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The role of mechanotransduction versus hypoxia during
simulated orthodontic compressive strain—an in vitro study of
human periodontal ligament fibroblasts
Niklas Ullrich1, Agnes Schröder2, Jonathan Jantsch3, Gerrit Spanier4, Peter Proff2 and Christian Kirschneck 2

During orthodontic tooth movement (OTM) mechanical forces trigger pseudo-inflammatory, osteoclastogenic and remodelling
processes in the periodontal ligament (PDL) that are mediated by PDL fibroblasts via the expression of various signalling molecules.
Thus far, it is unknown whether these processes are mainly induced by mechanical cellular deformation (mechanotransduction) or
by concomitant hypoxic conditions via the compression of periodontal blood vessels. Human primary PDL fibroblasts were
randomly seeded in conventional six-well cell culture plates with O2-impermeable polystyrene membranes and in special plates
with gas-permeable membranes (Lumox®, Sarstedt), enabling the experimental separation of mechanotransducive and hypoxic
effects that occur concomitantly during OTM. To simulate physiological orthodontic compressive forces, PDL fibroblasts were
stimulated mechanically at 2 g·cm−2 for 48 h after 24 h of pre-incubation. We quantified the cell viability by MTT assay, gene
expression by quantitative real-time polymerase chain reaction (RT-qPCR) and protein expression by western blot/enzyme-linked
immunosorbent assays (ELISA). In addition, PDL-fibroblast-mediated osteoclastogenesis (TRAP+ cells) was measured in a 72-h
coculture with RAW264.7 cells. The expression of HIF-1α, COX-2, PGE2, VEGF, COL1A2, collagen and ALPL, and the RANKL/OPG ratios
at the mRNA/protein levels during PDL-fibroblast-mediated osteoclastogenesis were significantly elevated by mechanical loading
irrespective of the oxygen supply, whereas hypoxic conditions had no significant additional effects. The cellular–molecular
mediation of OTM by PDL fibroblasts via the expression of various signalling molecules is expected to be predominantly controlled
by the application of force (mechanotransduction), whereas hypoxic effects seem to play only a minor role. In the context of OTM,
the hypoxic marker HIF-1α does not appear to be primarily stabilized by a reduced O2 supply but is rather stabilised mechanically.
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INTRODUCTION
In the dental specialty of orthodontics, removable or fixed
orthodontic appliances are used for the treatment of malocclu-
sions to move malpositioned teeth to the correct position.
Mechanical orthodontic forces create compression and tension
areas in different regions of the periodontal ligament.1 Whereas
tension areas are characterized by increased bone formation,
bone resorption processes take place in pressure areas.1

Human periodontal ligament (hPDL) fibroblasts are the
predominant cells within the periodontal ligament.2 They are
responsible for the regulation of tissue homoeostasis and the
formation of collagenous structural proteins, and play a regulatory
role in innate immune defence.1,2 These cells also play an
important mediating role during orthodontic tooth movement
(OTM)1,2 and have thus been intensively investigated in basic
orthodontic research,3–7 especially with regard to their responses
to compressive or tensile orthodontic forces or periodontal
pathogens and their toxins.8–10

In compression areas of the periodontal ligament during
orthodontic force application, hPDL fibroblasts become

mechanically deformed (mechanotransduction), and thus
mechanosensitive receptors and ion channels in the cell
membrane are predicted to be stimulated.11 A hPDL-mediated
sterile pseudo-inflammatory reaction induces increased expres-
sion of IL-6, IL-8 and COX-2, followed by enhanced extracellular
matrix remodelling and bone resorption triggered by increased
receptor activator of NF-κB ligand (RANKL) and reduced osteo-
protegerin (OPG) expression.1,7 On the other hand, the concomi-
tant compression of blood vessels during OTM disturbs circulation
in compressive areas of the periodontal ligament,12 reducing the
local oxygen supply within the PDL (hypoxia).13 It has been
postulated that this local reduction of the O2 supply may play a
significant role in the cellular regulation of orthodontic tooth
movement.13

Although the molecular and cellular processes enabling OTM
that are mediated by hPDL fibroblasts under mechanical load
have been studied before,3,7,14 it is still unclear whether these
processes are mainly triggered by the mechanical deformation of
hPDL fibroblasts (mechanotransduction) during orthodontic force
application or by concomitant hypoxia resulting from the
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compression of periodontal blood vessels and a disturbance in the
local blood flow. Understanding the impact of mechanotransduc-
tion vs. that of hypoxia on the molecular processes enabling OTM
could, in the long term, lead to the development of new
therapeutic and preventive options for orthodontic treatment.
In this study, we thus investigated the expression patterns of

genes and proteins that were previously identified to be
associated with OTM1,15,16 after compressive force application in
the presence of a normal or reduced oxygen supply by using
conventional six-well cell culture plates or special cell culture
dishes with gas-permeable membranes to gain a better under-
standing of the respective roles of mechanotransduction and
oxygen supply in the molecular and cellular processes occurring in
compressive areas of the periodontal ligament during OTM.

RESULTS
Effects of mechanotransduction vs. hypoxia on hPDL cell number
and viability
Mechanotransduction (pressure) caused a significant reduction
both in cell number per cm2 (P ≤ 0.007, Fig. 1a) and in cell viability
(P ≤ 0.001, Fig. 1b), which was more pronounced in the presence
of reduced O2 supply, particularly regarding cell viability.

Effects of mechanotransduction vs. hypoxia on the hPDL
expression pattern and HIF-1α stabilization
The Lumox® and polystyrene control groups (under normoxia and
no pressure) did not show significant expression differences for
any of the evaluated genes/proteins (P ≥ 0.086) or for HIF-1α
stabilization (P= 0.081).
The expression of COL1A2 (collagen 1 alpha-2) was significantly

enhanced by compressive force application, independent of the
O2 supply (P ≤ 0.003, Fig. 2a). The level of O2 supply during
compression, however, had no significant effect on COL1A2 gene
expression (P= 0.348). Increased levels of COL1A2 gene expres-
sion also resulted in an increased quantity of total collagen with (P
= 0.019) or without O2 restriction (P < 0.001, Fig. 2b). Altering the
O2 supply during pressure application did not affect this
observation (P= 0.906).
Alkaline phosphatase (ALPL) gene expression was also upregu-

lated by compressive forces during normoxia (P= 0.013) and
hypoxia (P= 0.02, Fig. 2c). In addition, a reduced O2 supply during
cell compression seemed to attenuate pressure-induced ALPL
upregulation (P= 0.110) at the transcriptional level. ALPL at the
protein level showed O2-independent accumulation after mechan-
ical compression (P < 0.001, Fig. 2d). The apparent attenuation of
pressure-induced ALPL expression by a reduced O2 supply was not
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Fig. 1 Cell number per cm2 (a) and cell viability of hPDL fibroblasts (b, MTT assays) after 72 h of incubation. N= 2, n= 6. Bars indicate mean
values ± standard deviation. **P ≤ 0.01, ***P ≤ 0.001
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Fig. 2 Effects of mechanotransduction vs. oxygen supply on the hPDL fibroblast expression pattern. a COL1A2 mRNA, b total collagen, c ALPL
mRNA and d ALPL protein expression in the presence of pressure under normoxic (Lumox®) and hypoxic (polystyrene) conditions (N= 3, n= 9).
Bars indicate mean values ± standard deviation. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. AU= arbitrary units
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reflected at the protein level, and a reduction in the O2 supply did
not alter the ALPL protein accumulation (P= 0.384).
The expression of the proinflammatory gene cyclooxygenase 2

(COX-2) was significantly upregulated by compressive force
application (mechanotransduction) independent of the O2 supply
(P ≤ 0.024, Fig. 3a). However, the upregulation of COX-2 by
pressure in combination with a reduced O2 supply was less
pronounced compared with the change in the relative COX-2
gene expression during pressure application during normoxia (P
= 0.052). This mechanically induced COX-2 gene expression was
also associated with the significantly increased protein expression
of PGE2 after compressive force application regardless of the level
of O2 supply (P < 0.001, Fig. 3b). Reducing the O2 supply during
compression had no effect on PGE2 expression (P= 0.223).
Compressive force application increased the expression of

vascular endothelial growth factor (VEGF) significantly, indepen-
dently of the O2 supply (P ≤ 0.015, Fig. 3c). A reduced O2 supply
during compression, by contrast, had no additional significant effect
on VEGF gene expression (P= 0.415). At the protein level, VEGF was
also upregulated by mechanical force application, independent of
the O2 supply (P ≤ 0.032, Fig. 3d). Similar to VEGF gene expression,
VEGF protein expression during pressure application showed no
additional changes after O2 restriction (P= 0.330).
Finally, hypoxia-inducible factor 1α (HIF-1α) was significantly

stabilized by mechanical compressive forces (mechanotransduction)
during both normoxic (P= 0.045, Lumox®) and hypoxic conditions

(P= 0.007, polystyrene) (Fig. 3e, f), whereas the level of the O2 supply
had no significant additional stabilizing effect on HIF-1α (P= 0.416).

Effects of mechanotransduction vs. hypoxia on RANKL/OPG
expression in hPDL fibroblasts
The Lumox® and polystyrene control groups (in normoxia and no
pressure) did not show significant RANKL or OPG expression
differences (P ≥ 0.271). OPG gene expression in hPDL fibroblasts
was not significantly affected by compressive mechanical strain,
both in normoxic and hypoxic conditions (P ≥ 0.502, Fig. 4a). In
contrast, OPG protein secretion from hPDL fibroblasts was
significantly reduced during pressure application (mechanotrans-
duction), and no effect of reduced O2 supply was observed (P ≤
0.001, Fig. 4b). RANKL gene expression (Fig. 4c) and protein
secretion (Fig. 4d) were enhanced by pressure application during
normoxia (P ≤ 0.036, Lumox®) and hypoxia (polystyrene) (P ≤
0.052). The level of the oxygen supply during compression,
however, had no significant effect (P ≥ 0.813). The RANKL/OPG
ratio at the transcriptional level showed a significant increase in
the presence of mechanical compression and a restricted O2

supply (P= 0.013, Fig. 4e), whereas pressure application under
normoxia (Lumox®) resulted in a tendency towards an increase in
the RANKL/OPG ratio (P= 0.200). Altering the oxygen supply
during pressure application did not show any effect on the
RANKL/OPG mRNA ratio (P= 0.986). At the protein level, the
sRANKL/OPG ratio showed a significant increase without oxygen
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restriction (P= 0.016) and a tendency towards increase during
oxygen restriction (P= 0.052) (Fig. 4f). A change in the oxygen
supply did not affect this observation (P= 0.928).

Effects of mechanotransduction vs. hypoxia on membrane-bound
RANKL protein expression and hPDL-mediated osteoclastogenesis
The densitometric immunoblot (Western blot) analysis of
membrane-bound RANKL protein expression showed a significant
induction of protein expression by compressive force application
(Fig. 5a, b) during normoxia (P= 0.001, Lumox®) and hypoxia (P=
0.014, polystyrene), which did not depend on the O2 supply (P=
0.964). This resulted in significantly increased hPDL-fibroblast-
mediated osteoclastogenesis in the coculture after compressive
force application (mechanotransduction), independently of the O2

supply (P ≤ 0.019, Fig. 5c, d). Hypoxic conditions during compres-
sion resulted in a slight additional increase in osteoclastogenesis,
however, this was not significant (P= 0.298). The Lumox® and
polystyrene control groups (in normoxia and no pressure) did not
show significant differences in osteoclastogenesis (P= 0.775).

DISCUSSION
In this study, we investigated the relative importance of
mechanotransduction and reduced O2 supply (hypoxia) to hPDL-

fibroblast-mediated osteoclastogenesis during orthodontic tooth
movement. The results from our in vitro experiments showed that
the mechanical deformation of hPDL fibroblasts seemed to play a
much more important role in the mediation of orthodontic tooth
movement by hPDL fibroblasts at a cellular–molecular level than
the concomitant reduction in the O2 supply.
The gene expression of COL1A2, which encodes the alpha-2

chain of collagen type I and is thus indicative of collagen
synthesis, is very important for orthodontic tooth movement,
considering that Type I collagen is the predominant collagen in
the extracellular matrix of the periodontal ligament.17 COL1A2 was
much more strongly expressed during mechanical loading,
whereas a reduced O2 supply had no significant additional effect
during loading. The same results were found for total collagen,
which was also increased after the mechanical compression of
hPDL fibroblasts independent of the oxygen supply. This indicates
that the process of collagen synthesis might also be predomi-
nantly controlled by mechanotransduction. This finding is
substantiated by the findings of Kook et al.17, who described
the mechanical upregulation of Type I collagen by extracellular
signal-regulated kinase and c-Jun N-terminal kinase, which
transmitted mechanical signals into the nuclei of hPDL fibroblasts.
Orthodontic tooth movement involves the alteration of not only

the collagen network but also the surrounding bone architecture.
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ALPL is highly expressed in and secreted by mature osteoblasts
during bone formation; osteoblasts share ultrastructural and
functional similarities with hPDL fibroblasts, and these can
transform into osteoblasts.18–20 Osteoblast activity in the period-
ontal ligament is much higher than in other connective tissues.21

In our study, we observed increased ALPL expression at both the
mRNA and protein levels after orthodontic compressive force
application, which is similar to the findings of Nettelhoff et al.22

The restriction of the oxygen supply did not alter the force-
induced expression of ALPL at all, indicating that ALPL is mainly
mechanically regulated as well.
The primary response of hPDL fibroblasts to orthodontic forces

is the synthesis and secretion of prostaglandins by COX-2, which
in turn triggers osteoclastogenesis via the RANKL/OPG pathway.1

As already reported,1,7,22 orthodontic compressive force applica-
tion led to enhanced COX-2 expression in our model of
orthodontic tooth movement, whereas reduced oxygen levels
did not alter this proinflammatory effect. PGE2, a product of COX-
2,23 was also upregulated by the mechanical compression of hPDL
fibroblasts independent of the O2 supply. This indicates the
presence of a primarily mechanically triggered pathway causing
inflammation in the context of orthodontic tooth movement.
VEGF is a growth factor involved in the neoformation and

vasodilation of blood vessels.24 During orthodontic tooth move-
ment, the formation of new blood vessels and the reshaping of
existing blood vessels is induced in the periodontal ligament.25

Until now, it has been assumed that in the context of orthodontic
tooth movement, VEGF is primarily upregulated by low oxygen
levels due to a compression of blood vessels within the PDL.13 This
mechanism is often explained by the dependence of VEGF
expression on HIF-1α, as HIF-1α is stabilised by hypoxic conditions
and VEGF is a target gene of HIF-1α.26 HIF-1α is of major
importance for the adaptation of tissues to a reduced O2 supply.

27

However, it has been proposed that HIF-1α can also be stabilised
under normoxic conditions,28 as was the case in our study in the
context of OTM, which would thus explain the mechanically
induced upregulation of VEGF expression independent of the O2

supply. Our results confirm this assumption and indicate that the
upregulation of VEGF is mainly mechanical. Li et al.29 described
the enhancement of the expression of VEGF by either compres-
sion or hypoxia and the additive effect resulting from the
combination of both stimuli; however, the upregulation of VEGF

resulted only from compression according to Miyagawa.25 An
inflammatory elevation of VEGF by lipopolysaccharides has been
reported as well.30 Considering all these findings, one must
assume that the expression of VEGF at both the mRNA and protein
levels, and especially the processes of the neoformation and
vasodilation of blood vessels, are not only regulated by oxygen
levels but also predominantly by mechanical forces and the
resulting pseudo-inflammatory processes during OTM.
The signalling molecule HIF-1α has often been used as a marker

for cells under hypoxic conditions.13,27 Whereas the canonical
method of HIF-1α stabilisation is via hypoxia,31,32 there have been
reports that HIF-1α stabilisation is also possible by non-canonical
methods,32 including Toll-like receptor activation by bacterial
lipopolysaccharides,30,33 which occurs during periodontitis,8,9,34

and by mechanotransduction, which has been reported in
endothelial cells.31 Our model of simulated orthodontic compres-
sive forces showed the predominantly mechanical stabilisation of
HIF-1α, indicating that in the context of orthodontic tooth
movement, HIF-1α might be stabilised mechanically rather than
by hypoxia. Considering that many of the investigated genes, such
as COX-2 and VEGF, are target genes of HIF-1α,9,30,35 and that even
the RANKL/OPG system and osteoclastogenesis are influenced by
HIF-1α via the proinflammatory pathway consisting of COX-2,
PGE2 and RANKL,36 HIF-1α seems to be a key factor involved in the
complex regulation of orthodontic tooth movement. Feng et al.31

observed the mechanical stabilisation of HIF-1α in endothelial cells
in blood vessels via the deubiquitinating enzyme Cezanne. This
pathway could possibly be responsible for the mechanical
stabilisation of HIF-1α in hPDL fibroblasts during orthodontic
tooth movement, which merits further investigation.
The TNF-related ligand RANKL and its decoy receptor osteo-

protegerin (OPG) both play important roles in the regulation of
bone remodelling,37 orthodontic tooth movement and root
resorption.38 RANKL is responsible for the differentiation of
osteoclast-precursor cells and the activation of premature
osteoclasts.38 The enhanced expression of both the soluble and
membrane-bound subtypes of RANKL was observed after
orthodontic compressive force application, indicating that
increased osteoclastogenesis and bone resorption occurred in
the compression areas of the periodontal ligament. A reduced O2

supply, on the other hand, did not alter the force-induced
expression of RANKL of either subtype. In line with that finding,
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OPG secretion was only reduced by compressive force application
and was not altered by a restricted oxygen supply. Whereas the
regulation of RANKL and OPG is controlled by many factors, there
is a connection between RANKL and HIF-1α via the proinflamma-
tory pathway involving COX-2 and PG-E2,

36 which upregulate
RANKL. This might be one of several reasons why the RANKL/OPG
pathway is mainly affected by mechanical loading rather than by
reduced oxygen levels.
An increased RANKL/OPG ratio also resulted in more pro-

nounced osteoclastogenesis under compressive forces. This effect,
which has already been reported in the literature,7,24,25 was not
affected by hypoxia, indicating that the signalling pathway
resulting in osteoclastogenesis is mainly regulated by mechanical
compression. Li et al.29 however observed the significant
enhancement of osteoclast formation by compression as well as
by hypoxia. The number of osteoclast-like cells was significantly
increased after 6 h of compression than after 6 h of hypoxia, which
is in line with our results that show that mechanical loading is the
main driving force for osteoclastogenesis. The discrepancy
between the compression group and the hypoxia group in their
study, however, diminished after 24 and 72 h of stimulation, which
suggests that hypoxia may induce hPDL-fibroblast-mediated
osteoclastogenesis in a slower but more lasting manner compared
with that induced by mechanical loading. The effect of either
compression or hypoxia may thus be time-dependent, with
hypoxic effects manifesting themselves at a later time. However,
in our experiments, we did not evaluate the effects of hypoxia by
itself, as did Li et al.29, but rather the additional effects of hypoxia
in combination with mechanical loading compared with the
effects of mechanical loading only, for the first time. Li et al.29 also
used much higher compressive forces of 25 g/cm2 and much more
pronounced hypoxia, with a residual oxygen concentration of only
2%, compared with those used in our experiments, which limits
the comparability of the results. We also used murine RAW cells
instead of human peripheral blood cells in the cocultures with
human fibroblasts, which is an established and reliable model for
studying fibroblast-mediated osteoclastogenesis, as shown before
by our own6,15,16,39,40 and other studies.41,42

Both cell number and viability were reduced by compressive
forces in our experiments. This effect, also reported in other
literature,22,43 was enhanced even under hypoxic conditions and
indicated that both mechanotransduction and hypoxia could
reduce the number and viability of hPDL fibroblasts, which, in case
of mechanotransduction, is most likely an artificial effect of the
in vitro model, as previously reported.16

CONCLUSIONS

● The cellular and molecular mediation of osteoclastogenesis
during orthodontic tooth movement by hPDL fibroblasts
seems to be mainly regulated by the application of force
(mechanotransduction), whereas hypoxic effects appear to

play only a minor role, since they had no significant additional
effects on the expression patterns of hPDL fibroblasts and the
associated osteoclastogenesis.

● The hypoxic marker HIF-1α, which has many target genes such
as COX-2 and VEGF, seems to be stabilised mainly by
mechanical loading rather than hypoxia in the context of
orthodontic tooth movement.

MATERIALS AND METHODS
In vitro cell culture experiments
In vitro cell culture experiments and methods were performed and
reported as previously published.6,15,16,39,44 hPDL fibroblasts were
obtained from the periodontal connective tissue of human teeth
that were free of decay and were extracted for medical reasons. All
experiments were performed in accordance with the relevant
guidelines and regulations. Approval for the collection and usage
of hPDL fibroblasts was obtained from the ethics committee of the
University of Regensburg, Germany (approval number 12-170-
0150). Briefly, we cultivated the tissue samples in six-well cell
culture plates (37 °C, 5% CO2, 100% H2O) in complete media (high-
glucose DMEM, D5796, Sigma-Aldrich®, St. Louis, MI, USA) with
10% FCS (P30-3306, PAN-Biotech, Aidenbach, Germany), 1%
L-glutamine (SH30034.01, GE Healthcare Europe, Munich, Ger-
many), 100 µmol·L−1 ascorbic acid (A8960, Sigma-Aldrich®) and 1%
antibiotics/antimycotics (A5955, Sigma-Aldrich®) until proliferatory
outgrowth of adherently growing fibroblasts was observed. The
cells were characterised by hPDL-specific marker genes and a
spindle-shaped morphology, as reported previously.15,44 For the
in vitro study, hPDL fibroblasts from the third to fifth passages that
were pooled from six individuals (three male, three female, ages
17–27 years) were seeded at a density of 2000 cells per mm2 into
either standard six-well cell culture plates without oxygen
permeability in the polystyrene base/membrane (353046, BD,
Heidelberg, Germany) or in special gas-permeable Lumox® dishes
(94.6077.331, Sarstedt, Nürnbrecht, Germany) with ultra-thin gas-
permeable bases/membranes, which provided a continuous
oxygen supply to the adherently growing fibroblasts at the base
(Fig. 6).

Experimental set-up
To simulate mechanical orthodontic strain in hPDL fibroblasts in
compression areas of the periodontal ligament, a physiological
orthodontic pressure of 2 g·cm–2 was applied under specific cell
culture conditions (37 °C, 5% CO2, 100% water-saturated, 2 ml
DMEM/well) for 48 h after a preincubation phase of 24 h by means
of a sterilised glass disc according to an established and published
method.6,7,15,16,39,44 (Fig. 6) The following four experimental
groups with 6–9 biological replicates (samples) each (n) during
2–3 consecutive experiments (N) with three replicates each were
incubated at 70% confluency for a total of 72 h: (1) no mechanical
orthodontic compressive strain+ normoxia (control, Lumox®); (2)
mechanical strain+ normoxia (Lumox®); (3) no mechanical

Pressure –   O2 supply ++ Pressure – O2 supply + Pressure +    O2supply + O2 supply –Pressure +

(1) Lumox® (2) Lumox® (3)  Polystyrene (4)  Polystyrene

O2

O2 O2

O2

O2 O2

Cell culture well
� 35 mm

hPDL
fibroblasts

2 mL mod.
DMEM-
medium

Glass disc
� 33 mm/17.1 g

Glass disc
� 33 mm/17.1 g

2 g·cm-2 2 g·cm-2

Fig. 6 Set-up used for the hPDL fibroblast experiments to evaluate the four experimental groups (1–4)
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strain+ normoxia (control, polystyrene); (4) mechanical strain+
hypoxia (polystyrene). In the conventional, non-gas-permeable
polystyrene cell culture plates and in vivo, the applied compres-
sive forces not only induced mechanical deformation and stress in
the adherently growing hPDL fibroblasts but also limited the
oxygen supply (group 4), which was not the case in the Lumox®
plates with an intact oxygen supply via the gas-permeable
membrane (group 2) (Fig. 6). This experimental set-up allowed
for the experimental isolation and separation of the mechan-
otransducive and hypoxic effects that occur concomitantly during
OTM, thus enabling an investigation of their respective
importance.

Determination of cell number and cell viability via MTT assays
The cell number per cm2 was determined after 72 h of incubation
with a Beckman Coulter Counter Z2™ (Beckman Coulter GmbH,
Krefeld, Germany). The cell viability of the hPDL fibroblasts was
determined for all experimental groups by MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays.
For the final 5 h of the 72 h incubation phase, 400 µL of MTT
solution in PBS (5 mg•mL–1, 4022.1, Carl Roth GmbH & Co. KG,
Karlsruhe, Germany) was added per well. After the removal of the
medium, 1 mL of DMSO per well was added. The hPDL fibroblasts
were then incubated for another 5 min at 37 °C, and the
absorbance was quantified at 550 nm by means of an ELISA
reader (Multiscan GO Microplate Spectrophotometer, Thermo
Fisher Scientific Inc., Schwerte, Germany), which corresponded to
the cell viability.

Determination of the relative gene expression via quantitative
real-time polymerase chain reaction
We quantified the expression of genes involved in inflammation
(COX-2), collagen synthesis (COL1A2), angiogenesis (VEGF) and
osteoblastogenesis (ALPL), and the expression of RANKL and its
decoy receptor osteoprotegerin (OPG), which are the most
important signalling molecules in the process of
osteoclastogenesis.37

The RNA isolation and quality assessment was performed as
described previously according to MIQE guidelines.44,45 Briefly, we
isolated total RNA from hPDL fibroblasts by adding 1mL of
peqGOLD TriFastTM (PEQLAB Biotechnology GmbH, Erlangen,
Germany) per well and performing the isolation according to
the manufacturer’s instructions. The RNA pellet was eluted in
25 µL of nuclease-free water (T143, Bioscience-Grade, Carl Roth
GmbH & Co. KG). The utilised extraction protocol ensured good
RNA integrity (RIN, 28 S/18 S ratio) and the absence of genomic
DNA and contamination, as shown previously.44 For the purity
assessment and the quantification of the eluted total RNA, the
optical density (OD) was photometrically measured at 280 , 260
and 230 nm (NanoDrop ND-2000, Thermo Fisher Scientific Inc.),
with an OD260nm value of 1 representing 40 ng/µL total RNA. An
OD260 nm/280 nm ratio of >1.8 indicated protein-free RNA, and an
OD260 nm/230 nm ratio of >2.0 indicated phenol-/ethanol-free RNA.44

For cDNA synthesis, we used a standard amount of 1 μg of RNA
per sample and transcribed it into cDNA (incubation for 60min at
37 °C) by using 0.1 nmol of an oligo-dT18 primer (1 µL, SO131, Life
Technologies, Thermo Fisher Scientific Inc.), 0.1 nmol of a random
hexamer primer (1 µL, SO142, Life Technologies), 40 nmol dNTP
mix (1 µL, 10 nmol per dNTP, Roti®-Mix PCR3, L785.2), 4 µL of 5×
M-MLV-buffer (M1705, Promega, Fitchburg, WI, USA), 40 U (1 µL) of
an RNase inhibitor (EO0381, Life Technologies) and 200 U (1 µL)
reverse transcriptase (M1705, Promega) in 20 µL of nuclease-free
H2O (Roth BioScience Grade T143, Carl Roth GmbH & Co. KG). After
the heat inactivation of the reverse transcriptase (95 °C, 2 min), the
first-strand cDNA was diluted 1:5 and stored until use at −20 °C. To
minimise experimental variation, cDNA synthesis was performed
for all samples at the same time.

For RT-qPCR amplification, we used the Mastercycler® ep
Realplex-S thermocycler (Eppendorf AG, Hamburg, Germany). For
each reaction, we mixed 7.5 µL of SYBR® Green JumpStart™ Taq
ReadyMix™ (S4438, Sigma Aldrich®), 7.5 pmol (0.75 µL) of the
respective primer pair (3.75 pmol per primer) and 1.5 µL of the
respective diluted cDNA, and then added nuclease-free H2O
(BioScience Grade T143, Carl Roth GmbH & Co. KG) to bring the
total volume to 15 µL. To avoid technical errors during manual
pipetting, all components except the cDNA solution were
prepared as a master mix. cDNA amplification was performed
with 45 cycles (initial heat activation 95 °C/5 min, per cycle 95 °C/
10 s of denaturation, 60 °C/8 s of annealing and 72 °C/8 s of
extension). The SYBR Green I fluorescence was quantified at
521 nm at the end of each extension step. The Cq values were
determined as the second derivative maximum of the fluores-
cence signal curve with the software Realplex (version 2.2,
Eppendorf AG, CalqPlex algorithm, Automatic Baseline, Drift
Correction On). For the normalisation of the target genes (relative
gene expression), we used a set of two reference genes (RPL22
and PPIB), which have been shown to be stably expressed in hPDL
fibroblasts under the conditions investigated.44 The relative gene
expression used for the statistical analysis was calculated as 2–ΔCq,
with ΔCq= Cq (target gene) – Cq (mean RPL22/PPIB), divided by
the respective 2–ΔCq arithmetic mean of the Lumox® normoxic
control group to set the relative gene expression to 1.15,16

We designed all primers (Table 1) according to the MIQE quality
guidelines45 and previously described criteria44 by using NCBI
PrimerBLAST and additional software to avoid the formation of
dimers and secondary structures at the annealing temperature.
The unmodified primers were synthesised and purified by Eurofins
MWG Operon LLC (Huntsville, AL, USA; High Purity Salt Free
Purification HPSF®). We performed a no-template control (NTC)
without cDNA to assess possible faults resulting from primer
dimers or contaminating DNA. The primer specificity was validated
as described previously (melting-curve analysis and agarose gel
electrophoresis).44

Enzyme-linked immunosorbent assays
For the quantification of OPG, soluble RANKL, ALPL, prostaglandin
E2 (PGE2) and VEGF protein secretion in the hPDL cell super-
natant, we used commercially available ELISA kits according to the
manufacturers’ instructions (OPG: EHTNFRSF11B, Thermo Fisher
Scientific Inc.; sRANKL: RD193004200R; Biovendor, Brno, Czech
Republic; ALPL: OKEH00757; Aviva Systems, San Diego, USA; PGE2:
514010; Cayman Chemicals, Ann Arbor, USA; VEGF-A: RAB0507,
Sigma Aldrich). We used cell culture supernatants from two
independent experiments (N= 2) with a total of six biological
replicates (n= 6). For the ELISA of OPG, we diluted the cell
supernatants 1:10 in appropriate dilution buffer. The protein
expression per well was related to the respective number of hPDL
fibroblasts, as counted with a Beckman Coulter Counter Z2™
(Beckman Coulter GmbH).

Quantification of total collagen in the cell culture supernatant
For the quantification of total collagen, we used a commercially
available kit (K218-100, Biovision, Milpitas, USA) according to the
manufacturer’s instructions.

Quantification of RANKL and HIF-1α stabilization via western blot
Since RANKL can be expressed as two subtypes—soluble and
membrane-bound—we also investigated the expression of
membrane-bound RANKL by performing immunoblotting with a
RANKL-specific antibody. In addition, we assessed the stability of
HIF-1α, which, among other target genes, regulates COX-2 and
VEGF expression.26,35 Total protein from hPDL fibroblasts was
isolated with 100 µL of CelLytic™ M per well (C2978; Sigma-
Aldrich®) supplemented with proteinase inhibitors (Carl Roth
GmbH & Co. KG). To reduce proteinase activity, the proteins were
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kept on ice for the entire procedure. The determination of protein
concentration was performed with RotiQuant (K015.3; Carl Roth
GmbH & Co. KG) according to the manufacturer’s instructions. For
immunoblotting, we separated equal amounts of total protein on
a 10% SDS-polyacrylamide (RANKL) or 8% SDS-polyacrylamide
(HIF-1α) gel under reducing conditions and transferred the
proteins onto polyvinylidene difluoride (PVDF) membranes via
electroblotting. To reduce the nonspecific binding of antibodies,
we blocked the membranes with 5% nonfat milk in Tris-buffered
saline and 0.1% Tween 20, pH 7.5 (TBS-T), at 4 °C overnight. Then,
we incubated the membranes with anti-RANKL (1:2 000,
ABIN500805, Antibodies-Online, Aachen, Germany), anti-HIF-1α
(1:2 000, Santa Cruz Biotech, Heidelberg, Germany), anti-HSP90
(reference, 1:500, Santa Cruz Biotech) and anti-β-actin (reference,
1:5 000, Sigma-Aldrich®) for 1 h at room temperature. After
washing three times in TBS-T, we incubated the blots for another
1 h with horseradish peroxidase-conjugated anti-rabbit IgG
(Pierce, Rockford, USA) diluted 1:5 000 in 0.5% milk in TBS-T at
room temperature. We visualised the antibody binding by using
an enhanced chemiluminescence system (Pierce, Rockford, USA).

TRAP histochemistry (hPDL-mediated osteoclastogenesis)
To investigate the effect of mechanotransduction vs. that of
hypoxia on the mediation of osteoclastogenesis by hPDL
fibroblasts during orthodontic tooth movement, we performed
coculture experiments with osteoclast-precursor cells. At the end
of the total 72-h incubation period, hPDL fibroblasts from each
experimental group were washed (PBS), and a macrophage
osteoclast-precursor cell line (immortal murine RAW264.7 cells,
CLS Cell Lines Service, Eppelheim, Germany) was added after force
application at a concentration of 70 000 cells per well, thus
avoiding the potential force-induced induction of RAW cell
differentiation that was not mediated by RANKL.39 The resulting
coculture was then incubated for another 72 h under specific cell
culture conditions.6,39 Histochemical TRAP staining (red) was used
to detect differentiated osteoclast-like cells.46 TRAP-positive cells
were quantified at a magnification of ×100 with an Olympus IX50
microscope (Olympus, Germany) in ten random fields of view per
well (biological replicates) by a blinded observer, and the
arithmetic mean was used for further analysis.

Statistical analysis
Prior to the statistical analysis, all absolute data values were
divided by the respective arithmetic mean of the Lumox®
normoxic control group to obtain normalised data values relative
to the values of the controls, which were set to 1. Using the
software application SPSS® Statistics 24 (IBM®, Armonk, NY, USA),
all data were tested for a normal distribution (Shapiro–Wilk test,
visual assessment of histograms) and the homogeneity of variance
(Levene’s test). The descriptive statistics are given as the mean
(M) ± standard deviation (SD). The normal distribution of all data
was confirmed. The experimental groups were compared by one-
way ANOVA and validated by Welch’s test, since the homogeneity
of variance was not always present. We used Games–Howell post
hoc tests for heterogeneous variances in pairwise comparisons.
Statistical significance was assumed at P ≤ 0.05.
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