Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preconception lifestyle intervention in women with obesity and echocardiographic indices of cardiovascular health in their children

Abstract

Background

Improving maternal lifestyle before conception may prevent the adverse effects of maternal obesity on their children’s future cardiovascular disease (CVD) risk. In the current study, we examined whether a preconception lifestyle intervention in women with obesity could alter echocardiographic indices of cardiovascular health in their children.

Methods

Six years after a randomized controlled trial comparing the effects of a 6-month preconception lifestyle intervention in women with obesity and infertility prior to fertility care to prompt fertility care, 315 of the 341 children conceived within 24 months after randomization were eligible for this study. The intervention was aimed at weight loss (≥5% or until BMI < 29 kg/m2). Children underwent echocardiographic assessment of cardiac structure and function, conducted by a single pediatric cardiologist, blinded to group allocation. Results were adjusted for multiple variables including body surface area, age, and sex in linear regression analyses.

Results

Sixty children (32 girls, 53%) were included, mean age 6.5 years (SD 1.09). Twenty-four children (40%) were born to mothers in the intervention group. Children of mothers from the intervention group had a lower end-diastolic interventricular septum thickness (−0.88 Z-score, 95%CI −1.18 to −0.58), a lower left ventricle mass index (−8.56 g/m2, 95%CI −13.09 to −4.03), and higher peak systolic and early diastolic annular velocity of the left ventricle (1.43 cm/s 95%CI 0.65 to 2.20 and 2.39 cm/s 95%CI 0.68 to 4.11, respectively) compared to children of mothers from the control group.

Conclusions

Children of women with obesity, who underwent a preconception lifestyle intervention, had improved cardiac structure and function; a thinner interventricular septum, lower left ventricle mass, and improved systolic and diastolic tissue Doppler velocities. Despite its high attrition rates, our study provides the first experimental human evidence suggesting that preconception lifestyle interventions may present a method of reducing CVD risk in the next generation.

Clinical trial registration

LIFEstyle study: Netherlands Trial Register: NTR1530 (https://www.trialregister.nl/trial/1461). This follow-up study was approved by the medical ethics committee of the University Medical Centre Groningen (METC code: 2008/284).

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2: Dose–response relationships between maternal weight loss 6 months after randomization and cardiac outcomes in offspring. Stratified for control and intervention group.

Data availability

The data that support the findings of this study are available from the corresponding author, TdH, upon reasonable request.

References

  1. Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, Lu Y, et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387:1377–96. https://doi.org/10.1016/s0140-6736(16)30054-x

    Article  Google Scholar 

  2. El-Gilany AH, El-Wehady A. Prevalence of obesity in a Saudi obstetric population. Obes Facts. 2009;2:217–20. https://doi.org/10.1159/000226597. 2010/01/08

    Article  PubMed  PubMed Central  Google Scholar 

  3. Forsen T, Eriksson JG, Tuomilehto J, Teramo K, Osmond C, Barker DJ. Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ. 1997;315:837–40. https://doi.org/10.1136/bmj.315.7112.837

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Reynolds RM, Allan KM, Raja EA, Bhattacharya S, McNeill G, Hannaford PC, et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1,323,275 person years. BMJ. 2013;347:f4539 https://doi.org/10.1136/bmj.f4539. 2013/08/15

    Article  PubMed  PubMed Central  Google Scholar 

  5. Razaz N, Villamor E, Muraca GM, Bonamy AE, Cnattingius S. Maternal obesity and risk of cardiovascular diseases in offspring: a population-based cohort and sibling-controlled study. Lancet Diabetes Endocrinol. 2020;8:572–81. https://doi.org/10.1016/S2213-8587(20)30151-0. 2020/06/20

    Article  PubMed  Google Scholar 

  6. Loche E, Blackmore HL, Carpenter AA, Beeson JH, Pinnock A, Ashmore TJ, et al. Maternal diet-induced obesity programmes cardiac dysfunction in male mice independently of post-weaning diet. Cardiovasc Res. 2018;114:1372–84. https://doi.org/10.1093/cvr/cvy082. 2018/04/11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Huang Y, Yan X, Zhao JX, Zhu MJ, McCormick RJ, Ford SP, et al. Maternal obesity induces fibrosis in fetal myocardium of sheep. Am J Physiol Endocrinol Metab. 2010;299:E968–975. https://doi.org/10.1152/ajpendo.00434.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Blackmore HL, Niu Y, Fernandez-Twinn DS, Tarry-Adkins JL, Giussani DA, Ozanne SE. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight. Endocrinology. 2014;155:3970–80. https://doi.org/10.1210/en.2014-1383

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Ece I, Uner A, Balli S, Kibar AE, Oflaz MB, Kurdoglu M. The effects of pre-pregnancy obesity on fetal cardiac functions. Pediatr Cardiol. 2014;35:838–43. https://doi.org/10.1007/s00246-014-0863-0

    Article  PubMed  Google Scholar 

  10. Ingul CB, Loras L, Tegnander E, Eik-Nes SH, Brantberg A. Maternal obesity affects fetal myocardial function as early as in the first trimester. Ultrasound Obstet Gynecol. 2016;47:433–42. https://doi.org/10.1002/uog.14841. 2015/03/12

    CAS  Article  PubMed  Google Scholar 

  11. Nyrnes SA, Garnaes KK, Salvesen O, Timilsina AS, Moholdt T, Ingul CB. Cardiac function in newborns of obese women and the effect of exercise during pregnancy. A randomized controlled trial. PLoS One. 2018;13:e0197334 https://doi.org/10.1371/journal.pone.0197334. 2018/06/02

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Paauw ND, Stegeman R, de Vroede M, Termote JUM, Freund MW, Breur J. Neonatal cardiac hypertrophy: the role of hyperinsulinism-a review of literature. Eur J Pediatr. 2020;179:39–50. https://doi.org/10.1007/s00431-019-03521-6. 2019/12/17

    CAS  Article  PubMed  Google Scholar 

  13. Gordon EE, Reinking BE, Hu S, Yao J, Kua KL, Younes AK, et al. Maternal hyperglycemia directly and rapidly induces cardiac septal overgrowth in fetal rats. J Diabetes Res. 2015;2015:479565 https://doi.org/10.1155/2015/479565. 2015/06/13

    Article  PubMed  PubMed Central  Google Scholar 

  14. Poston L, Caleyachetty R, Cnattingius S, Corvalan C, Uauy R, Herring S, et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4:1025–36. https://doi.org/10.1016/S2213-8587(16)30217-0. 2016/10/17

    Article  PubMed  Google Scholar 

  15. Beeson JH, Blackmore HL, Carr SK, Dearden L, Duque-Guimaraes DE, Kusinski LC, et al. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Mol Metab. 2018;16:35–44. https://doi.org/10.1016/j.molmet.2018.06.009. 2018/10/09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. International Weight Management in Pregnancy Collaborative G. Effect of diet and physical activity based interventions in pregnancy on gestational weight gain and pregnancy outcomes: meta-analysis of individual participant data from randomised trials. BMJ. 2017;358:j3119 https://doi.org/10.1136/bmj.j3119. 2017/07/21

    Article  Google Scholar 

  17. Stephenson J, Heslehurst N, Hall J, Schoenaker DAJM, Hutchinson J, Cade JE, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. 2018, p. 1830-41.

  18. van de Beek C, Hoek A, Painter RC, Gemke R, van Poppel MNM, Geelen A, et al. Women, their Offspring and iMproving lifestyle for Better cardiovascular health of both (WOMB project): a protocol of the follow-up of a multicentre randomised controlled trial. BMJ Open. 2018;8:e016579 https://doi.org/10.1136/bmjopen-2017-016579. 2018/01/27

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mutsaerts MA, van Oers AM, Groen H, Burggraaff JM, Kuchenbecker WK, Perquin DA, et al. Randomized trial of a lifestyle program in obese infertile women. N Engl J Med. 2016;374:1942–53. https://doi.org/10.1056/NEJMoa1505297. 2016/05/19

    CAS  Article  PubMed  Google Scholar 

  20. Wekker V, Huvinen E, van Dammen L, Rono K, Painter RC, Zwinderman AH, et al. Long-term effects of a preconception lifestyle intervention on cardiometabolic health of overweight and obese women. Eur J Public Health. 2019;29:308–14. https://doi.org/10.1093/eurpub/cky222. 2018/11/01

    Article  PubMed  Google Scholar 

  21. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr. 2006;19:1413–30. https://doi.org/10.1016/j.echo.2006.09.001. 2006/12/02

    Article  PubMed  Google Scholar 

  22. Pettersen MD, Du W, Skeens ME, Humes RA. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr. 2008;21:922–34. https://doi.org/10.1016/j.echo.2008.02.006. 2008/04/15

    Article  PubMed  Google Scholar 

  23. Sarkola T, Manlhiot C, Slorach C, Bradley TJ, Hui W, Mertens L, et al. Evolution of the arterial structure and function from infancy to adolescence is related to anthropometric and blood pressure changes. Arterioscler Thromb Vasc Biol. 2012;32:2516–24. https://doi.org/10.1161/ATVBAHA.112.252114. 2012/07/28

    CAS  Article  PubMed  Google Scholar 

  24. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317:1098 https://doi.org/10.1056/NEJM198710223171717. 1987/10/22

    CAS  Article  PubMed  Google Scholar 

  25. Tranquilli AL, Dekker G, Magee L, Roberts J, Sibai BM, Steyn W, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Preg Hypertens. 2014;4:97–104. https://doi.org/10.1016/j.preghy.2014.02.001. 2014/04/01

    CAS  Article  Google Scholar 

  26. Lips JPV, GHA, Peeters, LLH, Hajenius, PJ, Pajkrt, E, Evers, IM. Diabetes mellitus en zwangerschap. NVOG-richtlijn, 2010., www.nvog.nl (2010).

  27. van Elten TM, Karsten MDA, Geelen A, van Oers AM, van Poppel MNM, Groen H, et al. Effects of a preconception lifestyle intervention in obese infertile women on diet and physical activity; A secondary analysis of a randomized controlled trial. PLoS One. 2018;13:e0206888 https://doi.org/10.1371/journal.pone.0206888. 2018/11/08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Wendel-Vos GC, Schuit AJ, Saris WH, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol. 2003;56:1163–9. https://doi.org/10.1016/s0895-4356(03)00220-8. 2003/12/19

    Article  PubMed  Google Scholar 

  29. Scherrer U, Rexhaj E, Allemann Y, Sartori C, Rimoldi SF. Cardiovascular dysfunction in children conceived by assisted reproductive technologies. Eur Heart J. 2015;36:1583–9. https://doi.org/10.1093/eurheartj/ehv145. 2015/04/26

    Article  PubMed  Google Scholar 

  30. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63. https://doi.org/10.1016/j.jcm.2016.02.012. 2016/06/23

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hayes AF. PROCESS: a versatile computational tool for observed variable mediation, moderation, and conditional process modeling [White paper]. (2012).

  32. Overbeek LI, Kapusta L, Peer PG, de Korte CL, Thijssen JM, Daniels O. New reference values for echocardiographic dimensions of healthy Dutch children. Eur J Echocardiogr. 2006;7:113–21. https://doi.org/10.1016/j.euje.2005.03.012. 2005/06/09

    CAS  Article  PubMed  Google Scholar 

  33. Perak AM, Lancki N, Kuang A, Labarthe DR, Allen NB, Shah SH, et al. Associations of maternal cardiovascular health in pregnancy with offspring cardiovascular health in early adolescence. JAMA. 2021;325:658–68. https://doi.org/10.1001/jama.2021.0247. 2021/02/17

    Article  PubMed  Google Scholar 

  34. Berenson GS. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. The Bogalusa Heart Study. Am J Cardiol. 2002;90:3L–7L. https://doi.org/10.1016/s0002-9149(02)02953-3. 2002/12/03

    Article  PubMed  Google Scholar 

  35. Toemen L, Gaillard R, van Osch-Gevers L, Helbing WA, Hofman A, Jaddoe VW. Tracking of structural and functional cardiac measures from infancy into school-age. Eur J Prev Cardiol. 2017;24:1408–15. https://doi.org/10.1177/2047487317715512. 2017/06/13

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schieken RM, Schwartz PF, Goble MM. Tracking of left ventricular mass in children: race and sex comparisons: the MCV Twin Study. Medical College of Virginia. Circulation. 1998;97:1901–6. https://doi.org/10.1161/01.cir.97.19.1901. 1998/06/03

    CAS  Article  PubMed  Google Scholar 

  37. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6. https://doi.org/10.1056/NEJM199005313222203. 1990/05/31

    CAS  Article  PubMed  Google Scholar 

  38. Park SK, Jung JY, Kang JG, Chung PW, Oh CM. Left ventricular geometry and risk of incident hypertension. Heart. 2019;105:1402–7. https://doi.org/10.1136/heartjnl-2018-314657. 2019/04/19

    CAS  Article  PubMed  Google Scholar 

  39. Garnaes KK, Morkved S, Salvesen O, Moholdt T. Exercise training and weight gain in obese pregnant women: a randomized controlled trial (ETIP Trial). PLoS Med. 2016;13:e1002079 https://doi.org/10.1371/journal.pmed.1002079. 2016/07/28

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rono K, Grotenfelt NE, Klemetti MM, Stach-Lempinen B, Huvinen E, Meinila J, et al. Effect of a lifestyle intervention during pregnancy-findings from the Finnish gestational diabetes prevention trial (RADIEL). J Perinatol. 2018;38:1157–64. https://doi.org/10.1038/s41372-018-0178-8. 2018/07/26

    Article  PubMed  Google Scholar 

  41. Litwin L, Sundholm JKM, Rono K, Koivusalo SB, Eriksson JG, Sarkola T. No effect of gestational diabetes or pre-gestational obesity on 6-year offspring left ventricular function-RADIEL study follow-up. Acta Diabetol. 2020;57:1463–72. https://doi.org/10.1007/s00592-020-01571-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Tan CMJ, Lewandowski AJ. The transitional heart: from early embryonic and fetal development to neonatal life. Fetal Diagn Ther. 2020;47:373–86. https://doi.org/10.1159/000501906. 2019/09/19

    Article  PubMed  Google Scholar 

  43. van Elten TM, Karsten MDA, van Poppel MNM, Geelen A, Limpens J, Roseboom TJ, et al. Diet and physical activity in pregnancy and offspring’s cardiovascular health: a systematic review. J Dev Orig Health Dis. 2019;10:286–98. https://doi.org/10.1017/S204017441800082X. 2018/11/14

    Article  PubMed  Google Scholar 

  44. Hrolfsdottir L, Halldorsson TI, Rytter D, Bech BH, Birgisdottir BE, Gunnarsdottir I, et al. Maternal macronutrient intake and offspring blood pressure 20 years later. J Am Heart Assoc. 2017;6:2017/04/26 https://doi.org/10.1161/JAHA.117.005808

    Article  Google Scholar 

  45. Chatzi L, Rifas-Shiman SL, Georgiou V, Joung KE, Koinaki S, Chalkiadaki G, et al. Adherence to the Mediterranean diet during pregnancy and offspring adiposity and cardiometabolic traits in childhood. Pediatr Obes. 2017;12(Suppl 1):S47–S56. https://doi.org/10.1111/ijpo.12191. 2017/02/06

    Article  Google Scholar 

  46. Leermakers ETM, Tielemans MJ, van den Broek M, Jaddoe VWV, Franco OH, Kiefte-de Jong JC. Maternal dietary patterns during pregnancy and offspring cardiometabolic health at age 6 years: the generation R study. Clin Nutr. 2017;36:477–84. https://doi.org/10.1016/j.clnu.2015.12.017. 2016/02/26

    Article  PubMed  Google Scholar 

  47. May LE, Scholtz SA, Suminski R, Gustafson KM. Aerobic exercise during pregnancy influences infant heart rate variability at one month of age. Early Hum Dev. 2014;90:33–38. https://doi.org/10.1016/j.earlhumdev.2013.11.001. 2013/11/30

    Article  PubMed  Google Scholar 

  48. Fernandez-Twinn DS, Blackmore HL, Siggens L, Giussani DA, Cross CM, Foo R, et al. The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinemia, AKT, ERK, and mTOR activation. Endocrinology. 2012;153:5961–71. https://doi.org/10.1210/en.2012-1508

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Myatt L, Maloyan A. Obesity and placental function. Semin Reprod Med. 2016;34:42–49. https://doi.org/10.1055/s-0035-1570027. 2016/01/07

    CAS  Article  PubMed  Google Scholar 

  50. Patro Golab B, Santos S, Voerman E, Lawlor DA, Jaddoe VWV, Gaillard R, et al. Influence of maternal obesity on the association between common pregnancy complications and risk of childhood obesity: an individual participant data meta-analysis. Lancet Child Adolesc Health. 2018;2:812–21. https://doi.org/10.1016/S2352-4642(18)30273-6. 2018/09/12

    Article  PubMed  Google Scholar 

  51. Mourtakos SP, Tambalis KD, Panagiotakos DB, Antonogeorgos G, Arnaoutis G, Karteroliotis K, et al. Maternal lifestyle characteristics during pregnancy, and the risk of obesity in the offspring: a study of 5125 children. BMC Pregnancy Childbirth. 2015;15:66 https://doi.org/10.1186/s12884-015-0498-z. 2015/04/18

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hendriks T, Said MA, Janssen LMA, van der Ende MY, van Veldhuisen DJ, Verweij N, et al. Effect of systolic blood pressure on left ventricular structure and function: a mendelian randomization study. Hypertension. 2019;74:826–32. https://doi.org/10.1161/HYPERTENSIONAHA.119.12679. 2019/09/04

    CAS  Article  PubMed  Google Scholar 

  53. Zielinsky P, Piccoli AL Jr. Myocardial hypertrophy and dysfunction in maternal diabetes. Early Hum Dev. 2012;88:273–8. https://doi.org/10.1016/j.earlhumdev.2012.02.006. 2012/03/27

    Article  PubMed  Google Scholar 

  54. Aye CYL, Lewandowski AJ, Lamata P, Upton R, Davis E, Ohuma EO, et al. Prenatal and postnatal cardiac development in offspring of hypertensive pregnancies. J Am Heart Assoc. 2020;9:e014586 https://doi.org/10.1161/JAHA.119.014586. 2020/05/01

    Article  PubMed  PubMed Central  Google Scholar 

  55. Telles F, McNamara N, Nanayakkara S, Doyle MP, Williams M, Yaeger L, et al. Changes in the preterm heart from birth to young adulthood: a meta-analysis. Pediatrics. 2020; 146 2020/07/09. https://doi.org/10.1542/peds.2020-0146.

  56. Depla AL, De Wit L, Steenhuis TJ, Slieker MG, Voormolen DN, Scheffer PG, et al. Effect of maternal diabetes on fetal heart function on echocardiography: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2021;57:539–50. https://doi.org/10.1002/uog.22163. 2020/07/31

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Papolos A, Narula J, Bavishi C, Chaudhry FA, Sengupta PP. U.S. hospital use of echocardiography: insights from the nationwide inpatient sample. J Am Coll Cardiol. 2016;67:502–11. https://doi.org/10.1016/j.jacc.2015.10.090. 2016/02/06

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all children and parents who participated in the study. Also, this follow-up would not have been possible without the original LIFEstyle trial, so we would like to thank the whole LIFEstyle group, including all participating centers and researchers that have contributed to the original trial. Eryn Liem and Rolf Berger facilitated the echocardiograms in the UMC Groningen and we would also like to thank them for their help.

Funding

This work was supported by a grant of the Dutch Heart Foundation (2013T085) and a Postdoc Stipend of Amsterdam Reproduction & Development. The initial LIFEstyle trial was supported by a grant from ZonMW, the Dutch Organization for Health Research and Development (120620027).

Author information

Authors and Affiliations

Authors

Contributions

AWvD designed the research protocol, assessed all children by means of echocardiography, and extracted offline data. TdH was responsible for planning the echocardiography’s, safely storing all data, extracting and analyzing the data, and writing the article. IMK was responsible for part of the data extraction. RCP, AWvD, AH, HG, BWM, NAB, TJR, RJBJG, and IMK all carefully reviewed the articleAH, HG, BWM, RJBJG, TJR, and AWvD were involved in the set-up of the original intervention study and follow-up study. All authors provided intellectual input and were involved in the writing of the article.

Corresponding author

Correspondence to Tamara den Harink.

Ethics declarations

Competing interests

Annemieke Hoek: received a modest fee from Ferring Pharmaceutical company for participation in an expert board, unrelated to the current study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

den Harink, T., Blom, N.A., Gemke, R.J.B.J. et al. Preconception lifestyle intervention in women with obesity and echocardiographic indices of cardiovascular health in their children. Int J Obes 46, 1262–1270 (2022). https://doi.org/10.1038/s41366-022-01107-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01107-1

Search

Quick links