Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bariatric Surgery

Brain effect of bariatric surgery in people with obesity

Abstract

Background/Objectives

The link between obesity and brain function is a fascinating but still an enigmatic topic. We evaluated the effect of Roux-en-Y gastric bypass (RYGB) on peripheral glucose metabolism, insulin sensitivity, brain glucose utilization and cognitive abilities in people with obesity.

Subjects/Methods

Thirteen subjects with obesity (F/M 11/2; age 44.4 ± 9.8 years; BMI 46.1 ± 4.9 kg/m2) underwent 75-g OGTT during a [18F]FDG dynamic brain PET/CT study at baseline and 6 months after RYGB. At the same timepoints, cognitive performance was tested with Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Trail making test (TMT) and Token test (TT). Glucose, insulin, C-peptide, GLP-1, GIP, and VIP levels were measured during OGTT. Leptin and BDNF levels were measured before glucose ingestion.

Results

RYGB resulted in significant weight loss (from 46.1 ± 4.9 to 35.3 ± 5.0 kg/m2; p < 0.01 vs baseline). Insulin sensitivity improved (disposition index: from 1.1 ± 0.2 to 2.9 ± 1.1; p = 0.02) and cerebral glucose metabolic rate (CMRg) declined in various brain areas (all p ≤ 0.01). MMSE and MoCA score significantly improved (p = 0.001 and p = 0.002, respectively). TMT and TT scores showed a slight improvement. A positive correlation was found between CMRg change and HOMA-IR change in the caudate nucleus (ρ = 0.65, p = 0.01). Fasting leptin decreased (from 80.4 ± 13.0 to 16.1 ± 2.4 ng/dl; p = 0.001) and correlated with CMRg change in the hippocampus (ρ = 0.50; p = 0.008). CMRg change was correlated with cognitive scores changes on the TMT and TT (all p = 0.04 or less).

Conclusions

Bariatric surgery improves CMRg directly related to a better cognitive testing result. This study highlights the potential pleiotropic effects of bariatric surgery.

Trial registry number

NCT03414333.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cerebral metabolic rate of glucose in a patient before (upper panel) and after (lower panel) Roux-en-Y Gastric Bypass.
Fig. 2: Glucose metabolic rate in brain regions before (white bars) and after (dark bars) Roux-en-Y Gastric Bypass.

Similar content being viewed by others

Data availability

Data are available on request from AD and GD.

References

  1. O’Brien PD, Hinder LM, Callaghan BC, Feldman EL. Neurological consequences of obesity. Lancet Neurol. 2017;16:465–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baskaran C, Animashaun A, Rickard F, Toth AT, Eddy KT, Plessow F, et al. Memory and executive function in adolescent and young adult females with moderate to severe obesity before and after weight loss surgery. Obes Surg. 2021;31:3372–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lunghi C, Daniele G, Binda P, Dardano A, Ceccarini G, Santini F, et al. Altered visual plasticity in morbidly obese subjects. iScience. 2019;22:206–13.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Daniele G, Lunghi C, Dardano A, Binda P, Ceccarini G, Santini F, et al. Bariatric surgery restores visual cortical plasticity in nondiabetic subjects with obesity. Int J Obes. 2021;45:1821–9.

    Article  CAS  Google Scholar 

  5. Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:10–21.

    Article  CAS  PubMed  Google Scholar 

  6. Forny-Germano L, De Felice FG, Vieira MNDN. The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer’s disease. Front Neurosci. 2019;12:1027.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ekblad LL, Rinne JO, Puukka P, Laine H, Ahtiluoto S, Sulkava R, et al. Insulin resistance predicts cognitive decline: an 11-year follow-up of a nationally representative adult population sample. Diabetes Care. 2017;40:751–8.

    Article  PubMed  Google Scholar 

  8. Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13:43–56.

    Article  CAS  PubMed  Google Scholar 

  9. Iozzo P, Guzzardi MA. Imaging of brain glucose uptake by PET in obesity and cognitive dysfunction: life-course perspective. Endocr Connect. 2019;8:R169–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirvonen J, Virtanen KA, Nummenmaa L, Hannukainen JC, Honka MJ, Bucci M, et al. Effects of insulin on brain glucose metabolism in impaired glucose tolerance. Diabetes. 2011;60:443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rebelos E, Bucci M, Karjalainen T, Oikonen V, Bertoldo A, Hannukainen JC, et al. Insulin resistance is associated with enhanced brain glucose uptake during euglycemic hyperinsulinemia: a large-scale PET cohort. Diabetes Care. 2021;44:788–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kantonen T, Pekkarinen L, Karjalainen T, Bucci M, Kalliokoski K, Haaparanta-Solin M, et al. Obesity risk is associated with altered cerebral glucose metabolism and decreased μ-opioid and CB1 receptor availability. Int J Obes. 2022;46:400–7.

    Article  CAS  Google Scholar 

  13. Pareek M, Schauer PR, Kaplan LM, Leiter LA, Rubino F, Bhatt DL. Metabolic surgery: weight loss, diabetes, and beyond. J Am Coll Cardiol. 2018;71:670–87.

    Article  PubMed  Google Scholar 

  14. Tuulari JJ, Karlsson HK, Hirvonen J, Hannukainen JC, Bucci M, Helmiö M, et al. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese. Diabetes. 2013;62:2747–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tuulari JJ, Karlsson HK, Antikainen O, Hirvonen J, Pham T, Salminen P, et al. Bariatric surgery induces white and grey matter density recovery in the morbidly obese: a voxel-based morphometric study. Hum Brain Mapp. 2016;37:3745–56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Ji G, Xu M, Cai W, Zhu Q, Qian L, et al. Recovery of brain structural abnormalities in morbidly obese patients after bariatric surgery. Int J Obes. 2016;40:1558–65.

    Article  CAS  Google Scholar 

  17. Miller LA, Crosby RD, Galioto R, Strain G, Devlin MJ, Wing R, et al. Bariatric surgery patients exhibit improved memory function 12 months postoperatively. Obes Surg. 2013;23:1527–35.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alosco ML, Spitznagel MB, Strain G, Devlin M, Cohen R, Paul R, et al. Improved memory function two years after bariatric surgery. Obesity. 2014;22:32–38.

    Article  PubMed  Google Scholar 

  19. Alosco ML, Galioto R, Spitznagel MB, Strain G, Devlin M, Cohen R, et al. Cognitive function after bariatric surgery: evidence for improvement 3 years after surgery. Am J Surg. 2014;207:870–6.

    Article  PubMed  Google Scholar 

  20. Marques EL, Halpern A, Corrêa Mancini M, de Melo ME, Horie NC, Buchpiguel CA, et al. Changes in neuropsychological tests and brain metabolism after bariatric surgery. J Clin Endocrinol Metab. 2014;99:E2347–52.

    Article  CAS  PubMed  Google Scholar 

  21. Spitznagel MB, Hawkins M, Alosco M, Galioto R, Garcia S, Miller L, et al. Neurocognitive effects of obesity and bariatric surgery. J. Eur Eat Disord Rev. 2015;23:488–95.

    Article  Google Scholar 

  22. Handley JD, Williams DM, Caplin S, Stephens JW, Barry J. Changes in cognitive function following bariatric surgery: a systematic review. Obes Surg. 2016;26:2530–7.

    Article  PubMed  Google Scholar 

  23. Rochette AD, Spitznagel MB, Strain G, Devlin M, Crosby RD, Mitchell JE, et al. Mild cognitive impairment is prevalent in persons with severe obesity. Obesity. 2016;24:1427–9.

    Article  PubMed  Google Scholar 

  24. Nota MHC, Vreeken D, Wiesmann M, Aarts EO, Hazebroek EJ, Kiliaan AJ. Obesity affects brain structure and function-rescue by bariatric surgery? Neurosci Biobehav Rev. 2020;108:646–57.

    Article  PubMed  Google Scholar 

  25. Saindane AM, Drane DL, Singh A, Wu J, Qiu D. Neuroimaging correlates of cognitive changes after bariatric surgery. Surg Obes Relat Dis. 2020;16:119–27.

    Article  PubMed  Google Scholar 

  26. Mejido DCP, Peny JA, Vieira MNN, Ferreira ST, De, Felice FG. Insulin and leptin as potential cognitive enhancers in metabolic disorders and Alzheimer’s disease. Neuropharmacology. 2020;171:108115.

    Article  CAS  PubMed  Google Scholar 

  27. Alosco ML, Spitznagel MB, Strain G, Devlin M, Cohen R, Crosby RD, et al. Improved serum leptin and ghrelin following bariatric surgery predict better postoperative cognitive function. Clin Neurol. 2015;11:48–56.

    Article  Google Scholar 

  28. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  CAS  PubMed  Google Scholar 

  29. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive. Assessment, MoCA: a brief screening tool for mild cognitive impairment. Am Geriatr Soc. 2005;53:695–9.

    Google Scholar 

  30. Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. Nat Protoc. 2006;1:2277–81.

    Article  CAS  PubMed  Google Scholar 

  31. De Renzi E, Vignolo LA. The token test: a sensitive test to detect receptive disturbances in aphasics. Brain. 1962;85:665–78.

    Article  Google Scholar 

  32. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen International Med. 2001;16:606–13.

    Article  CAS  Google Scholar 

  33. Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. Cereb Blood Flow Metab. 1998;18:716–23.

    Article  CAS  Google Scholar 

  34. Dunn JT, Anthony K, Amiel SA, Marsden PK. Correction for the effect of rising plasma glucose levels on quantification of MR(glc) with FDG-PET. J Cereb Blood Flow Metab. 2009;29:1059–67.

    Article  CAS  PubMed  Google Scholar 

  35. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–19.

    Article  PubMed  Google Scholar 

  36. Retnakaran R, Qi Y, Goran MI, Hamilton JK. Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabet Med. 2009;26:1198–s203.

    Article  CAS  PubMed  Google Scholar 

  37. Daniele G, Iozzo P, Molina-Carrion M, Lancaster J, Ciociaro D, Cersosimo E, et al. Exenatide regulates cerebral glucose metabolism in brain areas associated with glucose homeostasis and reward system. Diabetes. 2015;64:3406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Almby KE, Lundqvist MH, Abrahamsson N, Kvernby S, Fahlström M, Pereira MJ, et al. Effects of gastric bypass surgery on the brain: simultaneous assessment of glucose uptake, blood flow, neural activity, and cognitive function during normo- and hypoglycemia. Diabetes. 2021;70:1265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anand SS, Friedrich MG, Lee DS, Awadalla P, Després JP, Desai D, et al. Evaluation of adiposity and cognitive function in adults. JAMA Netw Open. 2022;5:e2146324.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith KR, Moran TH, Papantoni A, Speck C, Bakker A, Kamath V, et al. Short-term improvements in cognitive function following vertical sleeve gastrectomy and Roux-en Y gastric bypass: a direct comparison study. Surg Endosc. 2020;34:2248–57.

    Article  PubMed  Google Scholar 

  41. Rebelos E, Immonen H, Bucci M, Hannukainen JC, Nummenmaa L, Honka MJ, et al. Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at followup. Diabetes Obes Metab. 2019;21:218–26.

    Article  CAS  PubMed  Google Scholar 

  42. Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19:758–66.

    Article  CAS  PubMed  Google Scholar 

  43. Taouis M, Torres-Aleman I. Editorial: insulin and the brain. Front Endocrinol. 2019;10:299.

    Article  Google Scholar 

  44. Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96:1169–209.

    Article  CAS  PubMed  Google Scholar 

  45. Hamer M, Batty GD. Association of body mass index and waist-to-hip ratio with brain structure: UK Biobank study. Neurology. 2019;92:e594–e600.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nummenmaa L, Hirvonen J, Hannukainen JC, Immonen H, Lindroos MM, Salminen P, et al. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS ONE. 2012;7:e31089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain. 2020;143:1233–48.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801–6.

    Article  CAS  PubMed  Google Scholar 

  49. van de Sande-Lee S, Pereira FR, Cintra DE, Fernandes PT, Cardoso AR, Garlipp CR, et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes. 2011;60:1699–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Long-Smith CM, Manning S, McClean PL, Coakley MF, O’Halloran DJ, Holscher C, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromolecular Med. 2013;15:102–14.

    Article  CAS  PubMed  Google Scholar 

  51. Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Vang K, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8:108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Binda P, Eldor R, Huerta C, Adams J, Lancaster J, Fox P, et al. Exenatide modulates visual cortex responses. Diabetes Metab Res Rev. 2019;35:e3167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ashraf A, Fan Z, Brooks DJ, Edison P. Cortical hypermetabolism in MCI subjects: a compensatory mechanism? Eur J Nucl Med Mol Imaging. 2015;42:447–58.

    Article  CAS  PubMed  Google Scholar 

  54. Apostolova I, Lange C, Mäurer A, Suppa P, Spies L, Grothe MJ, et al. Hypermetabolism in the hippocampal formation of cognitively impaired patients indicates detrimental maladaptation. Neurobiol Aging. 2018;65:41–50.

    Article  CAS  PubMed  Google Scholar 

  55. Weiss F, Barbuti M, Carignani G, Calderone A, Santini F, Maremmani I, et al. Psychiatric aspects of obesity: a narrative review of pathophysiology and psychopathology. J Clin Med. 2020;9:2344.

    Article  PubMed Central  Google Scholar 

  56. Salthouse TA. Robust cognitive change. J Int Neuropsychol Soc. 2012;18:749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bartels C, Wegrzyn M, Wiedl A, Ackermann V, Ehrenreich H. Practice effects in healthy adults: a longitudinal study on frequent repetitive cognitive testing. BMC Neurosci. 2010;11:118.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hassenstab J, Ruvolo D, Jasielec M, Xiong C, Grant E, Morris JC. Absence of practice effects in preclinical Alzheimer’s disease. Neuropsychology. 2015;29:940–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Prehn K, Profitlich T, Rangus I, Heßler S, Witte AV, Grittner U, et al. Bariatric surgery and brain health-a longitudinal observational study investigating the effect of surgery on cognitive function and gray matter volume. Nutrients. 2020;12:127.

    Article  PubMed Central  Google Scholar 

  60. Tucker WJ, Thomas BP, Puzziferri N, Samuel TJ, Zaha VG, Lingvay I, et al. Impact of bariatric surgery on cerebral vascular reactivity and cognitive function: a non-randomized pilot study. Pilot Feasibility Stud. 2020;6:21.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. L. Giusti for the support in performing lab tests.

Funding

This research was conducted with support from the University of Pisa (Project Code: PRA_2016_44) and from the Italian Ministry of the University (Project code 2017L8Z2EM).

Author information

Authors and Affiliations

Authors

Contributions

AD, GD, and SDP contributed to the conception and design of the experiments and were responsible for data collection, analysis, and interpretation; AD, GD, AC, GC, and FS recruited the subjects; GD and AD performed clinical examinations; AD also performed neurocognitive examinations; VSB performed lab measurements; CM and RB performed surgery; GA and DV performed PET studies and analysis; GD performed statistical analysis; AD wrote the first version of the paper; AD, SDP, and GD discussed the results and wrote the final version of the paper. All authors approved the final version of the manuscript for submission. AD and GD are guarantors of this work, who have full access to all the data in this study and take responsibility for the integrity and accuracy of the data.

Corresponding author

Correspondence to Stefano Del Prato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

Written informed consent was obtained from all subjects.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dardano, A., Aghakhanyan, G., Moretto, C. et al. Brain effect of bariatric surgery in people with obesity. Int J Obes 46, 1671–1677 (2022). https://doi.org/10.1038/s41366-022-01162-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01162-8

This article is cited by

Search

Quick links