Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Cognitive impairment in obese rat model: role of glial cells

Abstract

Background

Obesity is a worldwide problem. Some studies revealed that it leads to deterioration of the cognitive function, regardless of age.

Aim of the study

explore the effect of obesity on cognitive function in a rat model of obesity highlighting the role of glial cells.

Materials and methods

twenty adult male albino rats were assigned to two groups: group I: consumed normal diet, group II: consumed high-fat diet. Body Mass Index (BMI), serum glucose, insulin, HOMA IR and lipid profile were measured. Also, hippocampal expression of Brain derived neurotrophic factor (Bdnf), synapsin, Ionized calcium binding adaptor molecule 1 (Iba), nuclear factor erythroid -related factor 2 (Nrf2), Myelin basic protein (Mbp) were measured by real-time polymerase chain reaction. The Morris Water Maze is a test used to assess spatial learning and memory capacities of rats.

Results

There was a high significant increase in lipid profile, serum glucose, insulin serum levels and HOMA-IR in obese groups with impaired Morris water maze performance compared to control group. There was a significant downregulation in hippocampal Bdnf and synapsin mRNA expression. In addition to decrease in Mbp mRNA expression (P < 0.001). This could be explained by oxidative stress through significant downregulation of Nrf2 mRNA, and inflammation observed in significant upregulation Iba mRNA gene expression in the obese group.

Conclusion

Many factors contribute to obesity associated cognitive impairment. In our study, we figured out the crucial roles of glial cells including microglial activation and oligodendrocytes affection with other underlying mechanisms including oxidative stress and hippocampal inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spacial acquisition test in both control and obese groups.
Fig. 2: Probe test in both control and obese groups.
Fig. 3: Correlation between prob test %time and BMI.
Fig. 4: Gene expression analysis in hippocampus tissue.

Similar content being viewed by others

References

  1. Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol (Lausanne). 2014;5:74 https://doi.org/10.3389/fendo.2014.00074.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Driscoll I, Beydoun MA, An Y, Davatzikos C, Ferrucci L, Zonderman AB, et al. Midlife obesity and trajectories of brain volume changes in older adults. Hum Brain Mapp. 2012;33:2204–10. https://doi.org/10.1002/hbm.21353.

    Article  PubMed  Google Scholar 

  3. Ronan L, Alexander-Bloch A, Fletcher PC. Childhood obesity, cortical structure, and executive function in healthy children. Cereb Cortex. 2020;30:2519–28. https://doi.org/10.1093/cercor/bhz257.

    Article  PubMed  Google Scholar 

  4. Jack CR, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999;52:1397–403. https://doi.org/10.1212/wnl.52.7.1397.

    Article  PubMed  Google Scholar 

  5. Park DC, Huang CM. Culture wires the Brain: a cognitive neuroscience perspective. Perspect Psychol Sci. 2010;5:391–400. https://doi.org/10.1177/1745691610374591.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Valladolid-Acebes I, Stucchi P, Cano V, Fernández-Alfonso MS, Merino B, Gil-Ortega M, et al. High-fat diets impair spatial learning in the radial-arm maze in mice. Neurobiol Learn Mem. 2011;95:80–85. https://doi.org/10.1016/j.nlm.2010.11.007.

    Article  CAS  PubMed  Google Scholar 

  7. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14:168–81. https://doi.org/10.1038/nrneurol.2017.185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sobesky JL, Barrientos RM, De May HS, Thompson BM, Weber MD, Watkins LR, et al. High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1β, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain Behav Immun. 2014;42:22–32. https://doi.org/10.1016/j.bbi.2014.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung WS, Welsh CA, Barres BA, Stevens B. Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci. 2015;18:1539–45. https://doi.org/10.1038/nn.4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell. 2020;182:388–403.e15. https://doi.org/10.1016/j.cell.2020.05.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee W, Moon M, Kim GH, Lee HT, Oh SM. Heat stress-induced memory impairment is associated with neuroinflammation in mice. J Neuroinflammation. 2015;12:102 https://doi.org/10.1186/s12974-015-0324-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wadhwa M, Prabhakar A, Ray K, Roy K, Kumari P, Jha PK, et al. Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48h of sleep deprivation. J Neuroinflammation. 2017;14:222 https://doi.org/10.1186/s12974-017-0998-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci. 2000;113:3073–84.

    Article  CAS  Google Scholar 

  14. Yang C, Tang J, Liang X, Qi Y, Luo Y, Xie Y et al. Anti-LINGO-1 antibody treatment improves chronic stress-induced spatial memory impairments and oligodendrocyte loss in the hippocampus. Behav Brain Res. 2020,393. https://doi.org/10.1016/j.bbr.2020.112765.

  15. Yoon H, Kleven A, Paulsen A, Kleppe L, Wu J, Ying Z, et al. Interplay between exercise and dietary fat modulates myelinogenesis in the central nervous system. Biochim Biophys Acta—Mol Basis Dis. 2016;1862:545–55. https://doi.org/10.1016/j.bbadis.2016.01.019.

    Article  CAS  Google Scholar 

  16. Aggarwal S, Yurlova L, Simons M. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol. 2011;21:585–93. https://doi.org/10.1016/j.tcb.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  17. Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci. 2000;3:323–9. https://doi.org/10.1038/73888.

    Article  CAS  PubMed  Google Scholar 

  18. Brandes MS, Gray NE NRF2 as a Therapeutic target in neurodegenerative diseases. ASN Neuro. 2020; 12. https://doi.org/10.1177/1759091419899782.

  19. Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3:17 https://doi.org/10.1186/1758-5996-3-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Novelli ELB, Diniz YS, Galhardi CM, Ebaid GMX, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41:111–9. https://doi.org/10.1258/002367707779399518.

    Article  CAS  PubMed  Google Scholar 

  21. Sun G, Bishop J, Khalili S, Vasdev S, Gill V, Pace D, et al. Serum visfatin concentrations are positively correlated with serum triacylglycerols and downregulated by overfeeding in healthy young men. Am J Clin Nutr. 2007;85:399–404. https://doi.org/10.1093/ajcn/85.2.399.

    Article  CAS  PubMed  Google Scholar 

  22. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    Article  CAS  Google Scholar 

  23. Silva RH, Abílio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, et al. Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology. 2004;46:895–903. https://doi.org/10.1016/j.neuropharm.2003.11.032.

    Article  CAS  PubMed  Google Scholar 

  24. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58. https://doi.org/10.1038/nprot.2006.116.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bauer CCC, Moreno B, González-Santos L, Concha L, Barquera S, Barrios FA. Child overweight and obesity are associated with reduced executive cognitive performance and brain alterations: A magnetic resonance imaging study in Mexican children. Pediatr Obes. 2015;10:196–204. https://doi.org/10.1111/ijpo.241.

    Article  CAS  PubMed  Google Scholar 

  26. Cournot M, Marquié JC, Ansiau D, Martinaud C, Fonds H, Ferrières J, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology. 2006;67:1208–14. https://doi.org/10.1212/01.wnl.0000238082.13860.50.

    Article  CAS  PubMed  Google Scholar 

  27. Ricciarelli R, Canepa E, Marengo B, Marinari UM, Poli G, Pronzato MA, et al. Cholesterol and Alzheimer’s disease: A still poorly understood correlation. IUBMB Life. 2012;64:931–5. https://doi.org/10.1002/iub.1091.

    Article  CAS  PubMed  Google Scholar 

  28. Xue-Shan Z, juan P, Qi W, Zhong R, Li-hong P, Zhi-han T, et al. Imbalanced cholesterol metabolism in Alzheimer’s disease. Clin Chim Acta. 2016;456:107–14. https://doi.org/10.1016/j.cca.2016.02.024.

    Article  CAS  PubMed  Google Scholar 

  29. Uppin V, Acharya P, Bettadaiah Bheemanakere K, Talahalli RR Hyperlipidemia downregulate brain antioxidant defense enzymes and neurotrophins in rats: assessment of the modulatory potential of EPA+DHA and zerumbone. Mol Nutr Food Res. 2020; 64. https://doi.org/10.1002/mnfr.202000381.

  30. Farr SA, Yamada KA, Butterfield DA, Abdul HM, Xu L, Miller NE, et al. Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology. 2008;149:2628–36. https://doi.org/10.1210/en.2007-1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee CC, Huang CC. Hsu K Sen. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology. 2011;61:867–79. https://doi.org/10.1016/j.neuropharm.2011.06.003.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao F, Siu JJ, Huang W, Askwith C, Cao L. Insulin modulates excitatory synaptic transmission and synaptic plasticity in the mouse hippocampus. Neuroscience. 2019;411:237–54. https://doi.org/10.1016/j.neuroscience.2019.05.033.

    Article  CAS  PubMed  Google Scholar 

  33. Park HS, Park SS, Kim CJ, Kim TW, Kim TW. Exercise alleviates cognitive functions by enhancing hippocampal insulin signaling and neuroplasticity in high-fat diet-induced obesity. Nutrients. 2019;11:1603 https://doi.org/10.3390/nu11071603.

    Article  CAS  PubMed Central  Google Scholar 

  34. Arvanitakis Z, Wang HY, Capuano AW, Khan A, Taïb B, Anokye-Danso F, et al. Brain insulin signaling, alzheimer disease pathology, and cognitive function. Ann Neurol. 2020;88:513–25. https://doi.org/10.1002/ana.25826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, et al. Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation. 2018;15:11 https://doi.org/10.1186/s12974-018-1055-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lewis AR, Singh S, Youssef FF. Cafeteria-diet induced obesity results in impaired cognitive functioning in a rodent model. Heliyon. 2019;5:e01412 https://doi.org/10.1016/j.heliyon.2019.e01412.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Holt LM, Hernandez RD, Pacheco NL, Torres Ceja B, Hossain M, Olsen ML. Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1. Elife. 2019;8:e44667 https://doi.org/10.7554/eLife.44667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cunha C, Brambilla R, Thomas KL A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010; 3. https://doi.org/10.3389/neuro.02.001.2010.

  39. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gómez-Pinilla F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002;112:803–14. https://doi.org/10.1016/S0306-4522(02)00123-9.

    Article  CAS  PubMed  Google Scholar 

  40. Fields RD, Bukalo O. Myelin makes memories. Nat Neurosci. 2020;23:469–70.

    Article  CAS  Google Scholar 

  41. Jabri MA, Sakly M, Marzouki L, Sebai H. Chamomile (Matricaria recutita L.) decoction extract inhibits in vitro intestinal glucose absorption and attenuates high fat diet-induced lipotoxicity and oxidative stress. Biomed Pharmacother. 2017;87:153–9. https://doi.org/10.1016/j.biopha.2016.12.043.

    Article  CAS  PubMed  Google Scholar 

  42. Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem. 2010;114:1581–9. https://doi.org/10.1111/j.1471-4159.2010.06865.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR et al. The Nrf2-ARE pathway: An indicator and modulator of oxidative stress in neurodegeneration. In: Annals of the New York Academy of Sciences. 2008; 61–69. https://doi.org/10.1196/annals.1427.036.

  44. Pepping JK, Freeman LR, Gupta S, Keller JN, Bruce-Keller AJ. NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am J Physiol—Endocrinol Metab. 2013;304:E392–E404. https://doi.org/10.1152/ajpendo.00398.2012.

    Article  CAS  PubMed  Google Scholar 

  45. Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:10–21. https://doi.org/10.1016/j.bbi.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  46. Mi Y, Qi G, Fan R, Qiao Q, Sun Y, Gao Y, et al. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J. 2017;31:4998–5011. https://doi.org/10.1096/fj.201700400RR.

    Article  CAS  PubMed  Google Scholar 

  47. Beilharz JE, Maniam J, Morris MJ. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain Behav Immun. 2014;37:134–41. https://doi.org/10.1016/j.bbi.2013.11.016.

    Article  CAS  PubMed  Google Scholar 

  48. Pipatpiboon N, Pintana H, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. DPP4-inhibitor improves neuronal insulin receptor function, Brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur J Neurosci. 2013;37:839–49. https://doi.org/10.1111/ejn.12088.

    Article  PubMed  Google Scholar 

  49. Jeon BT, Jeong EA, Shin HJ, Lee Y, Lee DH, Kim HJ, et al. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes. 2012;61:1444–54. https://doi.org/10.2337/db11-1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang DH, Heo RW, Yi COK, Kim H, Choi CH, Roh GS. High-fat diet-induced obesity exacerbates kainic acid-induced hippocampal cell death. BMC Neurosci. 2015;16:72 https://doi.org/10.1186/s12868-015-0202-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lizarbe B, Cherix A, Duarte JMN, Cardinaux JR, Gruetter R. High-fat diet consumption alters energy metabolism in the mouse hypothalamus. Int J Obes. 2019;43:1295–304. https://doi.org/10.1038/s41366-018-0224-9.

    Article  CAS  Google Scholar 

  52. López-Valdés HE, Martínez-Coria H. The role of neuroinflammation in age-related dementias. Rev Invest Clin. 2016;68:40–48.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reham M. Wahid.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahid, R.M., Samy, W. & El-sayed, S.F. Cognitive impairment in obese rat model: role of glial cells. Int J Obes 45, 2191–2196 (2021). https://doi.org/10.1038/s41366-021-00880-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00880-9

This article is cited by

Search

Quick links