Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-of-day dependent effect of proanthocyanidins on adipose tissue metabolism in rats with diet-induced obesity

Abstract

Background

Grape-seed proanthocyanidin extract (GSPE) improve white adipose tissue (WAT) expansion during diet-induced obesity. However, because adipose metabolism is synchronized by circadian rhythms, it is plausible to speculate that the bioactivity of dietary proanthocyanidins could be influenced by the time-of-day in which they are consumed. Therefore, the aim of the present study was to determine the interaction between zeitgeber time (ZT) and GSPE consumption on the functionality of WAT in rats with diet-induced obesity.

Methods

Male Wistar rats were fed a cafeteria diet for 9 weeks. After 5 weeks, the animals were supplemented with 25 mg GSPE/kg for 4 weeks at the beginning of the light/rest phase (ZT0) or of the dark/active phase (ZT12). Body fat content was determined by nuclear magnetic resonance and histological analyses were performed in the epididymal (EWAT) and inguinal (IWAT) fat depots to determine adipocyte size and number. In addition, the expression of genes related to adipose metabolism and circadian clock function were analyzed by qPCR.

Results

GSPE consumption at ZT0 was associated with a potential antidiabetic effect without affecting adiposity and energy intake and downregulating the gene expression of inflammatory markers in EWAT. In contrast, GSPE consumption at ZT12 improved adipose tissue expansion decreasing adipocyte size in IWAT. In accordance with this adipogenic activity, the expression of genes involved in fatty acid metabolism were downregulated at ZT12 in IWAT. In turn, GSPE consumption at ZT12, but not at ZT0, repressed the expression of the clock gene Cry1 in IWAT.

Conclusions

The interaction between ZT and GSPE consumption influenced the metabolic response of WAT in a tissue-specific manner. Understanding the impact of circadian clock on adipose metabolism and how this is regulated by polyphenols will provide new insights for the management of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adiposee tissue histology.
Fig. 2: Effects of GSPE on the expression of genes related to adipose metabolism in IWAT.
Fig. 3: Effects of GSPE on the expression of genes related to adipose metabolism in EWAT.
Fig. 4: Effects of GSPE on the expression of clock genes.

Similar content being viewed by others

Data availability

Application for datasets generated during and/or analyzed during the current study may be considered by the corresponding author on reasonable request.

References

  1. Conway B, Rene A. Obesity as a disease: no lightweight matter. Obes Rev. 2004;5:145–51.

    Article  CAS  PubMed  Google Scholar 

  2. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ducharme NA, Bickel PE. Minireview: Lipid droplets in lipogenesis and lipolysis. Endocrinology. 2008;149:942–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kuri-Harcuch W, Velez-delValle C, Vazquez-Sandoval A, Hernández-Mosqueira C, Fernandez-Sanchez V. A cellular perspective of adipogenesis transcriptional regulation. J Cell Physiol. 2019;234:1111–29.

    Article  CAS  PubMed  Google Scholar 

  5. Madsen MS, Siersbaek R, Boergesen M, Nielsen R, Mandrup S. Peroxisome proliferator-activated receptor and C/EBP synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol. 2014;34:939–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020;7:1–41.

    Article  CAS  Google Scholar 

  7. Stanford KI, Middelbeek RJW, Goodyear LJ. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes. 2015;64:2361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palou A, Picó C, Luisa, Bonet M. Nutritional potential of metabolic remodelling of white adipose tissue. Curr Opin Clin Nutr Metab Care. 2013;16:650–6.

    Article  CAS  PubMed  Google Scholar 

  9. Peng J, Jia Y, Hu T, Du J, Wang Y, Cheng B, et al. GC-(4→8)-GCG, a proanthocyanidin dimer from camellia ptilophylla, modulates obesity and adipose tissue inflammation in high-fat diet induced obese mice. Mol Nutr Food Res. 2019;63:1–12.

    Article  Google Scholar 

  10. Ardévol A, Motilva MJ, Serra A, Blay M, Pinent M. Procyanidins target mesenteric adipose tissue in Wistar lean rats and subcutaneous adipose tissue in Zucker obese rat. Food Chem. 2013;141:160–6.

    Article  PubMed  CAS  Google Scholar 

  11. Pascual-Serrano A, Bladé C, Suárez M, Arola-Arnal A. Grape seed proanthocyanidins improve white adipose tissue expansion during diet-induced obesity development in rats. Int J Mol Sci. 2018;19:2632.

    Article  PubMed Central  CAS  Google Scholar 

  12. Pascual-Serrano A, Arola-Arnal A, Suárez-García S, Bravo FI, Suárez M, Arola L, et al. Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats. Int J Obes. 2017;41:1246–55.

    Article  CAS  Google Scholar 

  13. Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21:67–84.

    Article  CAS  PubMed  Google Scholar 

  14. Ptitsyn AA, Zvonic S, Conrad SA, Scott LK, Mynatt RL, Gimble JM. Circadian clocks are resounding in peripheral tissues. PLoS Comput Biol. 2006;2:126–35.

    Article  CAS  Google Scholar 

  15. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes. 2006;55:962–70.

    Article  CAS  PubMed  Google Scholar 

  16. Shostak A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes. 2013;62:2195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15:75–89.

    Article  PubMed  CAS  Google Scholar 

  18. Ribas-latre A, Santos RB, Fekry B, Tamim YM, Shivshankar S, Mohamed AMT, et al. Cellular and physiological circadian mechanisms drive diurnal cell proliferation and expansion of white adipose tissue. Nat Commun. 2021;12:3482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dollet L, Zierath JR. Interplay between diet, exercise and the molecular circadian clock in orchestrating metabolic adaptations of adipose tissue. J Physiol. 2019;597:1439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Margalef M, Pons Z, Iglesias-Carres L, Bravo FI, Muguerza B, Arola-Arnal A. Lack of tissue accumulation of grape seed flavanols after daily long-term administration in healthy and cafeteria-diet obese rats. J Agric Food Chem. 2015;63:9996–10003.

    Article  CAS  PubMed  Google Scholar 

  21. Ribas-Latre A, Baselga-Escudero L, Casanova E, Arola-Arnal A, Salvadó MJ, Arola L, et al. Chronic consumption of dietary proanthocyanidins modulates peripheral clocks in healthy and obese rats. J Nutr Biochem. 2015;26:112–9.

    Article  CAS  PubMed  Google Scholar 

  22. Foster MT, Softic S, Caldwell J, Kohli R, DeKloet AD, Seeley RJ. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiol Rep. 2013;1:1–12.

    Article  CAS  Google Scholar 

  23. Cox-York K, Wei Y, Wang D, Pagliassotti MJ, Foster MT. Lower body adipose tissue removal decreases glucose tolerance and insulin sensitivity in mice with exposure to high fat diet. Adipocyte. 2015;4:32–43.

    Article  CAS  PubMed  Google Scholar 

  24. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7:410–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibert-Ramos A, Palacios-Jordan H, Salvadó MJ, Crescenti A. Consumption of out-of-season orange modulates fat accumulation, morphology and gene expression in the adipose tissue of Fischer 344 rats. Eur J Nutr. 2020;59:621–31.

    Article  PubMed  Google Scholar 

  26. Ibars M, Aragonès G, Ardid-Ruiz A, Gibert-Ramos A, Arola-Arnal A, Suárez M, et al. Seasonal consumption of polyphenol-rich fruits affects the hypothalamic leptin signaling system in a photoperiod-dependent mode. Sci Rep. 2018;8:13572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:E45.

  28. Pons Z, Margalef M, Bravo FI, Arola-Arnal A, Muguerza B. Chronic administration of grape-seed polyphenols attenuates the development of hypertension and improves other cardiometabolic risk factors associated with the metabolic syndrome in cafeteria diet-fed rats. Br J Nutr. 2017;117:200–8.

    Article  CAS  PubMed  Google Scholar 

  29. Serrano J, Casanova-Martí À, Gual A, Pérez-Vendrell AM, Blay MT, Terra X, et al. A specific dose of grape seed-derived proanthocyanidins to inhibit body weight gain limits food intake and increases energy expenditure in rats. Eur J Nutr. 2017;56:1629–36.

    Article  CAS  PubMed  Google Scholar 

  30. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019;20:2358.

    Article  CAS  PubMed Central  Google Scholar 

  31. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes. 2010;34:949–59.

    Article  CAS  Google Scholar 

  32. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2:367–73.

    Article  PubMed  Google Scholar 

  33. Medina EA, Afsari RR, Ravid T, Sianna Castillo S, Erickson KL, Goldkorn T. Tumor necrosis factor-α decreases Akt protein levels in 3T3-L1 adipocytes via the caspase-dependent ubiquitination of Akt. Endocrinology. 2005;146:2726–35.

    Article  CAS  PubMed  Google Scholar 

  34. Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, et al. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int. 2013;30:870–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gadacha W, Ben-attia M, Bonnefont-Rousselot D, Aouani E, Chanem-Boughanmi N, Touitou Y. Resveratrol opposite effects on rat tissue lipoperoxidation: pro-oxidant during day-time and antioxidant at night. Redox Rep. 2009;14:154–8.

    Article  CAS  PubMed  Google Scholar 

  36. Rull A, Camps J, Alonso-villaverde C, Joven J. Insulin resistance, inflammation, and obesity: role of monocyte chemoattractant protein-1 (or CCL2) in the regulation of metabolism. Mediators Inflamm. 2010;2010:326580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Carrasco-benso MP, Rivero-gutierrez B, Lopez-Minguez J, Anzola A, Diez-Noguera A, Madrid JA, et al. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. FASEB J. 2016;30:3117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi M, Ozaki M, Miyashita M, Fukazawa M, Nakaoka T, Wakisaka T, et al. Effects of timing of acute catechin-rich green tea ingestion on postprandial glucose metabolism in healthy men. J Nutr Biochem. 2019;73:108221.

    Article  CAS  PubMed  Google Scholar 

  39. Montagut G, Onnockx S, Vaqué M, Bladé C, Blay M, Fernández-Larrea J, et al. Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin. J Nutr Biochem. 2010;21:476–81.

    Article  CAS  PubMed  Google Scholar 

  40. Montagut G, Bladé C, Blay M, Fernández-Larea J, Pujadas G, Salvadó MJ, et al. Effects of a grapeseed procyanidin extract (GSPE) on insulin resistance. J Nutr Biochem. 2010;21:961–7.

    Article  CAS  PubMed  Google Scholar 

  41. Arola L, Salvado M. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res. 2010;54:37–59.

    Article  PubMed  CAS  Google Scholar 

  42. Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic impact of flavonoids consumption in obesity: from central to peripheral. Nutrients. 2020;12:1–55.

    Article  Google Scholar 

  43. Arner P, Bernard S, Appelsved L, Fu KY, Andersson DP, Salehpour M, et al. Adipose lipid turnover and long-term changes in body weight. Nat Med. 2019;25:1385–9.

    Article  CAS  PubMed  Google Scholar 

  44. Barclay JL, Shostak A, Leliavski A, Tsang AH, Jöhren O, Müller-Fielitz H, et al. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. Am J Physiol Endocrinol Metab. 2013;304:1053–63.

    Article  CAS  Google Scholar 

  45. Kumar N, Solt LA, Wang Y, Rogers PM, Bhattacharyya G, Kamenecha TM, et al. Regulation of adipogenesis by natural and synthetic REV-ERB ligands. Endocrinology. 2010;151:3015–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caimari A, Del Bas JM, Crescenti A, Arola L. Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. Int J Obes. 2013;37:576–83.

    Article  CAS  Google Scholar 

  47. Pinent M, Bladé MC, Salvadó MJ, Arola L, Ardévol A. Intracellular mediators of procyanidin-induced lipolysis in 3T3-L1 adipocytes. J Agric Food Chem. 2005;53:262–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the aid of laboratory technicians Niurka Dariela Llópiz and Rosa Pastor from Universitat Rovira i Virgili.

Funding

This research was supported by a grant (AGL2013-40707-R and AGL2016-77105-R) from the Spanish government. MC-P received a pre-doctoral fellowship from the government of Catalonia (2021 FI_B2 00105). RMR and EN-M received a grant for Ph.D. students from the Universitat Rovira i Virgili (2018PMF-PIPF-11 and 2019PMF-PIPF-73, respectively). GA, MM, and FIB are Serra-Húnter fellows at the Universitat Rovira i Virgili.

Author information

Authors and Affiliations

Authors

Contributions

MC-P, MM, FIB, LA, and GA designed the research; MC-P and RMR performed the experiments and collected the data; MC-P, MM, FIB, LA, and GA analyzed the data and interpreted the results; MC-P, EN-M, and GA wrote the paper. All authors read and approved the final paper.

Corresponding author

Correspondence to Gerard Aragonès.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colom-Pellicer, M., Rodríguez, R.M., Navarro-Masip, È. et al. Time-of-day dependent effect of proanthocyanidins on adipose tissue metabolism in rats with diet-induced obesity. Int J Obes 46, 1394–1402 (2022). https://doi.org/10.1038/s41366-022-01132-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01132-0

Search

Quick links