Obesity and hypovitaminosis D: causality or casualty?


Epidemiological studies reported that vitamin D deficiency represents an increasingly widespread phenomenon in various populations. Vitamin D deficiency is considered a clinical syndrome determined by low circulating levels of 25-hydroxyvitamin D (25(OH)D), which is the biologically-inactive intermediate and represents the predominant circulating form. Different mechanisms have been hypothesized to explain the association between hypovitaminosis D and obesity, including lower dietary intake of vitamin D, lesser skin exposure to sunlight, due to less outdoor physical activity, decreased intestinal absorption, impaired hydroxylation in adipose tissue and 25(OH)D accumulation in fat. However, several studies speculated that vitamin D deficiency itself could cause obesity or prevent weight loss. The fat-solubility of vitamin D leads to the hypothesis that a sequestration process occurs in body fat depots, resulting in a lower bioavailability in the obese state. After investigating the clinical aspects of vitamin D deficiency and the proposed mechanisms for low 25(OH)D in obesity, in this manuscript we discuss the possible role of vitamin D replacement treatment, with different formulations, to restore normal levels in individuals affected by obesity, and evaluate potential positive effects on obesity itself and its metabolic consequences. Food-based prevention strategies for enhancement of vitamin D status and, therefore, lowering skeletal and extra-skeletal diseases risk have been widely proposed in the past decades; however pharmacological supplementation, namely cholecalciferol and calcifediol, is required in the treatment of vitamin D insufficiency and its comorbidities. In individuals affected by obesity, high doses of vitamin D are required to normalize serum vitamin D levels, but the different liposolubility of different supplements should be taken into account. Although the results are inconsistent, some studies reported that vitamin D supplementation may have some beneficial effects in people with obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1


  1. 1.

    Battault S, Whiting SJ, Peltier SL, Sadrin S, Gerber G, Maixent JM. Vitamin D metabolism, functions and needs: from science to health claims. Eur J Nutr. 2013;52:429–41.

    CAS  PubMed  Google Scholar 

  2. 2.

    Wacker M, Holick MF. Vitamin D—effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;10:111–48. 5

    Google Scholar 

  3. 3.

    Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116:2062–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96:365–408.

    CAS  PubMed  Google Scholar 

  5. 5.

    DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–96S.

    CAS  PubMed  Google Scholar 

  6. 6.

    Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.

    CAS  PubMed  Google Scholar 

  7. 7.

    Cooper C, Javaid K, Westlake S, Harvey N, Dennison E. Developmental origins of osteoporotic fracture: the role of maternal vitamin D insufficiency. J Nutr. 2005;135:2728S–34S.

    CAS  PubMed  Google Scholar 

  8. 8.

    Srikuea R, Zhang X, Park-Sarge OK, Esser KA. VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: Potential role in suppression of myoblast proliferation. Am J Physiol Cell Physiol. 2012;303:C396–C405.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bischoff-Ferrari H. Relevance of vitamin D in muscle health. Rev Endocr Metab Disord. 2012;13:71–77.

    CAS  PubMed  Google Scholar 

  10. 10.

    Janssen HC, Samson MM, Verhaar HJ. Vitamin D deficiency, muscle function, and falls in elderly people. Am J Clin Nutr. 2002;75:611–5.

    CAS  PubMed  Google Scholar 

  11. 11.

    Antico A, Tampoia M, Tozzoli R, Bizzaro N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev. 2012;12:127–36.

    CAS  PubMed  Google Scholar 

  12. 12.

    Bellastella G, Maiorino MI, Petrizzo M, De Bellis A, Capuano A, Esposito K, et al. Vitamin D and autoimmunity: what happens in autoimmune polyendocrine syndromes? J Endocrinol Invest. 2015;38:629–33.

    CAS  PubMed  Google Scholar 

  13. 13.

    Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: Modulator of the immune system. Curr Opin Pharmacol. 2010;10:482–96.

    CAS  PubMed  Google Scholar 

  14. 14.

    Eyles DW, Burne THJ, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol. 2012;34:47–64.

    PubMed  Google Scholar 

  15. 15.

    Annweiler C, Dursun E, Feron F, Gezen-Ak D, Kalueff AV, Littlejohns T, et al. Vitamin D and cognition in older adults: updated international recommendations. J Intern Med. 2015;277:45–57.

    CAS  PubMed  Google Scholar 

  16. 16.

    Krishnan AV, Feldman D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol. 2011;51:311–36.

    CAS  PubMed  Google Scholar 

  17. 17.

    Leung PS. The potential protective action of vitamin D in hepatic insulin resistance and pancreatic islet dysfunction in type 2 diabetes mellitus. Nutrients. 2016;5;8:147.

    Google Scholar 

  18. 18.

    Muscogiuri G, Annweiler C, Duval G, Karras S, Tirabassi G, Salvio G, et al. Vitamin D and cardiovascular disease: From atherosclerosis to myocardial infarction and stroke. Int J Cardiol. 2017;230:577–84.

    PubMed  Google Scholar 

  19. 19.

    Xu Y, Sun Z. Molecular basis of klotho: from gene to function in aging. Endocr Rev. 2015;36:174–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Abbas MA. Physiological functions of vitamin D in adipose tissue. J Steroid Biochem Mol Biol. 2017;165(Pt B):369–38.

    CAS  PubMed  Google Scholar 

  21. 21.

    Zemel MB. Regulation of adiposity and obesity risk by dietary calcium: Mechanisms and implications. J Am Coll Nutr. 2002;21:146S–51S.

    CAS  PubMed  Google Scholar 

  22. 22.

    Cheng S, Massaro JM, Fox CS, Larson MG, Keyes MJ, McCabe EL, et al. Adiposity, cardiometabolic risk, and vitamin D status: The Framingham heart study. Diabetes. 2010;59:242–8.

    CAS  PubMed  Google Scholar 

  23. 23.

    Lamendola CA, Ariel D, Feldman D, Reaven GM. Relations between obesity, insulin resistance, and 25-hydroxyvitamin D. Am J Clin Nutr. 2012;95:1055–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wang L, Ma J, Manson JE, Buring JE, Gaziano JM, Sesso HD. A prospective study of plasma vitamin D metabolites, vitamin D receptor gene polymorphisms, and risk of hypertension in men. Eur J Nutr. 2013;52:1771–9.

    CAS  PubMed  Google Scholar 

  25. 25.

    Fraser A, Williams D, Lawlor DA. Associations of serum 25-hydroxyvitamin D, parathyroid hormone and calcium with cardiovascular risk factors: analysis of 3 NHANES cycles (2001–6). PLoS ONE. 2010;9;5:e13882.

    Google Scholar 

  26. 26.

    Martins D, Wolf M, Pan D, Zadshir A, Tareen N, Thadhani R, et al. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2007;11:1159–65. 167

    Google Scholar 

  27. 27.

    Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Ober Rev. 2015;16:341–9.

    CAS  Google Scholar 

  28. 28.

    Hyppönen E, Power C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. Am J Clin Nutr. 2007;85:860–8.

    PubMed  Google Scholar 

  29. 29.

    Compston JE, Vedi S, Ledger JE, Webb A, Gazet JC, Pilkington TR. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–63.

    CAS  PubMed  Google Scholar 

  30. 30.

    Need AG, Morris HA, Horowitz M, Nordin C. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58:882–5.

    CAS  PubMed  Google Scholar 

  31. 31.

    Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.

    CAS  PubMed  Google Scholar 

  32. 32.

    Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity. 2012;20:1444–8.

    CAS  PubMed  Google Scholar 

  33. 33.

    Carrelli A, Bucovsky M, Horst R, Cremers S, Zhang C, Bessler M, et al. Vitamin D storage in adipose tissue of obese and normal weight women. J Bone Miner Res. 2016;32:237–42.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Abboud M, Gordon-Thomson C, Hoy AJ, Balaban S, Rybchyn MS, Cole L, et al. Uptake of 25-hydroxyvitamin D by muscle and fat cells. J Steroid Biochem Mol Biol. 2014;144(Pt A):232–6.

    CAS  PubMed  Google Scholar 

  35. 35.

    Ryden M, Backdahl J, Petrus P, Thorell A, Gao H, Coue M, et al. Impaired atrial natriuretic peptide-mediated lipolysis in obesity. Int J Obes. 2016;40:714–20.

    CAS  Google Scholar 

  36. 36.

    Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY. Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature. 2005;437:569–73.

    CAS  PubMed  Google Scholar 

  37. 37.

    Ding C, Gao D, Wilding J, Trayhurn P, Bing C. Vitamin D signalling in adipose tissue. Br J Nutr. 2012;108:1915–23.

    CAS  PubMed  Google Scholar 

  38. 38.

    Wamberg L, Christiansen T, Paulsen SK, Fisker S, Rask P, Rejnmark L, et al. Expression of vitamin D-metabolizing enzymes in human adipose tissue—the effect of obesity and diet-induced weight loss. Int J Obes. 2012;37:651–7.

    Google Scholar 

  39. 39.

    Blaak EE, Van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH. beta-Adrenergic stimulation of skeletal muscle metabolism in relation to weight reduction in obese men. Am J Physiol Endocrinol Metab. 1994;267::E316–22.

    Google Scholar 

  40. 40.

    Bougnères P, Stunff CL, Pecqueur C, Pinglier E, Adnot P, Ricquier D. In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. J Clin Invest. 1997;99:2568–73.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hellström L, Langin D, Reynisdottir S, Dauzats M, Arner P. Adipocyte lipolysis in normal weight subjects with obesity among first-degree relatives. Diabetologia. 1996;39:921–8.

    PubMed  Google Scholar 

  42. 42.

    Jocken JWE, Blaak EE. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity. Physiol Behav. 2008;94:219–30.

    CAS  PubMed  Google Scholar 

  43. 43.

    Di Nisio A, De Toni L, Sabovic I, Rocca MS, De Filippis V, Opocher G, et al. Impaired release of vitamin D in dysfunctional adipose tissue: new cues on vitamin D supplementation in obesity. J Clin Endocrinol Metab. 2017;102:2564–74.

    PubMed  Google Scholar 

  44. 44.

    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Endocrine society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    CAS  PubMed  Google Scholar 

  45. 45.

    WHO—World Health Organization. Obesity and Overweight. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 1 March 2018.

  46. 46.

    Vanlint S. Vitamin D and obesity. Nutrients. 2013;5:949–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Bell NH, Greene A, Epstein S, Oexmann MJ, Shaw S, Shary J. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ding C, Parameswaran V, Blizzard L, Burgess J, Jones G. Not a simple fat-soluble vitamin: Changes in serum 25-(OH)D levels are predicted by adiposity and adipocytokines in older adults. J Intern Med. 2010;268:501–10.

    CAS  PubMed  Google Scholar 

  49. 49.

    Scragg R, Camargo CA Jr., Frequency of leisure-time physical activity and serum 25-hydroxyvitamin D levels in the US population: results from the Third National Health and Nutrition Examination Survey. Am J Epidemiol. 2008;15;168:577–86.

    Google Scholar 

  50. 50.

    Savastano S, Barrea L, Savanelli MC, Nappi F, Di Somma C, Orio F, et al. Low vitamin D status and obesity: role of nutritionist. Rev Endocr Metab Disord. 2017;18:215–25.

    CAS  PubMed  Google Scholar 

  51. 51.

    Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10:e100138.

    Google Scholar 

  52. 52.

    Cheng S, Massaro JM, Fox CS, Larson MG, Keyes MJ, McCabe EL, et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes. 2010;59:242–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88:157–61.

    CAS  PubMed  Google Scholar 

  54. 54.

    Brock K, Huang WY, Fraser DR, Ke L, Tseng M, Stolzenberg-Solomon R, et al. Low vitamin D status is associated with physical inactivity, obesity and low vitamin D intake in a large US sample of healthy middle-aged men and women. J Steroid Biochem Mol Biol. 2010;121:462–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    González-Molero I, Rojo-Martínez G, Morcillo S, Gutierrez C, Rubio E, Pérez-Valero V, et al. Hypovitaminosis D and incidence of obesity: a prospective study. Eur J Clin Nutr. 2013;67:680–2.

    PubMed  Google Scholar 

  56. 56.

    Gilbert-Diamond D, Baylin A, Mora-Plazas M, Marin C, Arsenault JE, Hughes MD, et al. Vitamin D deficiency and anthropometric indicators of adiposity in school-age children: a prospective study. Am J Clin Nutr. 2010;92:1446–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Earthman CP, Beckman LM, Masodkar K, Sibley SD. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes. 2012;36:387–96.

    CAS  Google Scholar 

  58. 58.

    Khan H, Kunutsor S, Franco OH, Chowdhury R. Vitamin D, type 2 diabetes and other metabolic outcomes: a systematic review and meta-analysis of prospective studies. Proc Nutr Soc. 2013;72:89–97.

    CAS  PubMed  Google Scholar 

  59. 59.

    Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013;88:720–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Hart PH, Lucas RM, Walsh JP, Zosky GR, Whitehouse AJ, Zhu K, et al. Vitamin D in fetal development: findings from a birth cohort study. Pediatrics. 2015;135:e167–73.

    PubMed  Google Scholar 

  61. 61.

    Mehmood ZH, Papandreou D. An updated mini review of vitamin D and obesity: adipogenesis and inflammation state. Open Access Maced J Med Sci. 2016;4:526–32.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Cediel G, Corvalán C, Aguirre C, de Roma-a D, Uauy R. Serum 25-Hydroxyvitamin D associated with indicators of body fat and insulin resistance in prepubertal chilean children. Int J Obes. 2015;40:147–52.

    Google Scholar 

  63. 63.

    Cediel G, Corvalan C, Lopez de Romana D, Mericq V, Uauy R. Prepubertal adiposity, vitamin D status, and insulin resistance. Pediatrics. 2016;138:e20160076–e20160076.

    PubMed  Google Scholar 

  64. 64.

    Al-Shoumer KA, Al-Essa TM. Is there a relationship between vitamin D with insulin resistance and diabetes mellitus? World J Diabetes. 2015;6:1057–64.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177–89.

    CAS  PubMed  Google Scholar 

  66. 66.

    Chagas CE, Borges MC, Martini LA, Rogero MM. Focus on vitamin D, inflammation and type 2 diabetes. Nutrients. 2012;4:52–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Pilz S, Kienreich K, Rutters F, de Jongh R, van Ballegooijen AJ, Grübler M, et al. Role of vitamin D in the development of insulin resistance and type 2 diabetes. Curr Diab Rep. 2013;13:261–70.

    CAS  PubMed  Google Scholar 

  68. 68.

    Chung SJ, Lee YA, Hong H, Kang MJ, Kwon HJ, Shin CH, et al. Inverse relationship between vitamin D status and insulin resistance and the risk of impaired fasting glucose in Korean children and adolescents: the Korean National Health and Nutrition Examination Survey (KNHANES) 2009–10. Public Health Nutr. 2014;17:795–802.

    PubMed  Google Scholar 

  69. 69.

    Olson M, Maalouf N, Oden J, White P, Hutchison M. Vitamin D deficiency in obese children and its relationship to glucose homeostasis. J Clin Endocrinol Metab. 2012;97:279–28.

    CAS  PubMed  Google Scholar 

  70. 70.

    Kayaniyil S, Harris SB, Retnakaran R, Vieth R, Knight JA, Gerstein HC, et al. Prospective association of 25(OH)D with metabolic syndrome. Clin Endocrinol. 2014;80:502–5075.

    CAS  Google Scholar 

  71. 71.

    Seo JA, Eun CR, Cho H, Lee SK, Yoo HJ, Kim SG, et al. Low vitamin D status is associated with nonalcoholic Fatty liver disease independent of visceral obesity in Korean adults. PLoS ONE. 2013;9:e75197.

    Google Scholar 

  72. 72.

    Rusconi RE, De Cosmi V, Gianluca G, Giavoli C, Agostoni C. Vitamin D insufficiency in obese children and relation with lipid profile. Int J Food Sci Nutr. 2015;66:132–4.

    CAS  PubMed  Google Scholar 

  73. 73.

    Riek AE, Oh J, Sprague JE, Timpson A, de las Fuentes L, Bernal-Mizrachi L, et al. Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients. J Biol Chem. 2012;287:38482–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008;117:503–11. 29

    CAS  PubMed  Google Scholar 

  75. 75.

    Fornari R, Francomano D, Greco EA, Marocco C, Lubrano C, Wannenes F, et al. Lean mass in obese adult subjects correlates with higher levels of vitamin D, insulin sensitivity and lower inflammation. J Endocrinol Invest. 2015;38:367–72.

    CAS  PubMed  Google Scholar 

  76. 76.

    Ordóñez Mena JM, Brenner H. Vitamin D and cancer: an overview on epidemiological studies. Adv Exp Med Biol. 2014;359:17–32.

    Google Scholar 

  77. 77.

    Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;359:342–57.

    Google Scholar 

  78. 78.

    Scappaticcio L, Maiorino MI, Bellastella G, Giugliano D, Esposito K. Insights into the relationships between diabetes, prediabetes, and cancer. Endocrine. 2017;56:231–9.

    CAS  PubMed  Google Scholar 

  79. 79.

    Manousaki D, Richards JB. Low vitamin D levels as a risk factor for cancer. BMJ. 2017;31:359–j4952.

    Google Scholar 

  80. 80.

    Turer CB, Lin H, Flores G. Prevalence of vitamin D deficiency among overweight and obese US children. Pediatrics. 2013;131:e152–e161.

    PubMed  Google Scholar 

  81. 81.

    Bellone S, Esposito S, Giglione E, et al. Vitamin D levels in a paediatric population of normal weight and obese subjects. J Endocrinol Invest. 2014;37:805–9.

    CAS  PubMed  Google Scholar 

  82. 82.

    Peterson C. Vitamin D deficiency and childhood obesity: interactions, implications, and recommendations. Nutr Dietary Suppl. 2015;7:29–3.

    CAS  Google Scholar 

  83. 83.

    Peterson CA, Tosh AK, Belenchia AM. Vitamin D insufficiency and insulin resistance in obese adolescents. Ther Adv Clin Endocrinol Metab. 2014;5:166–89.

    CAS  Google Scholar 

  84. 84.

    Dolinsky DH, Armstrong S, Mangarelli C, Kemper AR. The association between vitamin D and cardiometabolic risk factors in children: a systematic review. Clin Pediatr. 2013;52:210–23.

    Google Scholar 

  85. 85.

    Yildiz I, Erol OB, Toprak S, et al. Role of vitamin D in children with hepatosteatosis. J Pediatr Gastroenterol Nutr. 2014;59:106–11.

    CAS  PubMed  Google Scholar 

  86. 86.

    Black LJ, Jacoby P, She Ping-Delfos WC, et al. Low serum 25-hydroxyvitamin D concentrations associate with non-alcoholic fatty liver disease in adolescents independent of adiposity. J Gastroenterol Hepatol. 2014;29:1215–22.

    CAS  PubMed  Google Scholar 

  87. 87.

    Katz K, Brar PC, Parekh N, Liu YH, Weitzman M. Suspected nonalcoholic fatty liver disease is not associated with vitamin d status in adolescents after adjustment for obesity. J Obes. 2010;2010:496829.

    PubMed  Google Scholar 

  88. 88.

    NIH—National Institutes of Health. Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 2000;17:1–45

  89. 89.

    Buyukinan M, Ozen S, Kokkun S, Saz EU. The relation of vitamin D deficiency with puberty and insulin resistance in obese children and adolescents. J Pediatr Endocrinol Metab. 2012;25:83–87.

    CAS  PubMed  Google Scholar 

  90. 90.

    Kelly A, Brooks LJ, Dougherty S, Carlow DC, Zemel BS. A cross-sectional study of vitamin D and insulin resistance in children. Arch Dis Child. 2011;96:447–52.

    PubMed  Google Scholar 

  91. 91.

    Creo AL, Rosen JS, Ariza AJ, Hidaka KM, Binns HJ. Vitamin D levels, insulin resistance, and cardiovascular risks in very young obese children. J Pediatr Endocrinol Metab. 2013;26:97–104.

    CAS  PubMed  Google Scholar 

  92. 92.

    Soleymani T, Tejavanija S, Morgan S. Obesity, bariatric surgery, and bone. Curr Opin Rheumatol. 2011;23:396–405.

    CAS  PubMed  Google Scholar 

  93. 93.

    Yu EW. Bone metabolism after bariatric surgery. J Bone Miner Res. 2014;29:1507–18.

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA, Center JA. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev. 2013;14:52–67.

    CAS  PubMed  Google Scholar 

  95. 95.

    Stein EM, Silverberg S. Bone loss after bariatric surgery: causes, consequences, and management. Lancet Diab Endocrinol. 2014;2:165–74.

    Google Scholar 

  96. 96.

    Lespessailles E, Toumi H. Vitamin D alteration associated with obesity and bariatric surgery. Exp Biol Med. 2017;242:1086–94.

    CAS  Google Scholar 

  97. 97.

    Koch TR, Finelli FC. Postoperative metabolic and nutritional complications of bariatric surgery. Gastroenterol Clin North Am. 2010;39:109–24.

    PubMed  Google Scholar 

  98. 98.

    Giusti V, Gasteyger C, Suter M, Heraief E, Gaillard RC, Burkhardt P. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: Potential role of serum C telopeptides for follow-up. Int J Obes. 2005;29:1429–35.

    CAS  Google Scholar 

  99. 99.

    Nogués X, Goday A, Peña MJ, Benaiges D, de Ramón M, Crous X, et al. Bone mass loss after sleeve gastrectomy: a prospective comparative study with gastric bypass. Cir Esp. 2010;88:103–9.

    PubMed  Google Scholar 

  100. 100.

    De Prisco C, Levine SN. Metabolic bone disease after gastric bypass surgery for obesity. Am J Med Sci. 2005;329:57–61.

    PubMed  Google Scholar 

  101. 101.

    Fleisher J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. 2008;93:3735–40.

    Google Scholar 

  102. 102.

    Stein EM, Carrelli A, Young P, Bucovsky M, Zhang C, Schrope B, et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab. 2013;98:541–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Hewitt S, Sovik TT, Aasheim ET, Kristinsson J, Jahnsen J, Birketvedt GS, et al. Secondary hyperparathyroidism, vitamin D sufficiency, and serum calcium 5 years after gastric bypass and duodenal switch. Obes Surg. 2013;23:384–90.

    PubMed  Google Scholar 

  104. 104.

    Aasheim ET, Hofso D, Sovik TT. Vitamin supplements after bariatric surgery. Clin Endocrinol. 2010;72:134–5.

    Google Scholar 

  105. 105.

    Cashman KD. A review of vitamin D status and CVD. Proc Nutr Soc. 2014;73:65–72.

    CAS  PubMed  Google Scholar 

  106. 106.

    Ganji V, Zhang X, Shaikh N, Tangpricha V. Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001–6. Am J Clin Nutr. 2011;94:225–33.

    CAS  PubMed  Google Scholar 

  107. 107.

    Lee P, Greenfield JR, Seibel MJ, Eisman JA, Center JR. Adequacy of vitamin D replacement in severe deficiency is dependent on body mass index. Am J Med. 2009;122:1056–60.

    CAS  PubMed  Google Scholar 

  108. 108.

    Camozzi V, Frigo AC, Zaninotto M, Sanguin F, Plebani M, Boscaro M, et al. 25-Hydroxycholecalciferol response to single oral cholecalciferol loading in the normal weight, overweight, and obese. Osteoporos Int. 2016;27:2593–602.

    CAS  PubMed  Google Scholar 

  109. 109.

    Didriksen A, Burild A, Jakobsen J, Fuskevag OM, Jorde R. Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3. Eur J Endocrinol. 2015;172:235–41.

    CAS  PubMed  Google Scholar 

  110. 110.

    Cashman KD, Seamans KM, Lucey AJ, Sto E, Weber P, Kiely M, et al. Relative effectiveness of oral 25-hydroxyvitamin D 3 and vitamin D 3 in raising wintertime serum 25-hydroxyvitamin D in older adults. Am J Clin Nutr. 2012;95:1350–6.

    CAS  PubMed  Google Scholar 

  111. 111.

    Ekwaru JP, Zwicker JD, Holick MF, Giovannucci E, Veugelers PJ, Ebeling P, et al. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS ONE. 2014;9:e111265.

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Salehpour A, Hosseinpanah F, Shidfar F, Vafa M, Razaghi M, Dehghani S, et al. A 12-week double-blind randomized clinical trial of vitamin D3 supplementation on body fat mass in healthy overweight and obese women. Nutr J. 2012;11:78.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Gallagher JC, Yalamanchili V, Smith LM. The effect of vitamin D supplementation on serum 25(OH)D in thin and obese women. J Steroid Biochem Mol Biol. 2013;136:195–200.

    CAS  PubMed  Google Scholar 

  114. 114.

    Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, et al. American Association of Clinical Endocrinologists; Obesity Society; American Society for Metabolic & Bariatric Surgery. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity. 2013;21(Suppl 1):S1–27.

    CAS  PubMed  Google Scholar 

  115. 115.

    Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008;122:398–417.

    PubMed  Google Scholar 

  116. 116.

    Radhakishun NN, van Vliet M, Poland DC, et al. Efficacy and tolerability of a high loading dose (25,000 IU weekly) vitamin D3 supplementation in obese children with vitamin D insufficiency/deficiency. Horm Res Paediatr. 2014;82:103–6.

    CAS  PubMed  Google Scholar 

Download references


Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group members served as collaborators and approved the final version of the manuscript: Annamaria Colao, Antonio Aversa, Barbara Altieri, Luigi Angrisani, Giuseppe Annunziata, Rocco Barazzoni, Luigi Barrea, Giuseppe Bellastella, Bernadette Biondi, Elena Cantone, Brunella Capaldo, Sara Cassarano, Rosario Cuomo, Luigi Di Luigi, Andrea Di Nisio, Carla Di Somma, Ludovico Docimo, Katherine Esposito, Carlo Foresta, Pietro Forestieri, Alessandra Gambineri, Francesco Garifalos, Cristiano Giardiello, Carla /Giordano, Francesco Giorgino, Dario Giugliano, Daniela Laudisio, Davide Lauro, Andrea Lenzi, Silvia Magno, Paolo Macchia, MariaIda Maiorino, Emilio Manno, Chiara Marocco, Paolo Marzullo, Chiara Mele, Davide Menafra, Silvia Migliaccio, Marcello Monda, Filomena Morisco, Fabrizio Muratori, Giovanna Muscogiuri, Mario Musella, Gerardo Nardone, Claudia Oriolo, Uberto Pagotto, Pasquale Perrone Filardi, Luigi Piazza, Rosario Pivonello, Barbara Polese, Paolo Pozzilli, Giulia Puliani, Stefano Radellini, Gabriele Riccardi, Domenico Salvatore, Ferruccio Santini, Giovanni Sarnelli, Lorenzo Scappaticcio, Silvia Savastano, Bruno Trimarco, Dario Tuccinardi, Paola Vairano, Nunzia Verde, Roberto Vettor.


This article is published as part of a supplement funded by Endocrinology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy.

Author information




Corresponding author

Correspondence to Silvia Migliaccio.

Ethics declarations

Conflict of interest

SM received consulting fees from Aegerion, Shire, and Eli Lilly. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Migliaccio, S., Di Nisio, A., Mele, C. et al. Obesity and hypovitaminosis D: causality or casualty?. Int J Obes Supp 9, 20–31 (2019). https://doi.org/10.1038/s41367-019-0010-8

Download citation

Further reading


Quick links