Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epidemiology and Population Health

The bidirectional associations between leisure time physical activity change and body mass index gain. The Tromsø Study 1974–2016

Abstract

Objectives

To examine whether leisure time physical activity changes predict subsequent body mass index (BMI) changes, and conversely, whether BMI changes predict subsequent leisure time physical activity changes.

Methods

This prospective cohort study included adults attending ≥3 consecutive Tromsø Study surveys (time: T1, T2, T3) during 1974–2016 (n = 10779). If participants attended >3 surveys, we used the three most recent surveys. We computed physical activity change (assessed by the Saltin-Grimby Physical Activity Level Scale) from T1 to T2, categorized as Persistently Inactive (n = 992), Persistently Active (n = 7314), Active to Inactive (n = 1167) and Inactive to Active (n = 1306). We computed BMI change from T2 to T3, which regressed on preceding physical activity changes using analyses of covariance. The reverse association (BMI change from T1 to T2 and physical activity change from T2 to T3; n = 4385) was assessed using multinomial regression.

Results

Average BMI increase was 0.86 kg/m2 (95% CI: 0.82–0.90) from T2 to T3. With adjustment for sex, birth year, education, smoking and BMI at T2, there was no association between physical activity change from T1 to T2 and BMI change from T2 to T3 (Persistently Inactive: 0.89 kg/m2 (95% CI: 0.77–1.00), Persistently Active: 0.85 kg/m2 (95% CI: 0.81–0.89), Active to Inactive: 0.90 kg/m2 (95% CI: 0.79–1.00), Inactive to Active 0.85 kg/m2 (95% CI: 0.75–0.95), p = 0.84). Conversely, increasing BMI was associated with Persistently Inactive (odds ratio (OR): 1.17, 95% CI: 1.08–1.27, p < 0.001) and changing from Active to Inactive (OR: 1.16, 95% CI: 1.07–1.25, p < 0.001) compared with being Persistently Active.

Conclusions

We found no association between leisure time physical activity changes and subsequent BMI changes, whereas BMI change predicted subsequent physical activity change. These findings indicate that BMI change predicts subsequent physical activity change at population level and not vice versa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The study design for assessing the association between physical activity changes and future BMI changes, and conversely for assessing BMI changes and physical activity changes.
Fig. 2
Fig. 3

Data availability

The data that support the findings of this study are available from the Tromsø Study but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. The data are however available from the Tromsø Study upon application to the Data and Publication Committee for the Tromsø Study: tromsous@uit.no.

References

  1. 1.

    NCD-RisC NRFC. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.

    Article  Google Scholar 

  2. 2.

    Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126:126–32.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Jakicic JM, Powell KE, Campbell WW, Dipietro L, Pate RR, Pescatello LS, et al. Physical activity and the prevention of weight gain in adults: a systematic review. Med Sci Sports Exerc. 2019;51:1262–9.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Jones PR, Ekelund U. Physical activity in the prevention of weight gain: the impact of measurement and interpretation of associations. Curr Obes Rep. 2019;8:66–76.

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Basterra-Gortari FJ, Bes-Rastrollo M, Pardo-Fernández M, Forga L, Martinez JA, Martínez-González MA. Changes in weight and physical activity over two years in Spanish alumni. Med Sci Sports Exerc. 2009;41:516–22.

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Blanck HM, McCullough ML, Patel AV, Gillespie C, Calle EE, Cokkinides VE, et al. Sedentary behavior, recreational physical activity, and 7-year weight gain among postmenopausal U.S. women. Obesity (Silver Spring). 2007;15:1578–88.

    Article  Google Scholar 

  8. 8.

    Brown WJ, Kabir E, Clark BK, Gomersall SR. Maintaining a healthy BMI: data from a 16-year study of young Australian women. Am J Prev Med. 2016;51:e165–e78.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Hillemeier MM, Weisman CS, Chuang C, Downs DS, McCall-Hosenfeld J, Camacho F. Transition to overweight or obesity among women of reproductive age. J Womens Health. 2011;20:703–10.

    Article  Google Scholar 

  10. 10.

    Kaikkonen JE, Mikkilä V, Juonala M, Keltikangas-Järvinen L, Hintsanen M, Pulkki-Råback L, et al. Factors associated with six-year weight change in young and middle-aged adults in the Young Finns Study. Scand J Clin Lab Invest. 2015;75:133–44.

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Rosenberg L, Kipping-Ruane KL, Boggs DA, Palmer JR. Physical activity and the incidence of obesity in young African-American women. Am J Prev Med. 2013;45:262–8.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Sjösten N, Kivimäki M, Singh-Manoux A, Ferrie JE, Goldberg M, Zins M, et al. Change in physical activity and weight in relation to retirement: the French GAZEL Cohort Study. BMJ Open. 2012;2:e000522.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Williams PT, Wood PD. The effects of changing exercise levels on weight and age-related weight gain. Int J Obes. 2006;30:543–51.

    CAS  Article  Google Scholar 

  14. 14.

    Williams PT, Thompson PD. Dose-dependent effects of training and detraining on weight in 6406 runners during 7.4 years. Obesity. 2006;14:1975–84.

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Gebel K, Ding D, Bauman AE. Volume and intensity of physical activity in a large population-based cohort of middle-aged and older Australians: prospective relationships with weight gain, and physical function. Prev Med. 2014;60:131–3.

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Gradidge PJ, Norris SA, Micklesfield LK, Crowther NJ. The role of lifestyle and psycho-social factors in predicting changes in body composition in Black South African women. PLoS One. 2015;10:e0132914.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    MacInnis RJ, Hodge AM, Dixon HG, Peeters A, Johnson LE, English DR, et al. Predictors of increased body weight and waist circumference for middle-aged adults. Public Health Nutr. 2014;17:1087–97.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Sims ST, Larson JC, Lamonte MJ, Michael YL, Martin LW, Johnson KC, et al. Physical activity and body mass: changes in younger versus older postmenopausal women. Med Sci Sports Exerc. 2012;44:89–97.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Chiriboga DE, Ma Y, Li W, Olendzki BC, Pagoto SL, Merriam PA, et al. Gender differences in predictors of body weight and body weight change in healthy adults. Obesity. 2008;16:137–45.

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Barone Gibbs B, Pettee Gabriel K, Carnethon MR, Gary-Webb T, Jakicic JM, Rana JS, et al. Sedentary time, physical activity, and adiposity: cross-sectional and longitudinal associations in CARDIA. Am J Prev Med. 2017;53:764–71.

    PubMed  Article  Google Scholar 

  21. 21.

    Dugas LR, Kliethermes S, Plange-Rhule J, Tong L, Bovet P, Forrester TE, et al. Accelerometer-measured physical activity is not associated with two-year weight change in African-origin adults from five diverse populations. PeerJ. 2017;5:e2902.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Ekelund U, Kolle E, Steene-Johannessen J, Dalene KE, Nilsen AKO, Anderssen SA, et al. Objectively measured sedentary time and physical activity and associations with body weight gain: does body weight determine a decline in moderate and vigorous intensity physical activity? Int J Obes. 2017;41:1769–74.

    CAS  Article  Google Scholar 

  23. 23.

    Botoseneanu A, Liang J. The effect of stability and change in health behaviors on trajectories of body mass index in older Americans: a 14-year longitudinal study. J Gerontol A Biol Sci Med Sci. 2012;67:1075–84.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    de Munter JS, Tynelius P, Magnusson C, Rasmussen F. Longitudinal analysis of lifestyle habits in relation to body mass index, onset of overweight and obesity: results from a large population-based cohort in Sweden. Scand J Public Health. 2015;43:236–45.

    PubMed  Article  Google Scholar 

  25. 25.

    Drenowatz C, Gribben N, Wirth MD, Hand GA, Shook RP, Burgess S, et al. The association of physical activity during weekdays and weekend with body composition in young adults. J Obes. 2016;2016:8236439.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Hamer M, Brunner EJ, Bell J, Batty GD, Shipley M, Akbaraly T, et al. Physical activity patterns over 10 years in relation to body mass index and waist circumference: the Whitehall II cohort study. Obesity. 2013;21:E755–61.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Hankinson AL, Daviglus ML, Bouchard C, Carnethon M, Lewis CE, Schreiner PJ, et al. Maintaining a high physical activity level over 20 years and weight gain. JAMA. 2010;304:2603–10.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Lee IM, Djoussé L, Sesso HD, Wang L, Buring JE. Physical activity and weight gain prevention. JAMA. 2010;303:1173–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Moholdt T, Wisløff U, Lydersen S, Nauman J. Current physical activity guidelines for health are insufficient to mitigate long-term weight gain: more data in the fitness versus fatness debate (The HUNT study, Norway). Br J Sports Med. 2014;48:1489–96.

    PubMed  Article  Google Scholar 

  30. 30.

    Parsons TJ, Manor O, Power C. Physical activity and change in body mass index from adolescence to mid-adulthood in the 1958 British cohort. Int J Epidemiol. 2006;35:197–204.

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Smith KJ, Gall SL, McNaughton SA, Cleland VJ, Otahal P, Dwyer T, et al. Lifestyle behaviours associated with 5-year weight gain in a prospective cohort of Australian adults aged 26-36 years at baseline. BMC Public Health. 2017;17:54.

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Kim Y, Lee JM, Kim J, Dhurandhar E, Soliman G, Wehbi NK, et al. Longitudinal associations between body mass index, physical activity, and healthy dietary behaviors in adults: a parallel latent growth curve modeling approach. PLoS ONE. 2017;12:e0173986.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Su C, Jia XF, Wang ZH, Wang HJ, Ouyang YF, Zhang B. Longitudinal association of leisure time physical activity and sedentary behaviors with body weight among Chinese adults from China Health and Nutrition Survey 2004-2011. Eur J Clin Nutr. 2017;71:383–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Brien SE, Katzmarzyk PT, Craig CL, Gauvin L. Physical activity, cardiorespiratory fitness and body mass index as predictors of substantial weight gain and obesity: the Canadian physical activity longitudinal study. Can J Public Health. 2007;98:121–4.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Drenowatz C, Hill JO, Peters JC, Soriano-Maldonado A, Blair SN. The association of change in physical activity and body weight in the regulation of total energy expenditure. Eur J Clin Nutr. 2017;71:377–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    French SA, Mitchell NR, Hannan PJ. Decrease in television viewing predicts lower body mass index at 1-year follow-up in adolescents, but not adults. J Nutr Educ Behav. 2012;44:415–22.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Mortensen LH, Siegler IC, Barefoot JC, Grønbaek M, Sørensen TI. Prospective associations between sedentary lifestyle and BMI in midlife. Obesity. 2006;14:1462–71.

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Richmond RC, Davey Smith G, Ness AR, den Hoed M, McMahon G, Timpson NJ. Assessing causality in the association between child adiposity and physical activity levels: a Mendelian randomization analysis. PLoS Med. 2014;11:e1001618.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Golubic R, Ekelund U, Wijndaele K, Luben R, Khaw KT, Wareham NJ, et al. Rate of weight gain predicts change in physical activity levels: a longitudinal analysis of the EPIC-Norfolk cohort. Int J Obes. 2013;37:404–9.

    CAS  Article  Google Scholar 

  40. 40.

    Sagelv EH, Ekelund U, Hopstock LA, Aars NA, Fimland MS, Jacobsen BK, et al. Do declines in occupational physical activity contribute to population gains in body mass index? Tromsø Study 1974–2016. Occup Environ Med. 2021;78:203–10.

    Article  Google Scholar 

  41. 41.

    Morseth B, Hopstock LA. Time trends in physical activity in the Tromsø study: an update. PLoS ONE. 2020;15:e0231581.

  42. 42.

    Church TS, Thomas DM, Tudor-Locke C, Katzmarzyk PT, Earnest CP, Rodarte RQ, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One. 2011;6:e19657.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Jacobsen BK, Eggen AE, Mathiesen EB, Wilsgaard T, Njølstad I. Cohort profile: the Tromsø Study. Int J Epidemiol. 2012;41:961–7.

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Saltin B, Grimby G. Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation. 1968;38:1104–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Grimby G, Börjesson M, Jonsdottir IH, Schnohr P, Thelle DS, Saltin B. The “Saltin-Grimby Physical Activity Level Scale” and its application to health research. Scand J Med Sci Sports. 2015;25:119–25. Suppl 4

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Shibata AI, Oka K, Sugiyama T, Salmon JO, Dunstan DW, Owen N. Physical activity, television viewing time, and 12-year changes in waist circumference. Med Sci Sports Exerc. 2016;48:633–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Ekelund U, Åman J, Yngve A, Renman C, Westerterp K, Sjöström M. Physical activity but not energy expenditure is reduced in obese adolescents: a case-control study. Am J Clin Nutr. 2002;76:935–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Levine JA, McCrady SK, Lanningham-Foster LM, Kane PH, Foster RC, Manohar CU. The role of free-living daily walking in human weight gain and obesity. Diabetes. 2008;57:548–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299:853–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Swinburn B, Sacks G, Ravussin E. Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am J Clin Nutr. 2009;90:1453–6.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Dave D, Doytch N, Kelly IR. Nutrient intake: a cross-national analysis of trends and economic correlates. Soc Sci Med. 2016;158:158–67.

    PubMed  Article  Google Scholar 

  52. 52.

    Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sport Med. 2020;54:1451–62.

    Article  Google Scholar 

  53. 53.

    Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;;6:e1077–e86.

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14.

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Vandevijvere S, Chow CC, Hall KD, Umali E, Swinburn BA. Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bull World Health Organ. 2015;93:446–56.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32:541–56.

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Bagnall AM, Radley D, Jones R, Gately P, Nobles J, Van Dijk M, et al. Whole systems approaches to obesity and other complex public health challenges: a systematic review. BMC Public Health. 2019;19:8.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Lee BY, Bartsch SM, Mui Y, Haidari LA, Spiker ML, Gittelsohn J. A systems approach to obesity. Nutr Rev. 2017;75 Suppl 1:94–106.

  59. 59.

    Shephard R, Vuillemin A. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37:197–206.

  60. 60.

    Aalen OO, Røysland K, Gran JM, Ledergerber B. Causality, mediation and time: a dynamic viewpoint. J R Stat Soc. 2012;175:831–61.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Professor Bjarne Koster Jacobsen for valuable input on the study´s result and for revising working manuscript drafts.

Funding

The work of EHS is funded by Population Studies in the High North (Befolkningsundersøkelser i Nord: BiN). The remaining authors are funded by their respective positions/tenures. The funders had no role in the implementation and design of the study or in writing the manuscript.

Author information

Affiliations

Authors

Contributions

EHS, BM, UE, LAH designed the study, EHS carried out data analysis, OL and TW provided statistical expertise, all authors interpreted the study results, EHS drafted the manuscript, and all authors contributed with manuscript revisions and approved the final version of the manuscript.

Corresponding author

Correspondence to Edvard H. Sagelv.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

All participants from Tromsø 4–7 provided written informed consent and the present study was approved by the Regional Ethics Committee for Medical Research (ref. 2016/758410).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sagelv, E.H., Ekelund, U., Hopstock, L.A. et al. The bidirectional associations between leisure time physical activity change and body mass index gain. The Tromsø Study 1974–2016. Int J Obes 45, 1830–1843 (2021). https://doi.org/10.1038/s41366-021-00853-y

Download citation

Search

Quick links