Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular Biology

Mechanism and treatments of antipsychotic-induced weight gain

Abstract

The long-term use of antipsychotics (APs) may cause a variety of diseases, such as metabolic syndrome, antipsychotic-induced weight gain (AIWG), and even obesity. This paper reviews the various mechanisms of AIWG and obesity in detail, involving genetics, the central nervous system, the neuroendocrine system, and the gut microbiome. The common drug and non-drug therapies used in clinical practice are also introduced, providing the basis for research on the molecular mechanisms and the future selection of treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of biological factors in human body and their interaction with APs.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed for the present review.

References

  1. Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. The Lancet Psychiatry. 2020;7:64–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grajales D, Vázquez P, Alén R, Hitos AB, Valverde ÁM. Attenuation of Olanzapine-induced endoplasmic reticulum stress improves insulin secretion in pancreatic beta cells. Metabolites. 2022;12:443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders-a systematic review and meta-analysis. Schizophr Bull. 2013;39:306–18.

    Article  PubMed  Google Scholar 

  4. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014;384:766–81.

    Article  Google Scholar 

  5. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.

  6. Huhn M, Nikolakopoulou A, Schneider-Thoma J, Krause M, Samara M, Peter N, et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. The Lancet. 2019;394:939–51.

    Article  CAS  Google Scholar 

  7. Solmi M, Murru A, Pacchiarotti I, Undurraga J, Veronese N, Fornaro M, et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag. 2017;13:757–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leucht S, Cipriani A, Spineli L, Mavridis D, Örey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. The Lancet. 2013;382:951–62.

    Article  CAS  Google Scholar 

  9. De Hert M, Detraux J, van Winkel R, Yu W, Correll CU. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat Rev Endocrinol. 2011;8:114–26.

    Article  PubMed  Google Scholar 

  10. Spertus J, Horvitz-Lennon M, Abing H, Normand SL. Risk of weight gain for specific antipsychotic drugs: a meta-analysis. NPJ Schizophr. 2018;4:12.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bushe CJ, Slooff CJ, Haddad PM, Karagianis JL. Weight change from 3-year observational data: findings from the worldwide schizophrenia outpatient health outcomes database. J Clin Psychiatry. 2012;73:e749–55.

    Article  PubMed  Google Scholar 

  12. Bak M, Fransen A, Janssen J, van Os J, Drukker M. Almost all antipsychotics result in weight gain: a meta-analysis. PLoS One. 2014;9:e94112.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manu P, Dima L, Shulman M, Vancampfort D, De Hert M, Correll CU. Weight gain and obesity in schizophrenia: epidemiology, pathobiology, and management. Acta Psychiatr Scand. 2015;132:97–108.

    Article  CAS  PubMed  Google Scholar 

  14. Rege S. Antipsychotic induced weight gain in schizophrenia: Mechanisms and management. Aust N Z J Psychiatry. 2008;42:369–81.

    Article  PubMed  Google Scholar 

  15. Dayabandara M, Hanwella R, Ratnatunga S, Seneviratne S, Suraweera C, de Silva VA. Antipsychotic-associated weight gain: management strategies and impact on treatment adherence. Neuropsychiatr Dis Treat. 2017;13:2231–41.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Speyer H, Westergaard C, Albert N, Karlsen M, Stürup AE, Nordentoft M, et al. Reversibility of antipsychotic-induced weight gain: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021;12:577919.

    Article  PubMed  Google Scholar 

  17. Barton BB, Segger F, Fischer K, Obermeier M, Musil R. Update on weight-gain caused by antipsychotics: A systematic review and meta-analysis. Expert Opin Drug Saf. 2020;19:295–314.

    Article  CAS  PubMed  Google Scholar 

  18. Corfitsen HT, Krantz B, Larsen A, Drago A. Molecular pathway analysis associates alterations in obesity-related genes and antipsychotic-induced weight gain. Acta Neuropsychiatr. 2020;32:72–83.

    Article  PubMed  Google Scholar 

  19. Crespo-Facorro B, Prieto C, Sainz J. Altered gene expression in antipsychotic-induced weight gain. NPJ Schizophr. 2019;5:7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–D1012.

    Article  CAS  PubMed  Google Scholar 

  21. Altar CA, Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D. Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry. 2013;25:509–33.

    Article  PubMed  Google Scholar 

  22. Tybura P, Trześniowska-Drukała B, Bienkowski P, Beszlej A, Frydecka D, Mierzejewski P, et al. Pharmacogenetics of adverse events in schizophrenia treatment: Comparison study of ziprasidone, olanzapine and perazine. Psychiatry Res. 2014;219:261–7.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Ren H, Wang Q, Deng W, Yue W, Yan H, et al. Testing the role of genetic variation of the MC4R gene in Chinese population in antipsychotic-induced metabolic disturbance. Sci China Life Sci. 2019;62:535–43.

    Article  CAS  PubMed  Google Scholar 

  24. Zai CC, Tiwari AK, Zai GC, Maes MS, Kennedy JL. New findings in pharmacogenetics of schizophrenia. Current Opinion in Psychiatry. 2018;31:200–12.

    Article  PubMed  Google Scholar 

  25. Li S, Xu C, Tian Y, Wang X, Jiang R, Zhang M, et al. TOX and ADIPOQ Gene polymorphisms are associated with antipsychotic-induced weight gain in Han Chinese. Sci Rep. 2017;7:45203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Luca V, Souza RP, Viggiano E, Sickert L, Teo C, Zai C, et al. Genetic interactions in the adrenergic system genes: analysis of antipsychotic-induced weight gain. Hum Psychopharmacol. 2011;26:386–91.

    PubMed  Google Scholar 

  27. Chowdhury NI, Tiwari AK, Souza RP, Zai CC, Shaikh SA, Chen S, et al. Genetic association study between antipsychotic-induced weight gain and the melanocortin-4 receptor gene. Pharmacogenomics J. 2013;13:272–9.

    Article  CAS  PubMed  Google Scholar 

  28. Shams TA, Muller DJ. Antipsychotic induced weight gain: Genetics, epigenetics, and biomarkers reviewed. Curr Psychiatry Rep. 2014;16:473.

    Article  PubMed  Google Scholar 

  29. Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Muller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry. 2012;17:242–66.

    Article  CAS  PubMed  Google Scholar 

  30. Nasrallah HA. Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry. 2008;13:27–35.

    Article  CAS  PubMed  Google Scholar 

  31. Seida JC, Schouten JR, Boylan K, Newton AS, Mousavi SS, Beaith A, et al. Antipsychotics for children and young adults: A comparative effectiveness review. Pediatrics. 2012;129:e771–84.

    Article  PubMed  Google Scholar 

  32. Wallace TJ, Zai CC, Brandl EJ, Muller DJ. Role of 5-HT(2C) receptor gene variants in antipsychotic-induced weight gain. Pharmgenomics Pers Med. 2011;4:83–93.

    CAS  PubMed Central  Google Scholar 

  33. Kuzman MR, Medved V, Bozina N, Hotujac L, Sain I, Bilusic H. The influence of 5-HT(2C) and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients. Psychiatry Res. 2008;160:308–15.

    Article  CAS  PubMed  Google Scholar 

  34. Reynolds GP, Zhang Z, Zhang X. Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am J Psychiatry. 2003;160:677–9.

    Article  PubMed  Google Scholar 

  35. Huang XF, Tan YY, Huang X, Wang Q. Effect of chronic treatment with clozapine and haloperidol on 5-HT(2A and 2C) receptor mRNA expression in the rat brain. Neurosci Res. 2007;59:314–21.

    Article  CAS  PubMed  Google Scholar 

  36. Rattigan S, Dora KA, Colquhoun EQ, Clark MG. Serotonin-mediated acute insulin resistance in the perfused rat hindlimb but not in incubated muscle: a role for the vascular system. Life Sci. 1993;53:1545–55.

    Article  CAS  PubMed  Google Scholar 

  37. Rattigan S, Clark MG, Barrett EJ. Acute vasoconstriction-induced insulin resistance in rat muscle in vivo. Diabetes. 1999;48:564–9.

    Article  CAS  PubMed  Google Scholar 

  38. Leucht S, Pitschel-Walz G, Engel RR, Kissling W. Amisulpride, an unusual “atypical” antipsychotic: a meta-analysis of randomized controlled trials. Am J Psychiatry. 2002;159:180–90.

    Article  PubMed  Google Scholar 

  39. Gilles M, Wilke A, Kopf D, Nonell A, Lehnert H, Deuschle M. Antagonism of the serotonin (5-HT)-2 receptor and insulin sensitivity: Implications for atypical antipsychotics. Psychosom Med. 2005;67:748–51.

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds GP, Kirk SL. Metabolic side effects of antipsychotic drug treatment-pharmacological mechanisms. Pharmacol Ther. 2010;125:169–79.

    Article  CAS  PubMed  Google Scholar 

  41. Theisen FM, Haberhausen M, Firnges MA, Gregory P, Reinders JH, Remschmidt H, et al. No evidence for binding of clozapine, olanzapine and/or haloperidol to selected receptors involved in body weight regulation. Pharmacogenomics J. 2007;7:275–81.

    Article  CAS  PubMed  Google Scholar 

  42. Correll CU, Lencz T, Malhotra AK. Antipsychotic drugs and obesity. Trends Mol Med. 2011;17:97–107.

    Article  CAS  PubMed  Google Scholar 

  43. Wan XQ, Zeng F, Huang XF, Yang HQ, Wang L, Shi YC, et al. Risperidone stimulates food intake and induces body weight gain via the hypothalamic arcuate nucleus 5-HT2c receptor-NPY pathway. CNS Neurosci Ther. 2020;26:558–66.

    Article  CAS  PubMed  Google Scholar 

  44. Brandl EJ, Frydrychowicz C, Tiwari AK, Lett TA, Kitzrow W, Büttner S, et al. Association study of polymorphisms in leptin and leptin receptor genes with antipsychotic-induced body weight gain. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38:134–41.

    Article  CAS  PubMed  Google Scholar 

  45. Klemettilä JP, Kampman O, Solismaa A, Lyytikäinen LP, Seppälä N, Viikki M, et al. Association study of arcuate nucleus neuropeptide Y neuron receptor gene variation and serum NPY levels in clozapine treated patients with schizophrenia. Eur Psychiatry. 2017;40:13–19.

    Article  PubMed  Google Scholar 

  46. Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, Nambu T, et al. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci. 2004;19:1524–34.

    Article  PubMed  Google Scholar 

  47. Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009;9:64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cristino L, Busetto G, Imperatore R, Ferrandino I, Palomba L, Silvestri C, et al. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc Natl Acad Sci USA. 2013;110:E2229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fadel J, Bubser M, Deutch AY. Differential activation of orexin neurons by antipsychotic drugs associated with weight gain. J Neurosci. 2002;22:6742–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tiwari AK, Brandl EJ, Zai CC, Goncalves VF, Chowdhury NI, Freeman N, et al. Association of orexin receptor polymorphisms with antipsychotic-induced weight gain. World J Biol Psychiatry. 2016;17:221–9.

    Article  PubMed  Google Scholar 

  51. Stefanidis A, Verty AN, Allen AM, Owens NC, Cowley MA, Oldfield BJ. The role of thermogenesis in antipsychotic drug-induced weight gain. Obesity (Silver Spring). 2009;17:16–24.

    Article  CAS  PubMed  Google Scholar 

  52. Girault EM, Foppen E, Ackermans MT, Fliers E, Kalsbeek A. Central administration of an orexin receptor 1 antagonist prevents the stimulatory effect of Olanzapine on endogenous glucose production. Brain Res. 2013;1527:238–45.

    Article  CAS  PubMed  Google Scholar 

  53. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64:238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lebrun B, Bariohay B, Moyse E, Jean A. Brain-derived neurotrophic factor (BDNF) and food intake regulation: A minireview. Auton Neurosci. 2006;126-127:30–8.

    Article  CAS  PubMed  Google Scholar 

  55. Bonaccorso S, Sodhi M, Li J, Bobo WV, Chen Y, Tumuklu M, et al. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with increased body mass index and insulin resistance measures in bipolar disorder and schizophrenia. Bipolar Disord. 2015;17:528–35.

    Article  CAS  PubMed  Google Scholar 

  56. Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci. 2007;27:14265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duan W, Guo Z, Jiang H, Ware M, Mattson MP. Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology. 2003;144:2446–53.

    Article  CAS  PubMed  Google Scholar 

  58. Coppola V, Tessarollo L. Control of hyperphagia prevents obesity in BDNF heterozygous mice. Neuroreport. 2004;15:2665–8.

    Article  PubMed  Google Scholar 

  59. Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K, et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry. 2000;5:293–300.

    Article  CAS  PubMed  Google Scholar 

  60. Pillai A. Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals. 2008;16:183–93.

    Article  CAS  PubMed  Google Scholar 

  61. He M, Deng C, Huang XF. The role of hypothalamic H1 receptor antagonism in antipsychotic-induced weight gain. CNS Drugs. 2013;27:423–34.

    Article  CAS  PubMed  Google Scholar 

  62. Tiwari AK, Zhang D, Pouget JG, Zai CC, Chowdhury NI, Brandl EJ, et al. Impact of histamine receptors H1 and H3 polymorphisms on antipsychotic-induced weight gain. World J Biol Psychiatry. 2018;19:S97–s105.

    Article  PubMed  Google Scholar 

  63. Chen X, Yu Y, Zheng P, Jin T, He M, Zheng M, et al. Olanzapine increases AMPK-NPY orexigenic signaling by disrupting H1R-GHSR1a interaction in the hypothalamic neurons of mice. Psychoneuroendocrinology. 2020;114:104594.

    Article  CAS  PubMed  Google Scholar 

  64. He M, Zhang Q, Deng C, Wang H, Lian J, Huang XF. Hypothalamic histamine H1 receptor-AMPK signaling time-dependently mediates olanzapine-induced hyperphagia and weight gain in female rats. Psychoneuroendocrinology. 2014;42:153–64.

    Article  PubMed  Google Scholar 

  65. Li P, Snyder GL, Vanover KE. Dopamine targeting drugs for the treatment of schizophrenia: Past, present and future. Curr Top Med Chem. 2016;16:3385–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Homan P, Argyelan M, Fales CL, Barber AD, DeRosse P, Szeszko PR, et al. Striatal volume and functional connectivity correlate with weight gain in early-phase psychosis. Neuropsychopharmacology. 2019;44:1948–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stice E, Yokum S, Zald D, Dagher A. Dopamine-based reward circuitry responsivity, genetics, and overeating. Curr Top Behav Neurosci. 2011;6:81–93.

    Article  PubMed  Google Scholar 

  68. Stice E, Figlewicz DP, Gosnell BA, Levine AS, Pratt WE. The contribution of brain reward circuits to the obesity epidemic. Neurosci Biobehav Rev. 2013;37:2047–58.

    Article  PubMed  Google Scholar 

  69. Lee MD, Clifton PG. Meal patterns of free feeding rats treated with clozapine, olanzapine, or haloperidol. Pharmacol Biochem Behav. 2002;71:147–54.

    Article  CAS  PubMed  Google Scholar 

  70. Nielsen M, Rostrup E, Wulff S, Glenthøj B, Ebdrup BH. Striatal reward activity and antipsychotic-associated weight change in patients with schizophrenia undergoing initial treatment. JAMA Psychiatry. 2016;73:121–8.

    Article  PubMed  Google Scholar 

  71. Blum K, Liu Y, Shriner R, Gold MS. Reward circuitry dopaminergic activation regulates food and drug craving behavior. Curr Pharm Des. 2011;17:1158–67.

    Article  CAS  PubMed  Google Scholar 

  72. Blum K, Thanos PK, Gold MS. Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol. 2014;5:919.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357:354–7.

    Article  CAS  PubMed  Google Scholar 

  74. Wang GJ, Volkow ND, Thanos PK, Fowler JS. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis. 2004;23:39–53.

    Article  PubMed  Google Scholar 

  75. Kaur G, Kulkarni SK. Studies on modulation of feeding behavior by atypical antipsychotics in female mice. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:277–85.

    Article  CAS  PubMed  Google Scholar 

  76. Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  77. Sickert L, Müller DJ, Tiwari AK, Shaikh S, Zai C, De Souza R, et al. Association of the alpha 2A adrenergic receptor -1291C/G polymorphism and antipsychotic-induced weight gain in European-Americans. Pharmacogenomics. 2009;10:1169–76.

    Article  CAS  PubMed  Google Scholar 

  78. Saiz PA, Susce MT, Clark DA, Kerwin RW, Molero P, Arranz MJ, et al. An investigation of the alpha1A-adrenergic receptor gene and antipsychotic-induced side-effects. Hum Psychopharmacol. 2008;23:107–14.

    Article  CAS  PubMed  Google Scholar 

  79. Hahn M, Chintoh A, Giacca A, Xu L, Lam L, Mann S, et al. Atypical antipsychotics and effects of muscarinic, serotonergic, dopaminergic and histaminergic receptor binding on insulin secretion in vivo: an animal model. Schizophr Res. 2011;131:90–5.

    Article  PubMed  Google Scholar 

  80. Silvestre JS, Prous J. Research on adverse drug events. I. Muscarinic M3 receptor binding affinity could predict the risk of antipsychotics to induce type 2 diabetes. Methods Find Exp Clin Pharmacol. 2005;27:289–304.

    Article  CAS  PubMed  Google Scholar 

  81. Johnson DE, Yamazaki H, Ward KM, Schmidt AW, Lebel WS, Treadway JL, et al. Inhibitory effects of antipsychotics on carbachol-enhanced insulin secretion from perifused rat islets: role of muscarinic antagonism in antipsychotic-induced diabetes and hyperglycemia. Diabetes. 2005;54:1552–8.

    Article  CAS  PubMed  Google Scholar 

  82. Murashita M, Kusumi I, Hosoda H, Kangawa K, Koyama T. Acute administration of clozapine concurrently increases blood glucose and circulating plasma ghrelin levels in rats. Psychoneuroendocrinology. 2007;32:777–84.

    Article  CAS  PubMed  Google Scholar 

  83. Ameri A, Wilhelm A, Simmet T. Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices. Br J Pharmacol. 1999;126:1831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matias I, Di Marzo V. Endocannabinoids and the control of energy balance. Trends Endocrinol Metab. 2007;18:27–37.

    Article  CAS  PubMed  Google Scholar 

  85. Woods SC. Role of the endocannabinoid system in regulating cardiovascular and metabolic risk factors. Am J Med. 2007;120:S19–25.

    Article  CAS  PubMed  Google Scholar 

  86. Black MD, Stevens RJ, Rogacki N, Featherstone RE, Senyah Y, Giardino O, et al. AVE1625, a cannabinoid CB1 receptor antagonist, as a co-treatment with antipsychotics for schizophrenia: improvement in cognitive function and reduction of antipsychotic-side effects in rodents. Psychopharmacology (Berl). 2011;215:149–63.

    Article  CAS  PubMed  Google Scholar 

  87. Kola B, Farkas I, Christ-Crain M, Wittmann G, Lolli F, Amin F, et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS One. 2008;3:e1797.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Miller CC, Murray TF, Freeman KG, Edwards GL. Cannabinoid agonist, CP 55,940, facilitates intake of palatable foods when injected into the hindbrain. Physiol Behav. 2004;80:611–6.

    Article  CAS  PubMed  Google Scholar 

  89. Cota D, Marsicano G, Lutz B, Vicennati V, Stalla GK, Pasquali R, et al. Endogenous cannabinoid system as a modulator of food intake. Int J Obes Relat Metab Disord. 2003;27:289–301.

    Article  CAS  PubMed  Google Scholar 

  90. Weston-Green K, Huang XF, Han M, Deng C. The effects of antipsychotics on the density of cannabinoid receptors in the dorsal vagal complex of rats: implications for olanzapine-induced weight gain. Int J Neuropsychopharmacol. 2008;11:827–35.

    Article  CAS  PubMed  Google Scholar 

  91. Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood). 2001;226:963–77.

    Article  CAS  PubMed  Google Scholar 

  92. Farr OM, Gavrieli A, Mantzoros CS. Leptin applications in 2015: what have we learned about leptin and obesity? Curr Opin Endocrinol Diabetes Obes. 2015;22:353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kahn BB, Minokoshi Y. Leptin, GABA, and glucose control. Cell Metab. 2013;18:304–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jin H, Meyer JM, Mudaliar S, Jeste DV. Impact of atypical antipsychotic therapy on leptin, ghrelin, and adiponectin. Schizophr Res. 2008;100:70–85.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lee AK, Bishop JR. Pharmacogenetics of leptin in antipsychotic-associated weight gain and obesity-related complications. Pharmacogenomics. 2011;12:999–1016.

    Article  CAS  PubMed  Google Scholar 

  96. Panariello F, Polsinelli G, Borlido C, Monda M, De Luca V. The role of leptin in antipsychotic-induced weight gain: genetic and non-genetic factors. J Obes. 2012;2012:572848.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Templeman LA, Reynolds GP, Arranz B, San L. Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psychosis. Pharmacogenet Genomics. 2005;15:195–200.

    Article  CAS  PubMed  Google Scholar 

  98. Endomba FT, Tankeu AT, Nkeck JR, Tochie JN. Leptin and psychiatric illnesses: does leptin play a role in antipsychotic-induced weight gain? Lipids Health Dis. 2020;19:22.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Guest PC. Insulin Resistance in Schizophrenia. Adv Exp Med Biol. 2019;1134:1–16.

    Article  CAS  PubMed  Google Scholar 

  100. Guest PC, Schwarz E, Krishnamurthy D, Harris LW, Leweke FM, Rothermundt M, et al. Altered levels of circulating insulin and other neuroendocrine hormones associated with the onset of schizophrenia. Psychoneuroendocrinology. 2011;36:1092–6.

    Article  CAS  PubMed  Google Scholar 

  101. Venkatasubramanian G, Chittiprol S, Neelakantachar N, Naveen MN, Thirthall J, Gangadhar BN, et al. Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am J Psychiatry. 2007;164:1557–60.

    Article  PubMed  Google Scholar 

  102. Grajales D, Ferreira V, Valverde AM. Second-generation antipsychotics and dysregulation of glucose metabolism: Beyond weight gain. Cells. 2019;8:1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80–4.

    Article  CAS  PubMed  Google Scholar 

  104. Teff KL, Kim SF. Atypical antipsychotics and the neural regulation of food intake and peripheral metabolism. Physiol Behav. 2011;104:590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Masaki T, Yoshimatsu H, Chiba S, Watanabe T, Sakata T. Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes. 2001;50:385–91.

    Article  CAS  PubMed  Google Scholar 

  106. Volpato AM, Zugno AI, Quevedo J. Recent evidence and potential mechanisms underlying weight gain and insulin resistance due to atypical antipsychotics. Braz J Psychiatry. 2013;35:295–304.

    Article  PubMed  Google Scholar 

  107. Gonçalves P, Araújo JR, Martel F. Antipsychotics-induced metabolic alterations: Focus on adipose tissue and molecular mechanisms. Eur Neuropsychopharmacol. 2015;25:1–16.

    Article  PubMed  Google Scholar 

  108. Kopf D, Gilles M, Paslakis G, Medlin F, Lederbogen F, Lehnert H, et al. Insulin secretion and sensitivity after single-dose amisulpride, olanzapine or placebo in young male subjects: double blind, cross-over glucose clamp study. Pharmacopsychiatry. 2012;45:223–8.

    Article  CAS  PubMed  Google Scholar 

  109. Nguyen TMD. Adiponectin: Role in physiology and pathophysiology. Int J Prev Med. 2020;11:136.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Firth J, Teasdale SB, Jackson SE, Vancampfort D, Siskind D, Sarris J, et al. Do reductions in ghrelin contribute towards antipsychotic-induced weight gain? Schizophr Res. 2019;210:301–2.

    Article  PubMed  Google Scholar 

  111. Goetz RL, Miller BJ. Meta-analysis of ghrelin alterations in schizophrenia: Effects of olanzapine. Schizophr Res. 2019;206:21–26.

    Article  PubMed  Google Scholar 

  112. Wang HR, Woo YS, Bahk WM. The role of melatonin and melatonin agonists in counteracting antipsychotic-induced metabolic side effects: a systematic review. Int Clin Psychopharmacol. 2016;31:301–6.

    Article  CAS  PubMed  Google Scholar 

  113. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci USA. 2013;110:5695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mostafavi SA, Solhi M, Mohammadi MR, Akhondzadeh S. Melatonin for Reducing Weight Gain Following Administration of Atypical Antipsychotic Olanzapine for Adolescents with Bipolar Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. J Child Adolesc Psychopharmacol. 2017;27:440–4.

    Article  CAS  PubMed  Google Scholar 

  115. Flowers SA, Ellingrod VL. The Microbiome in Mental Health: Potential Contribution of Gut Microbiota in Disease and Pharmacotherapy Management. Pharmacotherapy. 2015;35:910–6.

    Article  PubMed  Google Scholar 

  116. Dinan TG, Cryan JF. Gut-brain axis in 2016: Brain-gut-microbiota axis - mood, metabolism and behaviour. Nat Rev Gastroenterol Hepatol. 2017;14:69–70.

    Article  CAS  PubMed  Google Scholar 

  117. Davey KJ, O’Mahony SM, Schellekens H, O’Sullivan O, Bienenstock J, Cotter PD, et al. Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl). 2012;221:155–69.

    Article  CAS  PubMed  Google Scholar 

  118. Gorbovskaya I, Kanji S, Liu JCW, MacKenzie NE, Agarwal SM, Marshe VS, et al. Investigation of the Gut Microbiome in Patients with Schizophrenia and Clozapine-Induced Weight Gain: Protocol and Clinical Characteristics of First Patient Cohorts. Neuropsychobiology. 2020;79:5–12.

    Article  CAS  PubMed  Google Scholar 

  119. Kanji S, Fonseka TM, Marshe VS, Sriretnakumar V, Hahn MK, Müller DJ. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur Arch Psychiatry Clin Neurosci. 2018;268:3–15.

    Article  CAS  PubMed  Google Scholar 

  120. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bretler T, Weisberg H, Koren O, Neuman H. The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med. 2019;17:112.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Vanina Y, Podolskaya A, Sedky K, Shahab H, Siddiqui A, Munshi F, et al. Body weight changes associated with psychopharmacology. Psychiatr Serv. 2002;53:842–7.

    Article  PubMed  Google Scholar 

  123. McIntyre RS, Mancini DA, Basile VS. Mechanisms of antipsychotic-induced weight gain. J Clin Psychiatry. 2001;62:23–9.

    CAS  PubMed  Google Scholar 

  124. Chandradasa M, Ruwanpriya S, de Silva S, Rathnayake L. Kuruppuarachchi K. Randomised, placebo-controlled trial on topiramate add-on therapy for weight reduction and symptomatology in overweight/obese persons with schizophrenia. Asian J Psychiatr. 2022;68:102963.

    Article  PubMed  Google Scholar 

  125. Wang C, Shi W, Xu J, Huang C, Zhu J. Outcomes and safety of concomitant topiramate or metformin for antipsychotics-induced obesity: A randomized-controlled trial. Ann Gen Psychiatry. 2020;19:68.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lian J, Huang XF, Pai N, Deng C. Preventing olanzapine-induced weight gain using betahistine: a study in a rat model with chronic olanzapine treatment. PLoS One. 2014;9:e104160.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lian J, Huang XF, Pai N, Deng C. Ameliorating antipsychotic-induced weight gain by betahistine: Mechanisms and clinical implications. Pharmacol Res. 2016;106:51–63.

    Article  CAS  PubMed  Google Scholar 

  128. Barak N, Beck Y, Albeck JH. Betahistine decreases olanzapine-induced weight gain and somnolence in humans. J Psychopharmacol. 2016;30:237–41.

    Article  CAS  PubMed  Google Scholar 

  129. Zheng W, Wang S, Ungvari GS, Ng CH, Yang XH, Gu YH, et al. Amantadine for Antipsychotic-Related Weight Gain: Meta-Analysis of Randomized Placebo-Controlled Trials. J Clin Psychopharmacol. 2017;37:341–6.

    Article  CAS  PubMed  Google Scholar 

  130. Deberdt W, Winokur A, Cavazzoni PA, Trzaskoma QN, Carlson CD, Bymaster FP, et al. Amantadine for weight gain associated with olanzapine treatment. Eur Neuropsychopharmacol. 2005;15:13–21.

    Article  CAS  PubMed  Google Scholar 

  131. Graham KA, Gu H, Lieberman JA, Harp JB, Perkins DO. Double-blind, placebo-controlled investigation of amantadine for weight loss in subjects who gained weight with olanzapine. Am J Psychiatry. 2005;162:1744–6.

    Article  PubMed  Google Scholar 

  132. Kakafika AI, Mikhailidis DP, Karagiannis A, Athyros VG. The role of endocannabinoid system blockade in the treatment of the metabolic syndrome. J Clin Pharmacol. 2007;47:642–52.

    Article  CAS  PubMed  Google Scholar 

  133. Bonnot O, Cohen D, Thuilleaux D, Consoli A, Cabal S, Tauber M. Psychotropic treatments in Prader-Willi syndrome: a critical review of published literature. Eur J Pediatr. 2016;175:9–18.

    Article  CAS  PubMed  Google Scholar 

  134. Kelly DL, Gorelick DA, Conley RR, Boggs DL, Linthicum J, Liu F, et al. Effects of the cannabinoid-1 receptor antagonist rimonabant on psychiatric symptoms in overweight people with schizophrenia: a randomized, double-blind, pilot study. J Clin Psychopharmacol. 2011;31:86–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Seillier A. The endocannabinoid system as a therapeutic target for schizophrenia: Failures and potentials. Neurosci Lett. 2021;759:136064.

    Article  CAS  PubMed  Google Scholar 

  136. Correll CU, Sikich L, Reeves G, Johnson J, Keeton C, Spanos M, et al. Metformin add-on vs. antipsychotic switch vs. continued antipsychotic treatment plus healthy lifestyle education in overweight or obese youth with severe mental illness: results from the IMPACT trial. World Psychiatry. 2020;19:69–80.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Vancampfort D, Firth J, Correll CU, Solmi M, Siskind D, De Hert M, et al. The impact of pharmacological and non-pharmacological interventions to improve physical health outcomes in people with schizophrenia: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry. 2019;18:53–66.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hilger E, Quiner S, Ginzel I, Walter H, Saria L, Barnas C. The effect of orlistat on plasma levels of psychotropic drugs in patients with long-term psychopharmacotherapy. J Clin Psychopharmacol. 2002;22:68–70.

    Article  CAS  PubMed  Google Scholar 

  139. Chukhin E, Terevnikov V, Takala P, Hakko H, Putkonen H, Räsänen P, et al. Is there an interrelationship between the effects of antipsychotics on psychopathology and on metabolism? Nord J Psychiatry. 2016;70:190–4.

    Article  PubMed  Google Scholar 

  140. Bussell K, Reeves G, Hager E, Zhu S, Correll CU, Riddle MA, et al. Dietary Consumption Among Youth with Antipsychotic-Induced Weight Gain and Changes Following Healthy Lifestyle Education. J Child Adolesc Psychopharmacol. 2021;31:364–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wiedeman AM, Panagiotopoulos C, Devlin AM. Treatment-related weight gain and metabolic complications in children with mental health disorders: potential role for lifestyle interventions. Appl Physiol Nutr Metab. 2021;46:193–204.

    Article  PubMed  Google Scholar 

  142. Zheng W, Zhang QE, Cai DB, Yang XH, Ungvari GS, Ng CH, et al. Combination of Metformin and Lifestyle Intervention for Antipsychotic-Related Weight Gain: A Meta-Analysis of Randomized Controlled Trials. Pharmacopsychiatry. 2019;52:24–31.

    Article  CAS  PubMed  Google Scholar 

  143. Wu RR, Zhao JP, Jin H, Shao P, Fang MS, Guo XF, et al. Lifestyle intervention and metformin for treatment of antipsychotic-induced weight gain: a randomized controlled trial. Jama. 2008;299:185–93.

    Article  CAS  PubMed  Google Scholar 

  144. Tang C, Wang SD, Chen Y, Zhao BX, Li Z. [Discussion the pathogenesis mechanism and treatment of obesity based on theory of “Qi Deficiency and Stagnation”](in Chinese). World J Integr Traditional West Med. 2022;17:200–3.

    Google Scholar 

  145. Pilkington K. Acupuncture therapy for psychiatric illness. Int Rev Neurobiol. 2013;111:197–216.

    Article  PubMed  Google Scholar 

  146. Li X, Zhu H, Fang M, Ning ZY, Zhao S, Ying DQ. [Clinical observation of abdominal acupuncture in the treatment of obesity caused by atypical antipsychotics](in Chinese). J Cap Med University. 2020;41:75–79.

    Google Scholar 

  147. Zhao SQ, Wang JY, Sun SZ. [Observation on the efficacy of electroacupuncture combined with behavioral intervention in the treatment of obesity caused by antipsychotic drugs](in Chinese). Chinese Clin Doctors. 2013;15:233–4.

    Google Scholar 

  148. Yang ZL, Zhuo KM, Gao CY, Feng SY, Zhang J. [Study on the efficacy of electroacupuncture in the treatment of obesity caused by antipsychotic drugs](in Chinese). Shanxi Med J. 2021;50:2534–8.

    Google Scholar 

  149. Xiao AX, Ye JR, Yu L, Ge XY, Wei HM, Hu HY, et al. [Study of acupoint catgut - embedding therapy for obesity induced by atypical antipsychotics: A randomized controlled trial](in Chinese). Sichuan Mental Health. 2018;31:230–5.

    Google Scholar 

  150. Liang L, Ge XY. [Acupoint Catgut Embedding Therapy for Obesity Caused by Atypical Antipsychotic Drugs](in Chinese). Heilongjiang Med J. 2019;32:509–12.

    Google Scholar 

Download references

Funding

Funding

This study was supported by National Key Research and Development Project: Clinical Evaluation of the Interventional Techniques for Abdominal Obesity (No. 2019YFC1710102)

Author information

Authors and Affiliations

Authors

Contributions

XH and YZ conceived the idea and designed the review. WY performed the literature search and drafted the manuscript. JX and ZY contributed to the further development of the review. All authors revised the manuscript and gave approval for the final version to be published.

Corresponding authors

Correspondence to Xingang Hu or Yan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Xing, J., Yu, Z. et al. Mechanism and treatments of antipsychotic-induced weight gain. Int J Obes 47, 423–433 (2023). https://doi.org/10.1038/s41366-023-01291-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01291-8

This article is cited by

Search

Quick links