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BACKGROUND/OBJECTIVES: Obesity is a complex condition and the mechanisms involved in weight gain and loss are not fully
understood. Liraglutide, a GLP-1 receptor agonist, has been demonstrated to successfully promote weight loss in patients with
obesity (OB). Yet, it is unclear whether the observed weight loss is driven by an alteration of food liking. Here we investigated the
effects of liraglutide on food liking and the cerebral correlates of liking in OB.
SUBJECTS/METHODS: This study was a randomized, single-center, double-blind, placebo-controlled, parallel group, prospective
clinical trial. 73 participants with OB and without diabetes following a multidisciplinary weight loss program, were randomly
assigned (1:1) to receive liraglutide 3.0 mg (37.40 ± 11.18 years old, BMI= 35.89 ± 3.01 kg) or a placebo (40.04 ± 14.10 years old,
BMI= 34.88 ± 2.87 kg) subcutaneously once daily for 16 weeks.
INTERVENTIONS/METHODS: We investigated liking during food consumption. Participants reported their hedonic experience
while consuming a high-calorie food (milkshake) and a tasteless solution. The solutions were administered inside the scanner with a
Magnetic Resonance Imaging (MRI)-compatible gustometer to assess neural responses during consumption. The same procedure
was repeated during the pre- and post-intervention sessions.
RESULTS: None of the effects involving the intervention factor reached significance when comparing liking between the pre- and
post-intervention sessions or groups. Liking during food reward consumption was associated with the activation of the
ventromedial prefrontal cortex (vmPFC) and the amygdala. The liraglutide group lost more weight (BMI post-pre=−3.19 ± 1.28 kg/
m2) than the placebo group (BMI post-pre=−0.60 ± 1.26 kg/m2).
CONCLUSIONS: These results suggest that liraglutide leads to weight loss without self-report or neural evidence supporting a
concomitant reduction of food liking in participants with OB.
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INTRODUCTION
Obesity is a complex condition associated with cognitive, affective,
behavioral, cerebral, and metabolic dysfunctions [1–5]. The
mechanisms involved in weight gain and weight loss are being
actively researched and pharmacologic treatments of overweight
and obesity have significantly evolved over the past years.
Liraglutide, a glucagon–like peptide 1 (GLP-1) receptor agonist,

has been demonstrated to successfully promote weight loss. GLP-
1 analogs were initially used in the treatment of patients with type
2 diabetes for their glucose–lowering effects. They have shown to
have a beneficial impact on weight loss by exerting an anorectic
effect [6]. They are now used for their weight loss effects in
patients with obesity (OB). And yet, as of today, the exact
mechanisms of GLP-1 agonists in weight loss are not fully

understood. The first and most obvious hypothesis is that GLP-1
agonist-related side effects (e.g., nausea, vomiting) are responsible
for a decrease in appetite and weight reduction; however, most
treated patients lose weight in the absence of clinically significant
side effects [7, 8]. Now if we investigate this question a little
further and examine brain mechanisms, one could speculate that
since GLP-1 receptors are located in areas linked to reward
processing [9] (e.g., the orbitofrontal cortex), then GLP-1 agonists
could affect reward processing (e.g., [9, 10]). Decades of research
in affective neuroscience have shown that reward processing can
be parsed into motivational and hedonic components [11–13].
The motivational component is defined as the motivation to
obtain a reward (i.e., wanting); the hedonic component encom-
passes the subjective hedonic experience (i.e., liking) [14]. Wanting
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and liking also differ in their neurobiological substrates as they
rely on different mesocorticolimbic circuits [11]. A prevalent idea
of what drives our reward-seeking behavior assumes a hedonic
perspective: what we want directly depends on what we like.
While these two states are usually in synchronization, they can
also dissociate under certain circumstances. For instance, people
with addiction disorders frequently report an irrational wanting of
a drug despite not liking its effects anymore [15]. A key
observation in the investigation of the shift from voluntary
consumption towards compulsive consumption is the increasing
gap between wanting and liking, which is formally conceptualized
in the incentive-sensitization theory of addiction (IST) [16].
What do we know about the effects of GLP-1 receptor agonists

on wanting and liking?
There is evidence that GLP-1 receptor agonists affect food

reward responses in patients with OB (e.g., [17]). For instance, it
has been shown that an intravenous injection of exenatide, a GLP-
1 receptor agonist, decreased anticipatory responses to the
consumption of a chocolate milkshake. In a similar vein, liraglutide
has been found to exert central effects by decreasing attention to
highly desirable food cues, as shown by decreased parietal cortex
activation [18]. Additionally, 17 days of chronic GLP-1 analog
treatment decreased brain responses (e.g., in the insular cortex) to
palatable food cues [19]. Farr et al. [20], however, showed that
liraglutide increases the right orbitofrontal cortex’s response to
food cues when administrated long-term (5 weeks of chronic GLP-
1 analog treatment) at a high dose. More recently, Hanssen et al.
[21] have shown behavioral evidence of GLP-1 modulation of
incentive motivation on food rewards but did not investigate the
neural correlates of this effect. This study suggests that wanting
could be modulated by GLP-1 analogs.
Schulz et al. [22] recently pointed out that most studies in the

field so far have focused on reward anticipation. However, flavor
preferences can also be altered by chronic GLP-1 analog
treatment [23], in women in particular [24]. Thus, although more
research assessing the relationship between GLP-1 analogs and
liking is needed, these studies suggest a potential effect of
liraglutide on liking [25]. Unfortunately, fMRI studies examining
the effects of GLP-1 receptor agonists on reward circuitry in
patients with OB and using food stimuli administered by an fMRI-
compatible gustometer are limited. One notable exception is the
study conducted by Van Bloemendaal et al. [17]. These authors
have shown that exenatide increases brain activity (e.g., in the left
insula, left amygdala, and bilateral putamen) to the consumption
of a chocolate milkshake. The participants were not asked to rate
how much they liked the milkshake. We consequently believe
investigating the effects of liraglutide on food liking and the
cerebral correlates of liking in participants with OB using
rewarding food stimuli delivered in the scanner is an important
gap to fill.
Here we followed Schulz et al.’s [22] recommendation to

consider other reward phases than anticipation and we focused
on the liking component of reward. More specifically, we
investigated whether liraglutide affects food liking in participants
with OB without diabetes. Recent work has shown decreased food
liking after weight loss [26, 27]. For instance, Oustric et al. [26]
showed no change in wanting but a change in liking after a
weight loss superior to 5%. This result suggests a potential link
between food liking and weight loss. Given that liraglutide
typically induces a similar weight loss [28–30], we hypothesized
that liraglutide would decrease food liking. Importantly, this
hypothesis should be considered with caution given that the
causal relationships between food liking and weight loss are not
clear, and because the specific action mechanisms of liraglutide
on both food liking and weight loss are still to be understood. Our
participants with OB without diabetes were separated into an
intervention group receiving daily liraglutide injections and a
control group receiving daily placebo injections over 16 weeks. In

these two groups of participants, we used self-reports and
measured brain activity to compare their response to a milkshake
versus a tasteless solution.
To measure liking, we targeted the sensory pleasure during the

consumption of the reward itself. As evidenced by Pool et al’s
review [12], liking and wanting are typically investigated in the
animal literature. In animals, the liking component of reward is
measured during the reward consumption through orofacial
reactions. Since our study was conducted in humans, we thought
it was important to use experimental tasks that reflect the same
processes as in animals and to adopt a similar operationalization.
We do not exclude that a food cue could trigger a sensory
pleasure experience after strong and consistent associative
learning; in terms of mechanisms, we believe we are much closer
to the construct of liking reported in the animal literature when
measuring the sensory pleasure experience during the reward
consumption.

MATERIALS AND METHODS
Trial overview
The data reported here were acquired in the context of a larger study,
components of which have been [31] and will be reported separately. More
precisely, we conducted this randomized, single-center, double-blind,
placebo-controlled, parallel group, prospective clinical trial from March 7,
2018 through March 18, 2020 at the Geneva University Hospitals
(Switzerland). Since this clinical trial was conducted before the COVID-19
pandemic, we can reasonably exclude COVID-19 loss of smell and taste in
the recruited patients. The trial was carried out in accordance with the
protocol and principles enunciated in the current version of the
Declaration of Helsinki, the guidelines of Good Clinical Practice (GCP)
issued by ICH, and the Swiss Law and Swiss regulatory authority’s
requirements. The trial was registered on ClinicalTrials.gov (NCT03347890)
and the protocol as well as any subsequent amendments were approved
by the local ethical committee (Commission Cantonale d’Ethique de la
Recherche, CCER, Genève) and by the Swiss Agency for Therapeutic
Products (Swissmedic). Participant safety was monitored from the screen-
ing to week 16 by an independent data monitoring committee.
Participants were informed of the aims of the study and gave their written
consent before any trial-related procedures. The trial overview is presented
in Fig. 1.

Participants
Multidisciplinary weight loss program. Participants with obesity (Body
Mass Index, BMI ≥ 30 kg/m2 and < 45 kg/m2) were recruited from the
Endocrinology, Diabetology, Nutrition, and Therapeutic Patient Education
Division at the Geneva University Hospitals. They were part of a structured
and multidisciplinary patient educational weight loss program. This weight
loss program, based on lifestyle counseling (combining a group and an
individual approach), included cognitive behavioral therapy coupled with a
diet and physical activity support (described in detail in Pataky et al. [32]).
Patients attended individual and group counseling sessions during the 16-
week period; they were delivered by qualified health care professionals
(registered dieticians, nurses, and physicians specialized in obesity
treatment and patient education). The weight loss program was
consequently tailored to each patient’s needs. All participants gave written
informed consent and received 200 Swiss Francs (the equivalent of 200
USD) for their participation in the pre- and post-intervention sessions.

Inclusion and exclusion criteria. The inclusion criteria were as follows:
between 18 and 75 years old, stable body weight (<5% reported change
within 3 months before the screening), right-handedness, and currently a
non-smoker. The exclusion criteria were based on contraindications to
liraglutide treatment, any drugs interfering with body weight control (e.g.,
Orlistat, Phentermine and Topiramate, Buproprion and Naltrexone) or any
centrally acting medication, any history of psychiatric disease, heart failure
(NYHA II-IV), type 1 and type 2 diabetes mellitus, and deficits of smell and
taste. The complete list of eligibility criteria is listed in the supplementary
information.

Trial population. A total of 73 participants with OB were screened. After
determining their study eligibility, 66 participants were included in the
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trial. Those participants were randomly assigned to one of two groups: 32
received liraglutide 3.0 mg combined with lifestyle counseling and 34
received a placebo combined with lifestyle counseling (see Fig. 1 in
Supplementary Information). Baseline characteristics of the studied
population are described in Table 1 (see Supplementary Information). In
total, 22 participants were excluded from the analysis (10 participants did
not complete the second testing session and 12 participants had missing
or corrupt MRI data). We report data on the 44 remaining participants
(liraglutide group: age 37.4 years ± 11.18, BMI 35.89 kg/m2 ± 3.01, n= 20;

placebo group: age 40.04 years ± 14.1, BMI 34.88 ± 2.87 kg/m2, n= 24).
We ran a sensitivity analysis on the equivalent ANOVA model to the

linear mixed model we report below, testing the 2 taste stimuli × 2
interventions × 2 pre–post effects on the liking ratings. This analysis
revealed that this sample size allowed for the detection of a smallest
population effect size of 0.177 (Cohen’s f), which is interpreted as a small to
medium effect. Concretely, this means that our study, given its design and
its sample, was able to detect a small to medium effect of the intervention
on liking perception.

Taste stimuli and presentation
We used two types of stimuli in this experiment: (1) a rewarding stimulus
consisting of a chocolate milkshake solution and (2) a control stimulus
consisting of a tasteless solution.
We prepared the milkshake by mixing a chocolate flavored milk drink

(300 g) with a Fior Di Latte flavored ice cream (60 g) for a total of 71 kcal/100 g.
The tasteless solution, which was meant to be as close as possible to

artificial saliva, was prepared in three steps. First, we diluted potassium
chloride (KCl, 1.8 g) and sodium bicarbonate (NaHCO3, 0.21 g) in 1 L of
distilled water. Second, we created three less concentrated versions of this
solution; thus, there were 4 different tasteless concentrated solutions (1/1,
¾, ½, and ¼). Third, participants were invited to taste the 4 solutions. The
one that tasted the most neutral to them (i.e., closest to 50 on a scale from
0 “very unpleasant” to 100 “very pleasant”) was used as their tasteless
solution. We believe using one of these 4 tasteless solutions was more
suitable as the control stimulus than using water because water has an
inherent taste [33].
The milkshake and the tasteless solution were kept in the fridge. We

took them out simultaneously 30minutes before the experiment so that
they were delivered at ambient temperature.
The apparatus used to deliver the liquids in the scanner has been

described in Muñoz-Tord et al. [31]. In a nutshell, a 3D-printed pacifier-
shaped fMRI mouthpiece paired with a gustometer was used to deliver the
liquids while participants were lying down. As demonstrated in Muñoz-
Tord et al., this allows for a precise, reliable, and comfortable liquid delivery
method. Data collection was controlled by a computer running MATLAB
(version R2015a; MathWorks, Natick, USA). The presentation of the visual
stimuli was implemented using Psychtoolbox (version 3.0) [34].

Procedures
Participants who fulfilled the study criteria were randomly assigned in a 1:1
ratio to receive liraglutide 3.0 mg or a placebo, which was administered
subcutaneously using pen injectors. After a dose escalation period starting
at 0.6 mg q.d., there were weekly increments of 0.6 mg (see Fig. 2 in
Supplementary Information). The placebo pen injector was identical to the
liraglutide pen injector. A follow-up with the participants occurred on a
weekly basis during the 5-week dose escalation period, and on a monthly
basis afterwards.

Test 1 Test 2Screening

WEEK 16WEEK 0

• Food delivery
inside fMRI
Liking task

• Biomedical
measures

• Food delivery
inside fMRI
Liking task

• Biomedical
measures

Participants
with obesity
(n=73)

Lean
controls
(n=35)

Randomization

Treatment
(n=32)

Placebo
(n=34)

Liraglutide
(3.0 mg)

Placebo
(control)

Intervention

Tailored
patient

education for
weight loss

Pre-test

Preparation for
the test
sessions

Fig. 1 Trial overview. Participants with obesity participated in a pre-intervention session before being randomly assigned to the treatment
(liraglutide) or placebo (control) group. During this first test session, they performed a liking task in the scanner. Biomedical measures were
also taken, and they performed other experimental tasks not described here. After 16 weeks of treatment, they came back to the laboratory
and went through a second test session.

Table 1. Summary results of BOLD activations for the liking main
effect.

Cerebellum L 1 19.406 −10 −69 −61

Cerebellum R 1 17.576 12 −60 −54

White matter L 13 27.034 −16 −51 −36

Middle temporal
gyrus

L 11 31.545 −67 −21 −21

Amygdala L 50 37.946 −22 −6 −18

Subcallosal cortex L 50 32.184 −10 7 −14

Amygdala R 4 23.287 15 −6 −18

Amygdala R 2 18.802 24 −3 −18

Not in atlas L 1 17.914 −1 −3 −18

Ventromedial PFC R 3 19.947 3 49 −18

Ventromedial PFC L 4 19.991 −7 34 −14

Putamen R 1 17.609 33 −12 4

Frontal pole R 22 25.258 9 67 15

Frontal pole L 3 17.674 −7 64 11

Lateral occipital
cortex

R 2 18.192 39 −75 22

White matter R 2 18.308 15 19 26

Lateral occipital
cortex

R 56 29.572 12 −75 62

Lateral occipital
cortex

L 2 20.321 −16 −78 62

Thresholding p < 0.001 voxel wise FDR corrected. Table shows the peak
level statistics and coordinates. Coordinates are expressed in the Montreal
Neurological Institute (MNI) space in the left-right, anterior–posterior, and
inferior-superior dimensions, respectively.
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Metabolic measures
Blood samples for study purposes were collected both at baseline and at
the 16-week follow-up. Fasting plasma blood glucose, insulin, plasma
lipids, and HbA1c were measured in fasting conditions using routine
biochemistry test.

Experimental procedure
The experiment consisted of three separate testing days (see Fig. 1). On the
first testing day, participants came to the laboratory for a pretest (see
description below). On the second testing day, participants came for a test
session before the beginning of the intervention (i.e., baseline testing
session); this session took place in the morning. All participants were asked
to fast overnight. Participants were requested to have eaten their last meal
at least 8 h prior to the session. Afterwards, participants underwent the
intervention (placebo + counseling vs liraglutide + counseling) and came
back to the laboratory for the third testing day at the end of the
intervention for the second test session (i.e., 16-week follow-up testing
session). Both test sessions followed the exact same procedure.
Please note that during the test sessions, participants performed

multiple experimental tasks; here, we only report the results for the
hedonic reactivity task.

Pretest. Participants chose the most neutral tasteless solution to them.
The 4 solutions were presented to them in shot glasses (=1 dl). Participants
self-reported their current hunger level as well as pleasantness, intensity,
and familiarity levels for their selected tasteless solution and for the
milkshake (see Table 2, Supplementary Information). They also underwent
10–20min of structural scans in the MRI. This small fMRI session allowed
them to be more confident and comfortable for the longer functional
scans taking place during the test sessions.

Test session. We administered a liking task while participants were lying in
the scanner. The task consisted in the evaluation of the perceived
pleasantness, intensity, and familiarity of the two different stimuli (the
milkshake and the tasteless solution). Participants were instructed to assess
the solutions, focusing on their current perception of them. During each
trial, 1 mL of the solution was administered, and the delivery order of the
two conditions was randomized for each participant. Participants were
visually guided through the task with on-screen instructions. First, they saw
a 3-s countdown before the solution was delivered, followed by an asterisk
presented for 4 s instructing them to keep the solution on their tongue
until they saw the instruction to “swallow please” (see Fig. 2). We asked
them to wait 4 s before swallowing to avoid motion artifacts in the Blood-
Oxygen-Level-Dependent (BOLD) response. Since they were lying down,

the mouthpiece was placed in such a way that the solution was delivered
at the center of the participants’ tongues. We expected the solution would
slide down to the back of their tongue over the 4-s period. The
experimental trials were intertwined with rinse trials to cleanse the
participants’ palates with 1mL of water. All 40 evaluations (20 per solution)
were done on visual analog scales displayed on a computer screen.
Participants had to answer using a button-box placed in their hand. The
visual analog scales ranged from “not perceived” to “extremely intense” for
the intensity ratings; from “extremely unpleasant” to “extremely pleasant”
for the liking ratings; and from “extremely familiar” to “extremely
unfamiliar” for the familiarity ratings.

Statistical analysis
Behavioral and metabolic data. We analyzed the behavioral and meta-
bolic data with R (version 4.0; R Core Team, 2019).
We built two statistical models. The first model aimed at testing the

relationship between weight loss (measured by subtracting the partici-
pants’ BMI after the intervention from their BMI before the intervention)
and the intervention. We entered (1) intervention (placebo or liraglutide) as
a fixed effect and (2) age and (3) sex as control factors. We entered
intercepts for participants as a random effect. We built the model as
follows:

Weight loss � interventionþ sexþ ageþ ð1jidÞ

The second model aimed at testing the relationship between the
perceived pleasantness of the tastes and the intervention. We entered (1)
the taste stimulus (milkshake or tasteless), (2) session (pre- or post-
intervention), (3) intervention (placebo or liraglutide), and (4) a linear
decreasing contrast over trials to account for satiation as fixed factors. For
the random effects, we entered intercepts for participants as well as by-
participant random slopes for the effect of the interaction between taste
stimulus sessions and trials. We did so to reduce the likelihood of a false
positive. From a conceptual point of view, we expected that the
intervention effect on the satiation processes for the milkshake would
differ from one participant to another (e.g., the effect is large for some,
medium for others, etc.) We built the model as follows:

Liking � intervention´ stimulus ´ session ´ satiation
þðstimulus ´ session ´ satiationjidÞ

We used the lme4 package [35] and the LmerTest package [36]. We
extracted Bayes factors through linear mixed Bayesian analysis using brms
[37], CmdStanR [38] and bayestestR [39] packages. The models were

3

20 trials Milkshake
20 trials Tasteless
Total volume = 80 ml

1 s

1 s

2

1

1 s

1 s

*
*

Keep on tongue for 4 s

Swallow
Please

Jitter [3;4 s]

Ratings

Until response

0.5 s

X3
Pleasantness
Familiarity
Intensity

+

ITI

Rinse 1 s

+

Jitter [3;11s]

Fig. 2 Overview of the liking task. This task was performed while participants were lying in the scanner and equipped with a 3D-printed
pacifier-shaped fMRI mouthpiece paired with a gustometer. After a countdown (3–1) on a screen, participants saw a fixation cross followed by
the delivery of a tasteless solution or a chocolate milkshake in their mouths. They were requested to keep the solution on their tongues for 4 s
before being asked to swallow it. They were asked to rate the pleasantness, familiarity, and intensity of the solution. Rinse trials were
intertwined with experimental trials so that participants could cleanse their palates.
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estimated using Markov chain Monte Carlo (MCMC) sampling with 4 chains
of 5000 iterations and a warmup of 1000. The dependent variables were
scaled before being entered in the model. Prior parameters were set as
normal distributions (M= 0.00, SD= 1.00) for the first model (weight loss)
as well as the second model (perceived pleasantness). The Bayes factors
reported for the main effects compared the model with the main effect in
question versus the null model. Furthermore, the Bayes factors reported for
the interaction effects compared the model including the interaction term
with the model including all the other effects but the interaction term.
Evidence in favor of the model of interest could be considered anecdotal
(1 < BF10 < 3), substantial (3 < BF10 < 10), strong (10 < BF10 < 30), very
strong (30 < BF10 < 100), or decisive (BF10 > 100). Similarly, evidence in
favor of the null model could also be qualified as anecdotal
(0.33 < BF10 < 1), substantial (0.1 < BF10 < 0.33), strong (0.033 < BF10 < 0.1),
very strong (0.01 < BF10 < 0.033), or decisive (BF10 < 0.01).

fMRI data
Acquisition parameters. Acquisition parameters were identical to the ones
described in Muñoz-Tord et al. [31]. The neuroimaging data were acquired
on a 3-Tesla MRI system (Magnetom Tim Trio, Siemens Medical Solutions)
supplied with a 32-channel head coil using a gradient echo (GRE) sequence
to record the BOLD signal. We recorded forty echo-planar imaging (EPI)
slices per scan with an isotropic voxel size of 3 mm. The scanner
parameters were set at: echo time (TE)= 20ms, repetition time
(TR)= 2000ms, field of view (FOV)= 210 × 210 × 144mm, matrix size =
70 × 70 voxels, flip angle = 85°, 0.6 mm gap between slices. Structural
whole brain T1-weighted (T1w) images (isotropic voxel size = 1.0 mm)
were acquired as well as dual gradient B0 field maps (Fmaps) for each
participant to correct for inhomogeneity distortions in the static-field.

Preprocessing. We created a pipeline optimized for the preprocessing of
our neuroimaging data identical to Muñoz-Tord et al.’s study [31]. More
specifically, we combined the Functional Magnetic Resonance Imaging of
the Brain (FMRIB) Software Library (FSL, version 4.1) [40] with the Advanced
Normalization Tools (ANTS, version 2.1) [41]. The BOLD signal is highly
prone to motion artifacts. This type of noise made our experimental setting
particularly challenging to analyze since our participants swallowed
solutions in the scanner, thereby producing substantial deglutition
artifacts. To offset this loss of signal-to-noise ratio (SNR), we followed
Griffanti et al.’s protocol [42]. This protocol uses an fMRI independent
component analysis (ICA) to remove artifacts. The multivariate exploratory
linear optimized decomposition tool (MELODIC) [43] decomposes the raw
BOLD signal into independent components (IC). We chose this ICA-based
strategy for motion artifact removal because it is more reliable to remove
motion-induced signal variations than regressions from motion parameters
[44]. Two researchers from our laboratory independently hand classified a
sample of 20 participants’ IC into two categories: ‘potential signal’ or ‘clear
artifact’ (e.g., motion/deglutition, blood flow in arteries). The two
researchers’ categorizations were then compared, and each discrepancy
was discussed until an agreement was reached (inter-rater reliability =
93%). This process allowed us to manually classify components. These
components were then used to train a classifier using a random forest
machine learning algorithm [45]. We used leave-one-out testing during
which we iteratively left one participant out of the training data and tested
the classifier’s accuracy on the left-out participant. Leave-one-out testing at
the optimal sensitivity (threshold = 5) resulted in a median 94% true
positive rate (i.e., the percentage of ‘true signal’ accurately classified). We
consequently applied the FMRIB’s ICA-based X-noiseifier (FIX) to auto-
matize the denoising of our BOLD signal [46]. We then applied field maps
to correct geometric distortions. We used ANTS for a diffeomorphic co-
registration of the preprocessed functional and structural images in the
Montreal Neurological Institute (MNI) space; we used the nearest-neighbor
interpolation and left the functional images in their native resolution.
Finally, we applied a spatial smoothing of 8 mm full width at half maximum
(FWHM).

Statistical analysis. We used the Statistical Parametric Mapping software
(SPM, version 12) [47] to perform a random-effects univariate analysis on
the voxels of the image times series using a two-level approach.
For the first-level, we specified a general linear model (GLM) for each

participant. We used a high-pass filter cutoff of 1/128 Hz to eliminate
possible low-frequency confounds. Each regressor of interest was derived
from the onsets of the stimuli and convoluted using a canonical
hemodynamic response function (HRF) into the GLM to obtain weighted

parameter estimates. The GLM consisted of eight regressors: (1) the onset
of the trial, (2) the onset of the reception of a taste stimulus modulated by
(3) the presence of the milkshake, (4) the trial-by-trial ratings of the
perceived pleasantness, (5) the onset of the pleasantness question, (7) the
onset of the intensity question, and (8) the onset of the familiarity
question. We extracted the taste delivery contrast modulated by the
perceived pleasantness for each participant for each session (43
participants × 2 sessions = 86).
For the second-level, we entered the first level contrasts in a mixed

measures 2 (session: pre or post) by 2 (treatment: placebo or liraglutide)
ANOVA using the multivariate and repeated measures toolbox (MRM) [48].
The MRM toolbox is a MATLAB toolbox allowing us to perform mass
multivariate group models of neuroimaging data using the summary
statistic approach by selecting the correct error term [49]. We extracted F
contrasts with a voxel-wise significance threshold set at p < 0.001, FDR
corrected for multiple comparisons. For display purposes, we plotted non-
masked and uncorrected statistical p-maps of our group results overlaid on
a high-resolution template (CIT 168) in the MNI space.

RESULTS
Our first step was to establish whether we could replicate the well-
documented liraglutide effect on weight loss. We thereby used a
multilevel model to test the effect of the intervention on weight
loss. A statistically significant effect of intervention was found
(β= 0.704, p < 0.001; see Fig. 3 and Table 4 in the Supplementary
Information), suggesting that liraglutide indeed led patients to
lose more weight than patients receiving the placebo injections.
Next, we wanted to ascertain whether the intervention affected

the self-reported liking of a rewarding taste (i.e., the milkshake).
We thereby used a multilevel model testing the effect of the
intervention on the reward’s liking. This model revealed a
statistically significant effect of taste stimulus (β=−0.409,
p < 0.001; see Fig. 4B and Table 5 in the Supplementary
Information), a main effect of satiation (β= 0.013, p < 0.001; see
Fig. 4A) and an interaction effect between satiation and taste
stimulus (β=−0.007, p= 0.002; see Fig. 4A). These results suggest
that the milkshake was more satiating than the control taste.
Moreover, we found a statistically significant main effect of session
(β= 0.087, p= 0.045) and an interaction between taste stimulus
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Fig. 3 Weight loss results. Individual estimates, densities, and
overall mean of the weight loss measured in BMI units (BMI post-
intervention – BMI pre-intervention) of the placebo (N= 24) and
liraglutide (N= 20) groups. Error bars represent standard errors of
the mean.
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and session (β=−0.073, p= 0.042). This suggests that the taste
stimuli were perceived as less pleasant during the second session.
None of the effect terms involving the intervention factor reached
significance. There was no statistically significant interaction
between taste stimulus, session, and intervention (β= 0.017,
p= 0.617), nor between taste stimulus, session, satiation, and
intervention (β < 0.001, p= 0.529). Thus, we did not find any
statistical evidence that the intervention impacted self-reported
liking.
Regarding the fMRI data, we tested the interaction between the

intervention (placebo or liraglutide) × the session (pre- or post-
intervention) using a Repeated Measures ANOVA. There was no
statistically significant voxel that survived FDR correction. In other
words, there was no activation specific to a post- compared to pre-
intervention change in the liraglutide group compared to the
placebo group. However, the analysis revealed a main effect of the
pleasantness modulator, which activated brain regions typically
involved in reward processing such as the ventromedial prefrontal
cortex (vmPFC; peak voxel coordinates : x=−7, y= 34, z=−14,
k= 4; right peak voxel coordinates: x= 3, y= 49, z=−18; k= 3)
and bilateral amygdala (left peak voxel coordinates: x=−22,
y=−6, z=−18, k= 50; right peak voxel coordinates x= 24,
y=−3, z=−18; see Fig. 5). Thus, amygdala and vmPFC
activations correlated with perceived liking during taste con-
sumption for both groups. A summary of the BOLD activations for
the main effect of liking are displayed in Table 1.

DISCUSSION
In this randomized, single-center, double-blind, placebo-con-
trolled, parallel group, prospective clinical trial, we investigated
whether GLP-1 analog liraglutide affects food-related liking in
participants with OB using an fMRI-compatible gustometer. We
measured both self-reports of liking and neural responses.
Behaviorally, and contrary to our hypothesis, we did not find

any statistical evidence that our intervention impacted food liking.
We must always be careful when interpreting the absence of
significant main effects or of a significant interaction effect. As in
any experiment, we cannot exclude classical limitations such as
methodological aspects or sample size. For instance, our
sensitivity analysis showed that we could detect a small to
medium effect of the intervention on liking perception, therefore

we cannot exclude the presence of a small effect. However, our
Bayesian approach provides strong evidence favoring the null
hypothesis, which suggests that self-reported liking did not differ
between the liraglutide and placebo groups or between pre- and
post-intervention ratings.
As for the brain activity, analyses of the participants’ neural

responses to the milkshake and control taste stimulus revealed a
main effect of the liking modulator activating the vmPFC and the
amygdala; these brain regions are known to be involved in reward
processing [50, 51]. More specifically, valence-specific signals in
the amygdala have been identified to modulate food choices [52]
and the vmPFC has been found to be involved in decision-making
about reward value [53]. Our fMRI resolution does not allow us to
differentiate sub-regions of the amygdala or the vmPFC. However,
different sub-areas have been identified to underlie different
aspects of reward learning and food decision-making (e.g., [54]).
Furthermore, the amygdala and the vmPFC are strongly con-
nected [55] and a value-related connectivity between these two
regions has been reported in previous studies (e.g., [56]). Again,

Fig. 4 Liking for the rewarding and the neutral taste stimuli in the placebo (N= 20) and the liraglutide (N= 24) groups before (i.e., pre)
and after (i.e., post) the intervention. A represents liking over trial repetition, while B represents individual estimates, densities, and overall
liking mean. Error bars and shaded areas represent standard errors of the mean.

Fig. 5 Neuronal correlates of liking. Regions where the BOLD
signal positively correlated with the magnitude of the liking
experienced within participants (N= 44). For display purposes,
statistical maps are shown with a threshold of 0.001 uncorrected.
Color scale bar represents p values. Detailed results are presented in
Table 1.
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while drawing conclusions from the absence of a significant
interaction effect is not warranted, the results from our Bayesian
approach are consistent with the proposal that there is no effect
of the liraglutide treatment on liking. Additionally, we found that
amygdala and vmPFC activations correlated with perceived liking
during taste consumption for both groups.
Taken together, our results do not provide evidence that

liraglutide alters liking while consuming food. This contrasts with
recent findings showing that weight loss was associated with a
decrease in food liking [26, 27]. It also differs from what is reported
in the literature about the potential nauseating effects of
liraglutide [57, 58], which could possibly spoil the pleasure of
eating for patients experiencing this side effect. Indeed, we did
not find liraglutide to affect the pleasant experience of consuming
rewarding food. This is consistent with a recent review on the role
of GLP-1 in humans, which did not find conclusive evidence of this
hormone reducing reward responses [22].
While we did not find evidence suggesting that liraglutide

changed the milkshake liking, we did find evidence indicating that
the milkshake was less pleasant in the second session compared
to the first for both groups. This effect was therefore independent
of the GLP-1 analog treatment. It is unclear which factor(s) this
effect is driven by given the absence of a control group without a
weight loss intervention in our current study. It could be driven by
the weight loss intervention, but differences in BMI did not
significantly correlate with liking of the milkshake in a previous
study using similar stimuli [59]. Another possibility is that it was
driven by repetition or habituation to the milkshake, which are
well documented effects (e.g., [60]).
Another well documented effect we found is a large effect of

the medication on weight loss. As expected and previously
documented [28–30], the liraglutide group significantly lost more
weight than the placebo group. On average, the liraglutide group
lost 8.96% (SD= 3.78) of their body weight, while the placebo
group lost 1.67%, (SD= 3.38). This weight loss was comparable to
previous studies [28–30].
However, the weight loss induced by liraglutide was not our

main research question—the present study focused on the liking
component of reward. While there are a few studies on the
wanting component (e.g., [21]), research on the effects of GLP-1
on liking in humans with OB using food stimuli is rare. It is thereby
difficult to compare our findings to previous studies while taking
into consideration the treatment duration of GLP-1 analogs or the
different GLP-1 analogs.
To conclude, this study suggests that liraglutide leads to weight

loss but does not provide evidence that it is due to a change in
food-related liking in participants with obesity.

CODE AVAILABILITY
The computer code used to preprocess and analyze the data is available in a publicly
hosted software repository (for preprocessing of the fMRI data: https://github.com/
munoztd0/Mouthpiecegusto/tree/main/preprocessing; for data analysis: https://
github.com/evapool/GLP1_Pleasure).
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