
the cytoplasm and membrane in tumor cells, whereas only weak
staining of FGF8 was observed in majority of normal tissues (t-test;
OSCC n= 30, normal n= 28; P < 0.000 1; Fig. 1b).
Next, we evaluated the relevance between FGF8 expression

and a series of clinicopathologic factors of OSCC patients.
FGF8 immunoreactivity was more intense in tumor of elderly
patients (one-way ANOVA; ≤40 n= 3, 40–60 n= 11, >60 n= 16;
P= 0.046 7; Fig. 1c). Further, the level of FGF8 expression was
positively associated with drinking (t-test; drinking, n= 14; non-
drinking, n= 16; P= 0.001 4; Fig. 1d).
In a univariate analysis examining clinic-pathologic prognostic

variables, the expression of FGF8 was significantly correlated with
overall survival. A Kaplan–Meier survival analysis showed that
subjects with high FGF8 expression had a significantly shorter
5-year overall survival time, compared to those subjects with low
FGF8 expression (log-rank test, P= 0.002 82; Fig. 1e). These results
show that FGF8 is highly expressed in OSCC and may act as a
potential prognostic marker for predicting patient outcome.

Analyses of FGF8-associated proteins
To explore the tumor-related function of FGF8, bioinformatic
analyses was performed to screen the FGF8-related proteins (Fig. 2a).
As a result, a total of 158 related proteins were extracted from Pre-
PPI network and identified as FGF8-associated proteins. Next, we
used the protein-functional GO annotation in the Kyoto encyclo-
pedia of genes and genomes (KEGG) database to perform
functional classification and signal pathway analysis of the
associated proteins (Fig. 2b). Notably, two clusters of proteins,
functioning in cell adhesion or migration, respectively, were found

(Fig. 2c, d). These results suggest that FGF8 is likely involved in
regulating OSCC metastasis.

FGF8 promotes OSCC cell invasion and migration
It has been demonstrated that FGF8 is involved in regulating
migration and invasion in cancer cells19,21,24. As a pilot test, FGF8
expressions in one normal oral keratinocytes (NOK) and four
human OSCC cell lines (HSC-4, HSC-3, Cal-27, and UM2) were
examined. As shown in Fig. 3a, FGF8 was less expressed in HSC-3
and HSC-4 cell lines at both RNA and protein levels. Therefore,
HSC-3 and HSC-4 cell lines were selected as in vitro cell models.
The migratory and invasive capacities of OSCC cells were

compared under FGF8 treatment at different concentrations. As
shown in Fig. 3b, FGF8 treatment promoted HSC-3 cells migration
and increased the invasion potential, as demonstrated by wound
healing assay and matrigel invasion assay. Similar results were
observed in HSC-4 cells, therefore, such pro-migration and pro-
invasion effects of FGF8 were not cell line-specific. Consistently,
knockdown of FGF8 impeded the migratory and invasive
capabilities of UM2 cells (Fig. S1a, S1b). These results demonstrate
that FGF8 promotes migration and invasion in a dose-dependent
manner in OSCC cells.

FGF8 increases OSCC tumor metastasis in mice
To study the effect of FGF8 on tumor metastasis in vivo, FGF8
expression was induced in HSC-3 cells by a lentivirus-based
system. FGF8-expressed or mock vector-expressed HSC-3 cells
were intravenously injected into the nude mice to establish lung
metastasis. The average number of metastatic nodules derived
from FGF8-expressed HSC-3 cells was 2.2-fold greater than control
cells (P < 0.05; Fig. 4a). In addition, the lung metastasis areas
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Fig. 1 FGF8 is overexpressed in OSCC. a Representative images of FGF8 immunostaining using OSCC tissues and normal oral mucosal tissues.
Scale bar, left panels, 200 μm; right panels, 50 μm. b FGF8 immunostaining intensity in OSCC tissues and normal oral mucosal tissues were
analyzed. c FGF8 immunostaining intensity in OSCC patients among the different age groups were analyzed. d FGF8 immunostaining intensity
in OSCC patients with or without drinking were analyzed. e Overall survival time of OSCC patients with high or low FGF8 expression was
analyzed by Kaplan–Meier analysis
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formed by FGF8-expressed HSC-3 cells were markedly larger than
that formed by control cells, as determined by H&E staining
(Fig. 4b). These results show that FGF8 has a positive impact on
the OSCC cell metastasis in mice model.

FGF8 promotes EMT in OSCC cells
EMT was involved in the initial steps during cancer metastasis27.
Therefore, it was our particular interest to examine whether FGF8
plays a role in regulating OSCC cells EMT. As shown in Fig. 5a,
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FGF8 treatment induced morphological changes in OSCC cells.
HSC-3 and HSC-4 cells, which were both sub-rotund or sub-
rectangular, changed into a spindle-like shape.
Furthermore, FGF8 treatment also reduced the expression of

the epithelial marker E-cadherin, and increased the levels of
mesenchymal markers Vimentin and Snail in HSC-3 and HSC-4
cells. These results suggest FGF8 induces a malignant phenotype
by promoting EMT in OSCC cells in a time-dependent manner
(Fig. 5b, c).

DISCUSSION
Since cancer metastasis, neoplasm recurrence, and drug resistance
are frequently observed in OSCC patients, OSCC is among the most
common oral malignancies worldwide, with the 5-year overall
survival rate less than 60%. Development of OSCC also causes oral-
facial disfigurement and functional defects in chewing, speaking,
and swallowing, which largely compromises life quality12,14,29–32.
FGF/FGFR signaling is involved in multiple processes during

embryonic development and adult homeostasis by regulating cell

R
el

at
iv

e 
F

G
F

8
ex

pr
es

si
on

In
va

si
ve

 c
el

ls

5

4

3

2

1

0

0
125 250

Concentration/(nmol·L-1)

Concentration/(nmol·L-1)

50

100

150

In
va

si
ve

 c
el

ls

0
0

0 h

12 h

24 h

125 250

0 nmol·L-1 125 nmol·L-1 250 nmol·L-1

0 nmol·L-1 125 nmol·L-1 250 nmol·L-1

50

100

150

FGF8

GAPDH

HSC-3

HSC-4

HSC-3

HSC-4

NOK

NOK

UM2

UM2

HSC-3

HSC-3

HSC-4

HSC-4

Cal27

Cal27

a

b

0

Fig. 3 FGF8 promotes OSCC cell invasion and migration. a Expression of FGF8 in NOK and several OSCC cell lines was examined by qRT-PCR
and immunoblot. b HSC-3 or HSC-4 cells were incubated with active FGF8 recombinant protein at indicated concentrations. Cell migration
was examined by wound healing assay (upper two panels) and cell invasion was examined by matrigel invasion assay (bottom two panels).
**P < 0.01; ***P < 0.001; ****P < 0.000 1. Scale bar, 100 μm

FGF8 regulates OSCC cell EMT
Hao et al.

4

International Journal of Oral Science            (2021) 13:6 



commitment, differentiation, proliferation, and apoptosis of
various types of cells16. Increasing evidence indicates that
aberrant FGF signaling is frequently observed in various tumors.
FGF/FGFR system has important roles in tumor growth, metastasis,
and resistance to anticancer therapies16,17. Of note, accumulating
studies have underlined the role of the transduction network
triggered by the aberrant FGF signaling towards a stimulatory
interaction between tumor and stromal cells.
In this context, our findings further support the recent

discoveries regarding the roles of FGF8 in OSCC. By immunostain-
ing using clinical samples, we show the upregulation of FGF8
expression in OSCC tissues compared to normal tissues. The
results also show that FGF8 expression is strongly associated with
the habit of drinking. Drinking is considered as one of important
risk factors during tumor development. Long-term alcohol abuse
can cause salivary gland atrophy and lesions. Therefore, the
mucosal surface is directly exposed to carcinogens, thereby
increasing the risk of OSCC33–35. Notably, our results also show
that FGF8 expression is negatively correlated with the survival
time of patients, suggesting that FGF8 may be a potential
indicator for OSCC prognosis.
EMT is identified as part of the process of invasion and

metastasis36. EMT can be characterized by changes in cell shape,
through which epithelial cells become detached from each other,
penetrate the basilar membrane and transform into
mesenchymal-like cells with a more flexible and migratory
phenotype37–40. EMT can be induced by a variety of growth
factors, including FGFs. FGFRs are activated after binding to
cognate FGFs, and in turn trigger intracellular downstream
signaling cascades via phosphorylating the tyrosine residues in
their substrates. Our results show a pivotal role of FGF8 in EMT
induction in OSCC cell lines. Here, the downregulation of the
epithelial marker, E-cadherin, and the upregulation of mesench-
ymal markers, Vimentin, and Snail, are detected. FGF8 regulates
OSCC metastasis probably through inducing EMT. Further work is

still needed to identify the intracellular effector proteins that
promote EMT under FGF8 treatment.
Though the incidence of distant metastasis is relatively low for

OSCC compared with other types of tumor, such as lung or breast
cancer, but it remains a crucial determinant for patient prognosis
and clinical management. The most common metastatic site is the
lung, which accounts for approximately 70% of cases, followed by
bone and liver9–11. If the process of tumor metastasis can be
delayed or impeded, the survival time of patients with advanced
cancer will be largely improved14. Considering that lymphatic
metastasis is more frequent in OSCC patients41,42, further study
should be conducted to verify the prometastatic role of FGF8 in a
lymphatic metastatic model.
In summary, our studies provide evidences regarding the pro-

metastatic role of FGF8 in OSCC cells. We also demonstrate
aberrant upregulation FGF8 in OSCC, which is associated with the
habit of drinking, and patient survival time. This study highlights
the role of FGF8 in OSCC development, and will assist the OSCC
management.

MATERIALS AND METHODS
Clinical samples
Thirty OSCC specimens containing adjacent noncancerous areas
and 28 normal oral mucosal tissues for immunohistochemical
(IHC) analysis were collected from the Department of Oral and
Maxillofacial Surgery, Hospital of Stomatology, Sichuan University.
Demographic data and other variables, including dates of
diagnoses, site and size of primary tumor, local regional
recurrence, and distant metastasis were retrieved from the
database provided by the oncology registry. The cancerous or
noncancerous areas were identified by two pathologists indepen-
dently, according to the IHC staining. The pathologists were
blinded to patient clinical information. If the evaluations were
controversial, the samples were re-evaluated and classified based
on the assessment given most frequently by the pathologists. All
the samples were obtained with patient’s informed consent. The
protocol of the study was approved by the Institutional Ethics
Committee of West China Center, Sichuan University, China.

Immunohistochemistry
Immunohistochemistry Anti-FGF8 rabbit monoclonal antibody
(ab81384, 1:200) was purchased from Abcam (Cambridge, MA,
USA). Immunohistochemistry was detected on a slide carrying 4-
mm-thick tissue from paraffin-embedded tumor species. After
baked in a 37 °C oven overnight, all slides were dewaxed in xylene
and then rehydrated in ascending series of ethanol. Antigen
retrieval was conducted by citrate antigen retrieval solution in an
autoclave for 5 min. Three percent of hydrogen peroxide was
incubated for 15min, and normal goat serum working fluid
incubated for 15 min at 37 °C after washing for 5 min twice. Then,
the sections were exposed to the primary antibodies at 4 °C in the
wet box for one night. The slide tissues were washed in PBS for
5 min three times and incubated secondary antibody for 15 min at
37 °C. DAB chromogenic reagents were used to detect the
reaction of antigen and antibody and the slides were counter-
stained in hematoxylin, dehydrated in gradient alcohol, cleared in
xylene.
To estimate the score of each section, eight individual fields

were chosen by two dependent observers, and 100 cancer cells
were counted for each field. We quantitatively scored the tissue
sections according to the percentage of positively stained cells
and staining intensity as described previously43, with minor
modifications. We assigned the following proportion scores: 0 if
0% of the tumor cells with positive staining, 1 if 0–10%, 2 if
11%–30%, 3 if 31%–70%, and 4 if 71%–100%. We also rated the
intensity of staining on a scale of 0 to 3: 0, negative; 1, weak; 2,
moderate; 3, strong and 4, very strong. We then multiplied the
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proportion score by the intensity score to obtain a total score
(range: 0–16). Scores were compared with overall survival
duration, which was defined as the time from the date of
diagnosis to death or the last known date of follow-up.

Bioinformatics analysis
Bioinformatics analysis of FGF8-assocaited proteins were per-
formed following previous reports44. The protein–protein interac-
tion (PPI) network was conducted based on the identified
proteins, and biological evidence was collected from PrePPI to
obtain the correlation of protein localization, the correlation of

expression, the mutual binding, the upstream-related and
downstream-related proteins. Identified FGF8-associated proteins
were classified according to the GO (Gene Ontology) Annotation
clustering. The network group analysis was conducted via DAVID
database (http://david.abcc.ncifcrf.gov/)45.

Cell culture
The HSC-3 and HSC-4 cell lines were provided by State Key
Laboratory of Oral Diseases & National Clinical Research Center for
Oral Diseases, West China Hospital of Stomatology, Sichuan
University. Cells were maintained in Dulbecco’s Modified Eagle’s
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Medium (DMEM, Gibco, USA) containing 10% fetal bovine serum
(Hyclone, USA), penicillin (107 U·L−1) and streptomycin (10 mg·L−1)
at 37 °C in a humidified chamber containing 5% CO2. FGF8 siRNAs
were purchased from Santa Cruz.

qPCR
Total RNA of OSCC cell lines was isolated by TRIzol reagent
(Invitrogen) and reverse transcript to cDNA with 1 μg RNA in a
volume of 20 μL by ExScript TM reagent kit (TaKaRa, Dalian, China)
according to the manufacturer’s instructions. The primers detailed
sequences were as follows: FGF8: Forward primer: 5′-CGC AAA GCT
CAT TGT GGA GA-3′, Reverser primer: 5′-ACA CGC AGT CCT TGC
CTT TG-3′; GAPDH: Forward primer: 5′-GAG TCA ACG GAT TTG GTC
GT-3′, Reverser primer: 5′-TTG ATT TTG GAG GGA TCT CG-3′. Gene
expression level was assessed by SYBR green qPCR SuperMix
(Applied Biosystems Life Technologies, Foster, CA) and GAPDH
served as an internal reference. The fold-change in the expression
of each target mRNA relative to GAPDH was calculated using the
CT (2−ΔΔCT) method. Each experiment was conducted in triplicate.

Wound healing assay
When the cells cultured in 6-well plates reached approximately
100%, the wells were gently scratched with a 100 μL pipette tip to
create a uniform linear scratch. Then the cells were cultured in
serum-free culture medium, and observed and photographed at 0,
12, and 36 h. Cell migration was assessed by percent of wound
closure through using Image-Pro Plus Analysis software (Media
Cybernetics company, Rockville, MD). All experiments were
conducted for three times to obtain the average value.

Transwell invasion assay
Invasion assays were carried out using 24-well culture plates
containing the transwell chamber covered with Matrigel (1:4, BD,
USA). 1 × 105 HSC-3 and 2 × 105 HSC-4 cells suspended in serum-
free medium were placed in the upper chamber. Five hundred
microliter of medium containing 10% FBS were placed in the
lower chamber. Cells remaining on the upper chamber were
removed using a cotton swab after being incubated at 37 °C for
12–36 h, while cells traversed to reverse face of the membrane
were fixed in 4% paraformaldehyde, stained with 1% Crystal
Violet, washed three times with PBS, then air dried. The chamber
was inverted on a microslide and observed under a microscope.
Five fields per chamber were randomly selected for counting the
number of invasive cells, and images were taken. Each experiment
was conducted for three times.

In vivo tumor metastasis
All animals were humanely treated under the guidelines of the
Institutional Animal Care and Treatment Committee of Sichuan
University. 5 × 106 OSCC-FGF8 or OSCC-mock cells were injected
into female athymic nude mice (ten mice per group) through the
tail vein. Animals were sacrificed 28 days after injection. The lungs
were excised and fixed in formalin for standard hematoxylin and
eosin (H&E) staining.

Western blotting
After FGF8 treatment, total proteins of OSCC cells were extracted
in RIPA buffer (50 mmol·L−1 Tris base, 1.0 mmol·L−1 EDTA,
150mmol·L−1 NaCl, 0.1% SDS, 1% Triton X-100, 1% sodium
deoxycholate, and 1% cocktail) and quantified by coomassie
brilliant G-250 (Bio-Rad). Samples were separated on 12% or 15%
SDS-PAGE and then transferred to PVDF membranes. The
membranes were blocked with 5% skim milk in TBST for 1 h at
37 °C and probed with primary antibody overnight at 4 °C. After
washing with TBST membranes were incubated with secondary
antibody (1:5 000 dilution; Santa Cruz Biotechnology) conjugated
to horseradish peroxidase for 1 h at 37 °C. Finally, the proteins
were detected by electro-chemiluminescence (ECL) Western

blotting reagents. The following primary antibodies were used
according to the manufacturer’s instructions: anti-E-cadherin
mouse monoclonal antibody (ab1416, 1:1 000), anti-Vimentin
rabbit polyclonal antibody (ab137321, 1:1 000), Anti-Snail rabbit
polyclonal antibody (ab82846, 1:800), and anti-GAPDH (ab8245,
1:1 000, Abcam).

Immunofluorescence staining
The OSCC cells were cultured in 24-well cell culture plates, fixed
for 15 min with 4% paraformaldehyde and permeabilized with
0.2% Triton X-100 for 20min. After blocking with normal goat
serum working fluid for 1 h at 37 °C, primary antibody was
incubated overnight at 4 °C, and then staining was detected with
fluorescein-conjugated secondary antibodies (PeproTech; 1:200)
for 1 h in dark condition. Finally, cells were stained with 4,6-
diamidino-2-phenylindole (DAPI; blue) to show the nuclear
position for 5 min. Immunofluorescence signals were examined
using a fluorescence microscope (Leica, Bensheim, Germany).

Lentiviral transduction
Expression of FGF8 were established using a pCDH Lentivector
Expression System (System Biosciences, Mountain View, CA)
according to the manufacturer’s instructions. Briefly, the shRNAs
or cDNAs used in this study were cloned into pCDH lentiviral
vector. Lentiviruses were produced by co-transfecting 293T cells
with one of the expression plasmids and three packaging
plasmids (pLP1, pLP2, and pLP/VSVG). Infectious lentiviruses were
harvested 72 h after transfection, centrifuged to remove cell
debris, and filtered through 0.45 µm filter (Millipore, Bedford, MA).
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