Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical Research

Normal weight obesity and unaddressed cardiometabolic health risk—a narrative review

A Correction to this article was published on 06 August 2021

This article has been updated

Abstract

Normal weight obesity (NWO) is defined as having a normal body mass index (BMI), but a high body fat mass. There is growing interest in individuals with NWO, which is an underdiagnosed and understudied group, because of their increased risk for cardiometabolic morbidity and mortality. In this review, we summarized the definition, prevalence, etiology, pathophysiology, and cardiovascular outcomes seen in NWO. We have also summarized the available literature on interventions for NWO. There is a wide variation in the body fat percent cutoffs used to diagnose excess body fat. Hence, the prevalence rates of NWO vary between different populations and studies. It is estimated that about 30 million Americans have NWO and the worldwide prevalence ranges from 4.5% to 22%. Genetics, diet, and physical activity are related to NWO. However, etiological factors are not clear. Changes in body composition, inflammation, oxidative stress are present in NWO in comparison to normal weight lean (NWL) who have a normal BMI and normal body fat amount. Furthermore, cardiometabolic changes are observed and some are subclinical. Thus, screening for NWO will enhance the primary prevention of cardiovascular disease. Due to the use of various body fat percent cutoffs and methods to measure body fat, it is challenging to compare between studies. Researchers working in this field should ideally work towards developing standard body fat percent cutoffs for diagnosing NWO. There are many gaps in the literature on NWO unlike for overt obesity and future studies should explore the etiology, molecular mechanisms, and adipose tissue changes of NWO as well as conduct well planned and executed randomized controlled trials testing dietary, physical, and behavioral interventions for NWO in both males and females of different racial and age groups.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Possible etiology, pathophysiological changes, and cardiometabolic health outcomes in normal weight obesity.

Change history

References

  1. Obesity: World Health Organization. https://www.who.int/topics/obesity/en/. Accessed 15 Jun 2020.

  2. Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes. 2010;34:791.

    CAS  Article  Google Scholar 

  3. De Lorenzo A, Soldati L, Sarlo F, Calvani M, Di Lorenzo N, Di Renzo L. New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol. 2016;22:681–703.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Franco LP, Morais CC, Cominetti C. Normal-weight obesity syndrome: diagnosis, prevalence, and clinical implications. Nutr Rev. 2016;74:558–70.

    PubMed  Article  Google Scholar 

  5. Romero-Corral A, Somers VK, Sierra-Johnson J, Korenfeld Y, Boarin S, Korinek J, et al. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J. 2010;31:737–46.

    PubMed  Article  Google Scholar 

  6. Badoud F, Perreault M, Zulyniak MA, Mutch DM. Molecular insights into the role of white adipose tissue in metabolically unhealthy normal weight and metabolically healthy obese individuals. FASEB J. 2015;29:748–58.

    CAS  PubMed  Article  Google Scholar 

  7. Gujral UP, Vittinghoff E, Mongraw-Chaffin M, Vaidya D, Kandula NR, Allison M, et al. Cardiometabolic abnormalities among normal-weight persons from five racial/ethnic groups in the United States: a cross-sectional analysis of two cohort studies. Ann Intern Med. 2017;166:628–36.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Bosomworth NJ. Normal-weight central obesity: unique hazard of the toxic waist. Can Fam Phys. 2019;65:399–408.

    Google Scholar 

  9. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Aging. 2019;48:16–31.

    Article  Google Scholar 

  10. Marques-Vidal P, Chiolero A, Paccaud F. Large differences in the prevalence of normal weight obesity using various cut-offs for excess body fat. Eur e-J Clin Nutr Metab. 2008;3:e159–e62.

    Article  Google Scholar 

  11. Batsis JA, Sahakyan KR, Rodriguez-Escudero JP, Bartels SJ, Somers VK, Lopez-Jimenez F. Normal weight obesity and mortality in United States subjects >/=60 years of age (from the Third National Health and Nutrition Examination Survey). Am J Cardiol. 2013;112:1592–8.

    PubMed  Article  Google Scholar 

  12. Tayefi M, Tayefi B, Darroudi S, Mohammadi-Bajgiran M, Mouhebati M, Heidari-Bakavoli A, et al. There is an association between body fat percentage and metabolic abnormality in normal weight subjects: Iranian large population. Transl Metab Syndr Res. 2019;2:11–6.

    Google Scholar 

  13. Čuta M, Bařicová K, Černý D, Sochor O. Normal-weight obesity frequency in the Central European urban adult female population of Brno, Czech Republic. Cent Eur J Public Health. 2019;27:131–4.

    PubMed  Article  Google Scholar 

  14. Dickey RA, Bartuska D, Bray GW, Callaway CW, Davidson ET, Feld S, et al. AACE/ACE Position statement on the prevention, diagnosis, and treatment of obesity (1998 revision). Endocr Pract. 1998;4:297–350.

    Google Scholar 

  15. American College of Sports Medicine. Health-related physical fitness testing and interpretation. In: Riebe D, Liguori G, Ehrman JK, Magal M, editors. ACSM’s Guidelines for exercise testing and prescription 10th edition: Wolters Kluwer; 2017. p. 77–80.

  16. Ho-Pham LT, Campbell LV, Nguyen TV. More on body fat cutoff points. Mayo Clinic Proc. 2011;86:584.

    Article  Google Scholar 

  17. Berg C, Strandhagen E, Mehlig K, Subramoney S, Lissner L, Björck L. Normal weight adiposity in a Swedish population: how well is cardiovascular risk associated with excess body fat captured by BMI? Obes Sci Pract. 2015;1:50–8.

    PubMed  PubMed Central  Article  Google Scholar 

  18. Mannisto S, Harald K, Kontto J, Lahti-Koski M, Kaartinen NE, Saarni SE, et al. Dietary and lifestyle characteristics associated with normal-weight obesity: the National FINRISK 2007 Study. Br J Nutr. 2014;111:887–94.

    PubMed  Article  CAS  Google Scholar 

  19. Ohlsson B, Manjer J. Sociodemographic and lifestyle factors in relation to overweight defined by BMI and “normal-weight obesity”. J Obes. 2020;2020. https://doi.org/10.1155/2020/2070297.

  20. Marques-Vidal P, Pecoud A, Hayoz D, Paccaud F, Mooser V, Waeber G, et al. Normal weight obesity: relationship with lipids, glycaemic status, liver enzymes and inflammation. Nutr Metab Cardiovasc Dis. 2010;20:669–75.

    CAS  PubMed  Article  Google Scholar 

  21. Batsis JA, Sahakyan KR, Rodriguez-Escudero JP, Bartels SJ, Lopez-Jimenez F. Normal weight obesity and functional outcomes in older adults. Eur J Intern Med. 2014;25:517–22.

    PubMed  Article  Google Scholar 

  22. García-Hermoso A, Agostinis-Sobrinho C, Camargo-Villalba GE, González-Jiménez NM, Izquierdo M, Correa-Bautista JE, et al. Normal-weight obesity is associated with poorer cardiometabolic profile and lower physical fitness levels in children and adolescents. Nutrients. 2020;12:4.

    Article  CAS  Google Scholar 

  23. Madeira FB, Silva AA, Veloso HF, Goldani MZ, Kac G, Cardoso VC, et al. Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS ONE. 2013;8:e60673.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Moy FM, Loh DA. Cardiometabolic risks profile of normal weight obese and multi-ethnic women in a developing country. Maturitas. 2015;81:389–93.

    PubMed  Article  Google Scholar 

  25. Martinez KE, Tucker LA, Bailey BW, LeCheminant JD. Expanded normal weight obesity and insulin resistance in us adults of the national health and nutrition examination survey. J Diab Res. 2017;2017:9502643.

    Google Scholar 

  26. He H, Pan L, Liu F, Ma J, Hu Z, Wang L, et al. Expanded normal weight obesity and blood pressure in Chinese adults: a community-based crosss-ectional study. Austral J Prim Health. 2019;25:256–263.

    Article  Google Scholar 

  27. Kim MK, Han K, Kwon HS, Song KH, Yim HW, Lee WC, et al. Normal weight obesity in Korean adults. Clinical Endocrinology. 2014;80:214–20.

    PubMed  Article  Google Scholar 

  28. Kosmala W, Jedrzejuk D, Derzhko R, Przewlocka-Kosmala M, Mysiak A, Bednarek-Tupikowska G. Left ventricular function impairment in patients with normal-weight obesity: contribution of abdominal fat deposition, profibrotic state, reduced insulin sensitivity, and proinflammatory activation. Circ Cardiovasc Imaging. 2012;5:349–356.

    PubMed  Article  Google Scholar 

  29. Kang S, Kyung C, Park JS, Kim S, Lee S-P, Kim MK, et al. Subclinical vascular inflammation in subjects with normal weight obesity and its association with body fat: an 18F-FDG-PET/CT study. Cardiovasc Diabetol. 2014;13:70.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Di Renzo L, Galvano F, Orlandi C, Bianchi A, Di Giacomo C, La, et al. Oxidative stress in normal-weight obese syndrome. Obesity. 2010;18:2125–30.

    PubMed  Article  CAS  Google Scholar 

  31. De Lorenzo A, Martinoli R, Vaia F, Di, Renzo L. Normal weight obese (NWO) women: an evaluation of a candidate new syndrome. Nutr Metab Cardiovasc Dis. 2006;16:513–23.

    PubMed  Article  CAS  Google Scholar 

  32. De Lorenzo A, Del Gobbo V, Premrov MG, Bigioni M, Galvano F, Di Renzo L. Normal-weight obese syndrome: early inflammation? Am J Clin Nutr. 2007;85:40–5.

    PubMed  Article  Google Scholar 

  33. Di Renzo L, Bigioni M, Bottini FG, Del Gobbo V, Premrov MG, Cianci R, et al. Normal weight obese syndrome: role of single nucleotide polymorphism of IL-1 5Ralpha and MTHFR 677C–>T genes in the relationship between body composition and resting metabolic rate. Eur Rev Med Pharmacol Sci. 2006;10:235–45.

    PubMed  Google Scholar 

  34. Di Renzo L, Sarlo F, Petramala L, Iacopino L, Monteleone G, Colica C, et al. Association between -308 G/A TNF-alpha polymorphism and appendicular skeletal muscle mass index as a marker of sarcopenia in normal weight obese syndrome. Dis Mark. 2013;35:615–23.

    Article  CAS  Google Scholar 

  35. Karkhaneh M, Qorbani M, Mohajeri-Tehrani MR, Hoseini S. Association of serum complement C3 with metabolic syndrome components in normal weight obese women. J Diab Metab Disord. 2017;16:49.

    Article  CAS  Google Scholar 

  36. De Lorenzo A, Costacurta M, Merra G, Gualtieri P, Cioccoloni G, Marchetti M, et al. Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J Transl Med. 2017;15:135.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Ferreira FC, Bertucci DR, Barbosa MR, Nunes JE, Botero JP, Rodrigues MF, et al. Circuit resistance training in women with normal weight obesity syndrome: body composition, cardiometabolic and echocardiographic parameters, and cardiovascular and skeletal muscle fitness. J Sports Med Phys Fitness. 2017;57:1033–44.

    CAS  PubMed  Article  Google Scholar 

  38. Di Renzo L, Rizzo M, Sarlo F, Colica C, Iacopino L, Domino E, et al. Effects of dark chocolate in a population of normal weight obese women: a pilot study. Eur Rev Med Pharmacol Sci. 2013;17:2257–66.

    PubMed  Google Scholar 

  39. Bellissimo MP, Cai Q, Ziegler TR, Liu KH, Tran PH, Vos MB, et al. Plasma high-resolution metabolomics differentiates adults with normal weight. Obesity from lean individuals. Obesity. 2019;27:1729–37.

    CAS  PubMed  Article  Google Scholar 

  40. Wiklund P, Törmäkangas T, Shi Y, Wu N, Vainionpää A, Alen M. et al. Normal‐weight obesity and cardiometabolic risk: a 7‐year longitudinal study in girls from prepuberty to early adulthood. Obesity. 2017;25:1077–82.

    CAS  PubMed  Article  Google Scholar 

  41. Musalek M, Parizkova J, Godina E, Bondareva E, Kokstejn J, Jirovec J, et al. Poor skeletal robustness on lower extremities and weak lean mass development on upper arm and calf: normal weight obesity in middle-school-aged children (9 to 12). Front Pediatr. 2018;6:371.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Cheng S, Wiklund P. The effects of muscle mass and muscle quality on cardio-metabolic risk in peripubertal girls: a longitudinal study from childhood to early adulthood. Int J Obes. 2018;42:648–54.

    CAS  Article  Google Scholar 

  43. Musalek M, Kokstejn J, Papez P, Scheffler C, Mumm R, Czernitzki AF, et al. Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years. Anthropol Anz. 2017;74:203–12.

    PubMed  Google Scholar 

  44. Batsis JA, Mackenzie TA, Lopez-Jimenez F, Bartels SJ. Normal-weight obesity and disability in older adults: data from the national health and nutrition examination study 1999–2004. J Am Geriatr Soc. 2016;64:1367–8.

    PubMed  Article  Google Scholar 

  45. Correa-Rodríguez M, González-Ruíz K, Rincón-Pabón D, Izquierdo M, García-Hermoso A, Agostinis-Sobrinho C, et al. Normal-weight obesity is associated with increased cardiometabolic risk in young adults. Nutrients. 2020;12:1106.

    PubMed Central  Article  CAS  Google Scholar 

  46. Jia A, Xu S, Xing Y, Zhang W, Yu X, Zhao Y, et al. Prevalence and cardiometabolic risks of normal weight obesity in Chinese population: a nationwide study. Nutr Metab Cardiovasc Dis. 2018;28:1045–53.

    CAS  PubMed  Article  Google Scholar 

  47. Olafsdottir AS, Torfadottir JE, Arngrimsson SA. Health behavior and metabolic risk factors associated with normal weight obesity in adolescents. PLoS ONE. 2016;11:e0161451.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Salsberry PJ, Reagan PB. Dynamics of early childhood overweight. Pediatrics. 2005;116:1329–38.

    PubMed  Article  Google Scholar 

  49. Wahi G, Anand SS. Race/ethnicity, obesity, and related cardio-metabolic risk factors: a life-course perspective. Curr Cardiovasc Risk Rep. 2013;7:326–35.

    PubMed  PubMed Central  Article  Google Scholar 

  50. Ramsaran C, Maharaj RG. Normal weight obesity among young adults in Trinidad and Tobago: prevalence and associated factors. Int J Adolesc Med Health. 2017;29.

  51. Amani R, Parohan M, Jomehzadeh N, Haghighizadeh MH. Dietary and biochemical characteristics associated with normal-weight obesity. Int J Vitamin Nutr Res. 2019;89:331–6.

    CAS  Article  Google Scholar 

  52. Yaguchi-Tanaka Y, Kawagoshi Y, Sasaki S, Fukao A. Cross-sectional study of possible association between rapid eating and high body fat rates among female Japanese college students. J Nutr Sci Vitaminol. 2013;59:243–9.

    CAS  PubMed  Article  Google Scholar 

  53. Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sørensen TIA, et al. Energy balance measurement: when something is not better than nothing. Int J Obes. 2015;39:1109–13.

    CAS  Article  Google Scholar 

  54. Zhang M, Schumann M, Huang T, Tormakangas T, Cheng S. Normal weight obesity and physical fitness in Chinese university students: an overlooked association. BMC Public Health. 2018;18:1334.

    PubMed  PubMed Central  Article  Google Scholar 

  55. Ortega Francisco B, Lavie Carl J, Blair Steven N. Obesity and cardiovascular disease. Circ Res. 2016;118:1752–70.

    CAS  PubMed  Article  Google Scholar 

  56. Di Renzo L, Bigioni M, Del Gobbo V, Premrov MG, Barbini U, Di Lorenzo N, et al. Interleukin-1 (IL-1) receptor antagonist gene polymorphism in normal weight obese syndrome: relationship to body composition and IL-1 alpha and beta plasma levels. Pharmacol Res. 2007;55:131–8.

    PubMed  Article  CAS  Google Scholar 

  57. Di Renzo L, Gloria-Bottini F, Saccucci P, Bigioni M, Abenavoli L, Gasbarrini G, et al. Role of interleukin-15 receptor alpha polymorphisms in normal weight obese syndrome. Int J Immunopathol Pharmacol. 2009;22:105–13.

    PubMed  Article  Google Scholar 

  58. Di Renzo L, Bertoli A, Bigioni M, Del Gobbo V, Premrov MG, Calabrese V, et al. Body composition and -174G/C interleukin-6 promoter gene polymorphism: association with progression of insulin resistance in normal weight obese syndrome. Curr Pharm Des. 2008;14:2699–706.

    PubMed  Article  Google Scholar 

  59. Franco LP, Goncalves Zardini Silveira A, Sobral de Assis Vasconcelos Lima R, Horst MA, Cominetti C. APOE genotype associates with food consumption and body composition to predict dyslipidaemia in Brazilian adults with normal-weight obesity syndrome. Clin Nutr. 2018;37:1722–7.

    CAS  PubMed  Article  Google Scholar 

  60. Ballak DB, Stienstra R, Tack CJ, Dinarello CA, van Diepen JA. IL-1 family members in the pathogenesis and treatment of metabolic disease: focus on adipose tissue inflammation and insulin resistance. Cytokine. 2015;75:280–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Lee B-C, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta. 2014;1842:446–62.

    CAS  PubMed  Article  Google Scholar 

  62. Di Renzo L, Gratteri S, Sarlo F, Cabibbo A, Colica C, De, et al. Individually tailored screening of susceptibility to sarcopenia using p53 codon 72 polymorphism, phenotypes, and conventional risk factors. Dis Mark. 2014;2014:743634.

    Google Scholar 

  63. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. Kim S, Kyung C, Park JS, Lee SP, Kim HK, Ahn CW, et al. Normal-weight obesity is associated with increased risk of subclinical atherosclerosis. Cardiovasc Diabetol. 2015;14:58.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Jean N, Somers VK, Sochor O, Medina-Inojosa J, Llano EM, Lopez-Jimenez F. Normal-weight obesity: implications for cardiovascular health. Curr Atheroscler Rep. 2014;16:464.

    PubMed  Article  Google Scholar 

  66. Chen G-C, Arthur R, Iyengar NM, Kamensky V, Xue X, Wassertheil-Smoller S, et al. Association between regional body fat and cardiovascular disease risk among postmenopausal women with normal body mass index. Eur Heart J. 2019;40:2849–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Investig. 2018;48:e12997.

    Article  CAS  Google Scholar 

  68. Thomas EL, Frost G, Taylor-Robinson SD, Bell JD. Excess body fat in obese and normal-weight subjects. Nutr Res Rev. 2012;25:150–61.

    PubMed  Article  Google Scholar 

  69. Liu Z, Tang Q, Wen J, Tang Y, Huang D, Huang Y, et al. Elevated serum complement factors 3 and 4 are strong inflammatory markers of the metabolic syndrome development: a longitudinal cohort study. Sci Rep. 2016;6:18713.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Karkhaneh M, Qorbani M, Ataie-Jafari A, Mohajeri-Tehrani MR, Asayesh H, Hosseini S. Association of thyroid hormones with resting energy expenditure and complement C3 in normal weight high body fat women. Thyroid Res. 2019;12:9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. Badimon L, Peña E, Arderiu G, Padró T, Slevin M, Vilahur G, et al. C-reactive protein in atherothrombosis and angiogenesis. Front Immunol. 2018;9:430-.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Shea JL, King MT, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovasc Dis. 2012;22:741–7.

    CAS  PubMed  Article  Google Scholar 

  73. Conde J, Scotece M, Gómez R, López V, Gómez-Reino JJ, Lago F, et al. Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. BioFactors. 2011;37:413–20.

    CAS  PubMed  Article  Google Scholar 

  74. Kishimoto N, Okita K, Takada S, Sakuma I, Saijo Y, Chiba H, et al. Lipoprotein metabolism, insulin resistance, and adipocytokine levels in Japanese female adolescents with a normal body mass index and high body fat mass. Circ J. 2009;73:534–9.

    CAS  PubMed  Article  Google Scholar 

  75. Miazgowski T, Safranow K, Krzyzanowska-Swiniarska B, Iskierska K, Widecka K. Adiponectin, visfatin and regional fat depots in normal weight obese premenopausal women. Eur J Clin Investig. 2013;43:783–90.

    CAS  Article  Google Scholar 

  76. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16:378–400.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid Med Cell Longev. 2019;2019:8267234.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. Mehrabian S, Taheri E, Karkhaneh M, Qorbani M, Hosseini S. Association of circulating irisin levels with normal weight obesity, glycemic and lipid profile. J Diabet Metab Disord. 2015;15:17.

    Article  CAS  Google Scholar 

  79. Perakakis N, Triantafyllou GA, Fernández-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13:324–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Jia J, Yu F, Wei W-P, Yang P, Zhang R, Sheng Y, et al. Relationship between circulating irisin levels and overweight/obesity: a meta-analysis. World J Clin Cases. 2019;7:1444–55.

    PubMed  PubMed Central  Article  Google Scholar 

  81. Di Renzo L, Del Gobbo V, Bigioni M, Premrov MG, Cianci R, De Lorenzo A. Body composition analyses in normal weight obese women. Eur Rev Med Pharmacol Sci. 2006;10:191–6.

    PubMed  Google Scholar 

  82. Wannamethee SG, Atkins JL. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc. 2015;74:405–12.

    PubMed  Article  Google Scholar 

  83. Yasuda T. Anthropometric, body composition, and somatotype characteristics of Japanese young women: Implications for normal-weight obesity syndrome and sarcopenia diagnosis criteria. Interv Med Appl Sci. 2019;11:117–21.

    PubMed  PubMed Central  Google Scholar 

  84. Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculosk Neuronal Interact. 2017;17:114–39.

    CAS  Google Scholar 

  85. Kelly OJ, Gilman JC, Boschiero D, Ilich JZ. Osteosarcopenic obesity: current knowledge, revised identification criteria and treatment principles. Nutrients. 2019;11:747.

    CAS  PubMed Central  Article  Google Scholar 

  86. Paredes S, Fonseca L, Ribeiro L, Ramos H, Oliveira JC, Palma I. Novel and traditional lipid profiles in metabolic syndrome reveal a high atherogenicity. Sci Rep. 2019;9:11792.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. Malandrino N, Capristo E, Taveira TH, Mingrone G, Wu W-C. Cognitive function in individuals with normal weight obesity: results from the third national health and nutrition examination survey (NHANES III). J Alzheimer’s Dis. 2018;65:125–35.

    Article  Google Scholar 

  88. Yates KF, Sweat V, Yau PL, Turchiano MM, Convit A. Impact of metabolic syndrome on cognition and brain. Arterioscl Thromb Vasc Biol. 2012;32:2060–7.

    CAS  PubMed  Article  Google Scholar 

  89. Pashkow FJ. Oxidative stress and inflammation in heart disease: do antioxidants have a role in treatment and/or prevention. Int J Inflamm. 2011;2011:514623.

    Article  CAS  Google Scholar 

  90. Iyengar NM, Arthur R, Manson JE, Chlebowski RT, Kroenke CH, Peterson L, et al. Association of body fat and risk of breast cancer in postmenopausal women with normal body mass index: a secondary analysis of a randomized clinical trial and observational study. JAMA Oncol. 2019;5:155–63.

    PubMed  Article  Google Scholar 

  91. Micucci C, Valli D, Matacchione G, Catalano A. Current perspectives between metabolic syndrome and cancer. Oncotarget. 2016;7:38959–72.

    PubMed  PubMed Central  Article  Google Scholar 

  92. Chooi YC, Ding C, Chan Z, Choo J, Sadananthan SA, Michael N, et al. Moderate weight loss improves body composition and metabolic function in metabolically unhealthy lean subjects. Obesity. 2018;26:1000–7.

    CAS  PubMed  Article  Google Scholar 

  93. Jung W-S, Hwang H, Kim J, Park H-Y, Lim K. Comparison of excess post-exercise oxygen consumption of different exercises in normal weight obesity women. J Exerc Nutr Biochem. 2019;23:22–7.

    Article  Google Scholar 

  94. Lavie CJ, Laddu D, Arena R, Ortega FB, Alpert MA, Kushner RF. Healthy weight and obesity prevention: JACC health promotion series. J Am Coll Cardiol. 2018;72:1506–31.

    PubMed  Article  Google Scholar 

  95. Di Renzo L, Tyndall E, Gualtieri P, Carboni C, Valente R, Ciani AS, et al. Association of body composition and eating behavior in the normal weight obese syndrome. Eating Weight Disord. 2016;21:99–106.

    Article  Google Scholar 

  96. Maffetone PB, Rivera-Dominguez I, Laursen PB. Overfat and underfat: new terms and definitions long overdue. Front Public Health. 2016;4:279.

    PubMed  Google Scholar 

  97. Gómez-Ambrosi J, Silva C, Galofré JC, Escalada J, Santos S, Millán D, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2011;36:286.

    Article  CAS  Google Scholar 

  98. Ceniccola GD, Castro MG, Piovacari SMF, Horie LM, Corrêa FG, Barrere APN, et al. Current technologies in body composition assessment: advantages and disadvantages. Nutrition. 2019;62:25–31.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by startup funds from Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeeja Niranjalie Wijayatunga.

Ethics declarations

Conflict of interest

Dr. Nadeeja Wijayatunga declares no competing financial interests. Co-author, Dr. Emily Dhurandhar reports salary from Obthera, Inc, outside the submitted work for providing nutrition counseling to clients and developing nutrition digital therapeutics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wijayatunga, N.N., Dhurandhar, E.J. Normal weight obesity and unaddressed cardiometabolic health risk—a narrative review. Int J Obes 45, 2141–2155 (2021). https://doi.org/10.1038/s41366-021-00858-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00858-7

Further reading

Search

Quick links