Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adipocyte and Cell Biology

Insights into the roles of Apolipoprotein E in adipocyte biology and obesity

Abstract

Apolipoprotein E (APOE) is a multifunctional protein expressed by various cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, astrocytes, etc. Initially, APOE was discovered as an arginine-rich peptide within very-low-density lipoprotein, but it was subsequently found in triglyceride-rich lipoproteins in humans and other animals, where its presence facilitates the clearance of these lipoproteins from circulation. Recent epidemiolocal studies and experimental research in mice suggest a link between ApoE and obesity. The latest findings highlight the role of endogenous adipocyte ApoE in regulating browning of white adipose tissue, beige adipocyte differentiation, thermogenesis and energy homeostasis. This review focuses on the emerging evidence showing the involvement of ApoE in the regulation of obesity and its associated metabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linear structural features of APOE.
Fig. 2: ApoE deficiency promotes cold-induced browning of white adipose tissue.
Fig. 3: ApoE-deficient beige adipocytes exhibit increased lipolysis and Ucp1 expression.
Fig. 4: Adipocyte ApoE negatively regulates PPARγ signaling.
Fig. 5: Schematic diagrams depicting the potential mechanism underlying the enhanced browning of WAT in ApoE−/− mice.

Similar content being viewed by others

References

  1. Yamamoto T, Choi HW, Ryan RO. Apolipoprotein E isoform-specific binding to the low-density lipoprotein receptor. Anal Biochem. 2008;372:222–6.

    Article  CAS  PubMed  Google Scholar 

  2. Ruiz J, Kouiavskaia D, Migliorini M, Robinson S, Saenko EL, Gorlatova N, et al. The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J Lipid Res. 2005;46:1721–31.

    Article  CAS  PubMed  Google Scholar 

  3. Lohse P, Brewer HB 3rd, Meng MS, Skarlatos SI, LaRosa JC, Brewer HB Jr. Familial apolipoprotein E deficiency and type III hyperlipoproteinemia due to a premature stop codon in the apolipoprotein E gene. J Lipid Res. 1992;33:1583–90.

    Article  CAS  PubMed  Google Scholar 

  4. Schaefer EJ, Gregg RE, Ghiselli G, Forte TM, Ordovas JM, Zech LA, et al. Familial apolipoprotein E deficiency. J Clin Invest. 1986;78:1206–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71:343–53.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–71.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang CL, Chen YF, Lin FJ. Apolipoprotein E deficiency activates thermogenesis of white adipose tissues in mice through enhancing beta-hydroxybutyrate production from precursor cells. FASEB J. 2021;35:e21760.

    Article  CAS  PubMed  Google Scholar 

  8. Li YH, Liu L. Apolipoprotein E synthesized by adipocyte and apolipoprotein E carried on lipoproteins modulate adipocyte triglyceride content. Lipids Health Dis. 2014;13:136.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kypreos KE, Karagiannides I, Fotiadou EH, Karavia EA, Brinkmeier MS, Giakoumi SM, et al. Mechanisms of obesity and related pathologies: role of apolipoprotein E in the development of obesity. FEBS J. 2009;276:5720–8.

    Article  CAS  PubMed  Google Scholar 

  10. WHO. Obesity and overweight. WHO; 2021. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  11. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.

    Article  PubMed  Google Scholar 

  12. Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB, et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA Study. JACC Cardiovasc Imaging. 2014;7:1221–35.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes. 2010;34:949–59.

    Article  CAS  Google Scholar 

  14. Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, et al. Waist circumference and cardiometabolic risk: a consensus statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, The Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Am J Clin Nutr. 2007;85:1197–202.

    Article  CAS  PubMed  Google Scholar 

  15. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Kostense PJ, et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am J Clin Nutr. 2003;77:1192–7.

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Seale P. Control of brown and beige fat development. Nat Rev Mol Cell Biol. 2016;17:691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giralt M, Villarroya F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013;154:2992–3000.

    Article  CAS  PubMed  Google Scholar 

  18. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  PubMed  Google Scholar 

  20. Shamsi F, Wang CH, Tseng YH. The evolving view of thermogenic adipocytes—ontogeny, niche and function. Nat Rev Endocrinol. 2021;17:726–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peres Valgas da Silva C, Hernandez-Saavedra D, White JD, Stanford KI. Cold and exercise: therapeutic tools to activate brown adipose tissue and combat obesity. Biology. 2019;8:9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252–63.

    Article  CAS  PubMed  Google Scholar 

  23. Rall SC Jr, Weisgraber KH, Mahley RW. Human apolipoprotein E. The complete amino acid sequence. J Biol Chem. 1982;257:4171–8.

    Article  CAS  PubMed  Google Scholar 

  24. Rajavashisth TB, Kaptein JS, Reue KL, Lusis AJ. Evolution of apolipoprotein E: mouse sequence and evidence for an 11-nucleotide ancestral unit. Proc Natl Acad Sci USA. 1985;82:8085–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dankner R, Ben Avraham S, Harats D, Chetrit A. ApoE genotype, lipid profile, exercise, and the associations with cardiovascular morbidity and 18-year mortality. J Gerontol A Biol Sci Med Sci. 2020;75:1887–93.

    Article  CAS  PubMed  Google Scholar 

  26. Franco LP, Goncalves Zardini Silveira A, Sobral de Assis Vasconcelos Lima R, Horst MA, Cominetti C. APOE genotype associates with food consumption and body composition to predict dyslipidaemia in Brazilian adults with normal-weight obesity syndrome. Clin Nutr. 2018;37:1722–7.

    Article  CAS  PubMed  Google Scholar 

  27. Sun Y, Wei R, Yan D, Xu F, Zhang X, Zhang B, et al. Association between APOE polymorphism and metabolic syndrome in Uyghur ethnic men. BMJ Open. 2016;6:e010049.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zarkesh M, Daneshpour MS, Faam B, Hedayati M, Azizi F. Is there any association of apolipoprotein E gene polymorphism with obesity status and lipid profiles? Tehran Lipid and Glucose Study (TLGS). Gene. 2012;509:282–5.

    Article  CAS  PubMed  Google Scholar 

  29. Tao MH, Liu JW, LaMonte MJ, Liu J, Wang L, He Y, et al. Different associations of apolipoprotein E polymorphism with metabolic syndrome by sex in an elderly Chinese population. Metabolism. 2011;60:1488–96.

    Article  CAS  PubMed  Google Scholar 

  30. Jemaa R, Elasmi M, Naouali C, Feki M, Kallel A, Souissi M, et al. Apolipoprotein E polymorphism in the Tunisian population: frequency and effect on lipid parameters. Clin Biochem. 2006;39:816–20.

    Article  CAS  PubMed  Google Scholar 

  31. Medina-Urrutia AX, Cardoso-Saldana GC, Zamora-Gonzalez J, Liria YK, Posadas-Romero C. Apolipoprotein E polymorphism is related to plasma lipids and apolipoproteins in Mexican adolescents. Hum Biol. 2004;76:605–14.

    Article  PubMed  Google Scholar 

  32. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res. 2009;50:S183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 2000;1:507–37.

    Article  CAS  PubMed  Google Scholar 

  34. Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life. 2014;66:616–23.

    Article  CAS  PubMed  Google Scholar 

  35. Utermann G, Hees M, Steinmetz A. Polymorphism of apolipoprotein E and occurrence of dysbetalipoproteinaemia in man. Nature. 1977;269:604–7.

    Article  CAS  PubMed  Google Scholar 

  36. Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72:3–12.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Dhanasekaran P, Alexander ET, Rader DJ, Phillips MC, Lund-Katz S. Molecular mechanisms responsible for the differential effects of apoE3 and apoE4 on plasma lipoprotein-cholesterol levels. Arterioscler Thromb Vasc Biol. 2013;33:687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moreno JA, Perez-Jimenez F, Marin C, Gomez P, Perez-Martinez P, Moreno R, et al. The effect of dietary fat on LDL size is influenced by apolipoprotein E genotype in healthy subjects. J Nutr. 2004;134:2517–22.

    Article  CAS  PubMed  Google Scholar 

  39. Wilson PW, Myers RH, Larson MG, Ordovas JM, Wolf PA, Schaefer EJ. Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study. JAMA. 1994;272:1666–71.

    Article  CAS  PubMed  Google Scholar 

  40. Dallongeville J, Lussier-Cacan S, Davignon J. Modulation of plasma triglyceride levels by apoE phenotype: a meta-analysis. J Lipid Res. 1992;33:447–54.

    Article  CAS  PubMed  Google Scholar 

  41. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–56.

    Article  CAS  PubMed  Google Scholar 

  42. Kamboh MI, Sanghera DK, Ferrell RE, DeKosky ST. APOE*4-associated Alzheimer’s disease risk is modified by alpha 1-antichymotrypsin polymorphism. Nat Genet. 1995;10:486–8.

    Article  CAS  PubMed  Google Scholar 

  43. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA. 1993;90:1977–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olaisen B, Teisberg P, Gedde-Dahl T Jr. The locus for apolipoprotein E (apoE) is linked to the complement component C3 (C3) locus on chromosome 19 in man. Hum Genet. 1982;62:233–6.

    Article  CAS  PubMed  Google Scholar 

  45. Liao F, Zhang TJ, Jiang H, Lefton KB, Robinson GO, Vassar R, et al. Murine versus human apolipoprotein E4: differential facilitation of and co-localization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models. Acta Neuropathol Commun. 2015;3:70.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Linton MF, Gish R, Hubl ST, Butler E, Esquivel C, Bry WI, et al. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J Clin Invest. 1991;88:270–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu M, Kuhel DG, Shen L, Hui DY, Woods SC. Apolipoprotein E does not cross the blood-cerebrospinal fluid barrier, as revealed by an improved technique for sampling CSF from mice. Am J Physiol Regul Integr Comp Physiol. 2012;303:R903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–81.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, et al. Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med. 2011;3:89ra57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20:68–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reiman EM, Arboleda-Velasquez JF, Quiroz YT, Huentelman MJ, Beach TG, Caselli RJ, et al. Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat Commun. 2020;11:667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farup PG, Rootwelt H, Hestad K. APOE—a genetic marker of comorbidity in subjects with morbid obesity. BMC Med Genet. 2020;21:146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kypreos KE, Karavia EA, Constantinou C, Hatziri A, Kalogeropoulou C, Xepapadaki E, et al. Apolipoprotein E in diet-induced obesity: a paradigm shift from conventional perception. J Biomed Res. 2017;32:183–190.

    PubMed  Google Scholar 

  54. Espiritu DJ, Huang ZH, Zhao Y, Mazzone T. Hyperglycemia and advanced glycosylation end products suppress adipocyte apoE expression: implications for adipocyte triglyceride metabolism. Am J Physiol Endocrinol Metab. 2010;299:E615–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang ZH, Luque RM, Kineman RD, Mazzone T. Nutritional regulation of adipose tissue apolipoprotein E expression. Am J Physiol Endocrinol Metab. 2007;293:E203–9.

    Article  CAS  PubMed  Google Scholar 

  56. Yue L, Rasouli N, Ranganathan G, Kern PA, Mazzone T. Divergent effects of peroxisome proliferator-activated receptor gamma agonists and tumor necrosis factor alpha on adipocyte ApoE expression. J Biol Chem. 2004;279:47626–32.

    Article  CAS  PubMed  Google Scholar 

  57. Santillo M, Migliaro A, Mondola P, Laezza C, Damiano S, Stingo S, et al. Dietary and hypothyroid hypercholesterolemia induces hepatic apolipoprotein E expression in the rat: direct role of cholesterol. FEBS Lett. 1999;463:83–6.

    Article  CAS  PubMed  Google Scholar 

  58. Zvintzou E, Skroubis G, Chroni A, Petropoulou PI, Gkolfinopoulou C, Sakellaropoulos G, et al. Effects of bariatric surgery on HDL structure and functionality: results from a prospective trial. J Clin Lipido. 2014;8:408–17.

    Article  Google Scholar 

  59. Tejedor MT, Garcia-Sobreviela MP, Ledesma M, Arbones-Mainar JM. The apolipoprotein E polymorphism rs7412 associates with body fatness independently of plasma lipids in middle aged men. PLoS ONE. 2014;9:e108605.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zeljko HM, Skaric-Juric T, Narancic NS, Tomas Z, Baresic A, Salihovic MP, et al. E2 allele of the apolipoprotein E gene polymorphism is predictive for obesity status in Roma minority population of Croatia. Lipids Health Dis. 2011;10:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Volcik KA, Barkley RA, Hutchinson RG, Mosley TH, Heiss G, Sharrett AR, et al. Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12,491 ARIC study participants. Am J Epidemiol. 2006;164:342–8.

    Article  PubMed  Google Scholar 

  62. Zhang J, Xuemei Z, Fan P, Liu R, Huang Y, Liang S, et al. Distribution and effect of apo E genotype on plasma lipid and apolipoprotein profiles in overweight/obese and nonobese Chinese subjects. J Clin Lab Anal. 2012;26:200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ellis JA, Ponsonby AL, Pezic A, Williamson E, Cochrane JA, Dickinson JL, et al. APOE genotype and cardio-respiratory fitness interact to determine adiposity in 8-year-old children from the Tasmanian Infant Health Survey. PLoS ONE. 2011;6:e26679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alharbi KK, Syed R, Alharbi FK, Khan IA. Association of apolipoprotein E polymorphism with impact on overweight university pupils. Genet Test Mol Biomark. 2017;21:53–57.

    Article  CAS  Google Scholar 

  65. Oh JY, Barrett-Connor E, Rancho Bernardo Study G. Apolipoprotein E polymorphism and lipid levels differ by gender and family history of diabetes: the Rancho Bernardo Study. Clin Genet. 2001;60:132–7.

    Article  CAS  PubMed  Google Scholar 

  66. Li W, Liu F, Liu R, Zhou X, Li G, Xiao S. APOE E4 is associated with hyperlipidemia and obesity in elderly schizophrenic patients. Sci Rep. 2021;11:14818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ozen E, Mihaylova RG, Lord NJ, Lovegrove JA, Jackson KG. Association between APOE genotype with body composition and cardiovascular disease risk markers is modulated by BMI in healthy adults: findings from the BODYCON study. Int J Mol Sci. 2022;23:9766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinez-Magana JJ, Genis-Mendoza AD, Tovilla-Zarate CA, Gonzalez-Castro TB, Juarez-Rojop IE, Hernandez-Diaz Y, et al. Association between APOE polymorphisms and lipid profile in Mexican Amerindian population. Mol Genet Genom Med. 2019;7:e958.

    Article  CAS  Google Scholar 

  69. Stiefel P, Montilla C, Muniz-Grijalvo O, Garcia-Lozano R, Alonso A, Miranda ML, et al. Apolipoprotein E gene polymorphism is related to metabolic abnormalities, but does not influence erythrocyte membrane lipid composition or sodium-lithium countertransport activity in essential hypertension. Metabolism. 2001;50:157–60.

    Article  CAS  PubMed  Google Scholar 

  70. Gasparin CC, Leite N, Tureck LV, Souza RLR, Milano-Gai GE, Silva LR, et al. Effects of polymorphisms in APOB, APOE, HSD11beta1, PLIN4, and ADIPOQ genes on lipid profile and anthropometric variables related to obesity in children and adolescents. Genet Mol Biol. 2018;41:735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Torres-Valadez R, Roman S, Ojeda-Granados C, Gonzalez-Aldaco K, Panduro A. Differential distribution of gene polymorphisms associated with hypercholesterolemia, hypertriglyceridemia, and hypoalphalipoproteinemia among Native American and Mestizo Mexicans. World J Hepatol. 2022;14:1408–20.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gonzalez-Aldaco K, Roman S, Torres-Reyes LA, Panduro A. Association of apolipoprotein e2 allele with insulin resistance and risk of type 2 diabetes mellitus among an admixed population of Mexico. Diabetes Metab Syndr Obes. 2020;13:3527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Farup PG, Jansen A, Hestad K, Aaseth JO, Rootwelt H. APOE polymorphism and endocrine functions in subjects with morbid obesity undergoing bariatric surgery. Genes. 2022;13:222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lasrich D, Bartelt A, Grewal T, Heeren J. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes. Exp Cell Res. 2015;337:94–102.

    Article  CAS  PubMed  Google Scholar 

  75. Huang ZH, Maeda N, Mazzone T. Expression of the human apoE2 isoform in adipocytes: altered cellular processing and impaired adipocyte lipogenesis. J Lipid Res. 2011;52:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Differential modulation of diet-induced obesity and adipocyte functionality by human apolipoprotein E3 and E4 in mice. Int J Obes. 2008;32:1595–605.

    Article  CAS  Google Scholar 

  77. Galal AA, Abd Elmajeed AA, Elbaz RA, Wafa AM, Elshazli RM. Association of Apolipoprotein E gene polymorphism with the risk of T2DM and obesity among Egyptian subjects. Gene. 2021;769:145223.

    Article  CAS  PubMed  Google Scholar 

  78. Elosua R, Demissie S, Cupples LA, Meigs JB, Wilson PW, Schaefer EJ, et al. Obesity modulates the association among APOE genotype, insulin, and glucose in men. Obes Res. 2003;11:1502–8.

    Article  CAS  PubMed  Google Scholar 

  79. Pitchika A, Markus MRP, Schipf S, Teumer A, Van der Auwera S, Nauck M, et al. Longitudinal association of Apolipoprotein E polymorphism with lipid profile, type 2 diabetes and metabolic syndrome: results from a 15 year follow-up study. Diabetes Res Clin Pr. 2022;185:109778.

    Article  CAS  Google Scholar 

  80. Torres-Perez E, Ledesma M, Garcia-Sobreviela MP, Leon-Latre M, Arbones-Mainar JM. Apolipoprotein E4 association with metabolic syndrome depends on body fatness. Atherosclerosis. 2016;245:35–42.

    Article  CAS  PubMed  Google Scholar 

  81. Sapkota B, Subramanian A, Priamvada G, Finely H, Blackett PR, Aston CE, et al. Association of APOE polymorphisms with diabetes and cardiometabolic risk factors and the role of APOE genotypes in response to anti-diabetic therapy: results from the AIDHS/SDS on a South Asian population. J Diabetes Complications. 2015;29:1191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298:1300–11.

    Article  CAS  PubMed  Google Scholar 

  83. Barre DE, Mizier-Barre KA, Griscti O, Hafez K. Relationships of apolipoprotein E genotypes with a cluster of seven in persons with type 2 diabetes. Endocr Regul. 2024;58:40–46.

    Article  PubMed  Google Scholar 

  84. Karagiannides I, Abdou R, Tzortzopoulou A, Voshol PJ, Kypreos KE, Apolipoprotein E. predisposes to obesity and related metabolic dysfunctions in mice. FEBS J. 2008;275:4796–809.

    Article  CAS  PubMed  Google Scholar 

  85. Kuhel DG, Konaniah ES, Basford JE, McVey C, Goodin CT, Chatterjee TK, et al. Apolipoprotein E2 accentuates postprandial inflammation and diet-induced obesity to promote hyperinsulinemia in mice. Diabetes. 2013;62:382–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jones NS, Watson KQ, Rebeck GW. Metabolic disturbances of a high-fat diet are dependent on APOE genotype and sex. eNeuro. 2019;6:ENEURO.0267–19.2019.

    Article  PubMed  Google Scholar 

  87. Johnson LA, Torres ER, Impey S, Stevens JF, Raber J. Apolipoprotein E4 and insulin resistance interact to impair cognition and alter the epigenome and metabolome. Sci Rep. 2017;7:43701.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bartelt A, Beil FT, Schinke T, Roeser K, Ruether W, Heeren J, et al. Apolipoprotein E-dependent inverse regulation of vertebral bone and adipose tissue mass in C57Bl/6 mice: modulation by diet-induced obesity. Bone. 2010;47:736–45.

    Article  CAS  PubMed  Google Scholar 

  89. Huang ZH, Reardon CA, Getz GS, Maeda N, Mazzone T. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation. J Lipid Res. 2015;56:215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hofmann SM, Perez-Tilve D, Greer TM, Coburn BA, Grant E, Basford JE, et al. Defective lipid delivery modulates glucose tolerance and metabolic response to diet in apolipoprotein E-deficient mice. Diabetes. 2008;57:5–12.

    Article  CAS  PubMed  Google Scholar 

  91. Bartelt A, Orlando P, Mele C, Ligresti A, Toedter K, Scheja L, et al. Altered endocannabinoid signalling after a high-fat diet in Apoe(-/-) mice: relevance to adipose tissue inflammation, hepatic steatosis and insulin resistance. Diabetologia. 2011;54:2900–10.

    Article  CAS  PubMed  Google Scholar 

  92. Gao J, Katagiri H, Ishigaki Y, Yamada T, Ogihara T, Imai J, et al. Involvement of apolipoprotein E in excess fat accumulation and insulin resistance. Diabetes. 2007;56:24–33.

    Article  CAS  PubMed  Google Scholar 

  93. Huang ZH, Reardon CA, Mazzone T. Endogenous ApoE expression modulates adipocyte triglyceride content and turnover. Diabetes. 2006;55:3394–402.

    Article  CAS  PubMed  Google Scholar 

  94. Chiba T, Nakazawa T, Yui K, Kaneko E, Shimokado K. VLDL induces adipocyte differentiation in ApoE-dependent manner. Arterioscler Thromb Vasc Biol. 2003;23:1423–9.

    Article  CAS  PubMed  Google Scholar 

  95. Zechner R, Moser R, Newman TC, Fried SK, Breslow JL. Apolipoprotein E gene expression in mouse 3T3-L1 adipocytes and human adipose tissue and its regulation by differentiation and lipid content. J Biol Chem. 1991;266:10583–8.

    Article  CAS  PubMed  Google Scholar 

  96. Huang ZH, Gu D, Mazzone T. Role of adipocyte-derived apoE in modulating adipocyte size, lipid metabolism, and gene expression in vivo. Am J Physiol Endocrinol Metab. 2009;296:E1110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang ZH, Espiritu DJ, Uy A, Holterman AX, Vitello J, Mazzone T. Adipose tissue depot-specific differences in adipocyte apolipoprotein E expression. Metabolism. 2011;60:1692–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang ZH, Minshall RD, Mazzone T. Mechanism for endogenously expressed ApoE modulation of adipocyte very low density lipoprotein metabolism: role in endocytic and lipase-mediated metabolic pathways. J Biol Chem. 2009;284:31512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yue L, Mazzone T. Endogenous adipocyte apolipoprotein E is colocalized with caveolin at the adipocyte plasma membrane. J Lipid Res. 2011;52:489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leonardini A, Laviola L, Perrini S, Natalicchio A, Giorgino F. Cross-talk between PPARgamma and insulin signaling and modulation of insulin sensitivity. PPAR Res. 2009;2009:818945.

    Article  PubMed  Google Scholar 

  101. Fallaize R, Carvalho-Wells AL, Tierney AC, Marin C, Kiec-Wilk B, Dembinska-Kiec A, et al. APOE genotype influences insulin resistance, apolipoprotein CII and CIII according to plasma fatty acid profile in the metabolic syndrome. Sci Rep. 2017;7:6274.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu L, Zhang X, Zhao L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer’s disease risk reduction and early intervention. J Neurosci. 2018;38:6665–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ma X, Wang D, Zhao W, Xu L. Deciphering the roles of PPARgamma in adipocytes via dynamic change of transcription complex. Front Endocrinol. 2018;9:473.

    Article  Google Scholar 

  104. Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA. 2001;98:507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339:211–4.

    Article  CAS  PubMed  Google Scholar 

  106. Theendakara V, Bredesen DE, Rao RV. Downregulation of protein phosphatase 2A by apolipoprotein E: implications for Alzheimer’s disease. Mol Cell Neurosci. 2017;83:83–91.

    Article  CAS  PubMed  Google Scholar 

  107. Theendakara V, Peters-Libeu CA, Spilman P, Poksay KS, Bredesen DE, Rao RV. Direct transcriptional effects of apolipoprotein E. J Neurosci. 2016;36:685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013;27:459–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Heine M, Fischer AW, Schlein C, Jung C, Straub LG, Gottschling K, et al. Lipolysis triggers a systemic insulin response essential for efficient energy replenishment of activated brown adipose tissue in mice. Cell Metab. 2018;28:644–55.e4.

    Article  CAS  PubMed  Google Scholar 

  110. Furler SM, Cooney GJ, Hegarty BD, Lim-Fraser MY, Kraegen EW, Oakes ND. Local factors modulate tissue-specific NEFA utilization: assessment in rats using 3H-(R)-2-bromopalmitate. Diabetes. 2000;49:1427–33.

    Article  CAS  PubMed  Google Scholar 

  111. Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res. 2009;50:S86–90.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.

    Article  CAS  PubMed  Google Scholar 

  113. Kim E, Tolhurst AT, Qin LY, Chen XY, Febbraio M, Cho S. CD36/fatty acid translocase, an inflammatory mediator, is involved in hyperlipidemia-induced exacerbation in ischemic brain injury. J Neurosci. 2008;28:4661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93:241–52.

    Article  CAS  PubMed  Google Scholar 

  115. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121:96–105.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Council, Taiwan (grant number NSTC 111-2320-B-002-037-MY3 to F-JL) and National Taiwan University (grant numbers 110L7243, 111L7218, and 113L894803 to F-JL). We thank Dr. Shao-Chun Lu at National Taiwan University for discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

C-LJ conducted the literature search, conceived the project, designed and performed the experiments, interpreted data, prepared figures and wrote the first draft of the manuscript. F-JL conceptualized the article, performed data interpretations, created figures, wrote the manuscript and revised the final version. All authors have reviewed and approved the final manuscript.

Corresponding author

Correspondence to Fu-Jung Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, CL., Lin, FJ. Insights into the roles of Apolipoprotein E in adipocyte biology and obesity. Int J Obes (2024). https://doi.org/10.1038/s41366-024-01549-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-024-01549-9

Search

Quick links