Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

GHS-R suppression in adipose tissues protects against obesity and insulin resistance by regulating adipose angiogenesis and fibrosis

Abstract

Background/Objectives

Ghrelin is an orexigenic hormone that increases food intake, adiposity, and insulin resistance through its receptor Growth Hormone Secretagogue Receptor (GHS-R). We previously showed that ghrelin/GHS-R signaling has important roles in regulation of energy homeostasis, and global deletion of GHS-R reduces obesity and improves insulin sensitivity by increasing thermogenesis. However, it is unknown whether GHS-R regulates thermogenic activation in adipose tissues directly.

Methods

We generated a novel adipose tissue-specific GHS-R deletion mouse model and characterized the mice under regular diet (RD) and high-fat diet (HFD) feeding. Body composition was measured by Echo MRI. Metabolic profiling was determined by indirect calorimetry. Response to environmental stress was assessed using a TH-8 temperature monitoring system. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Tissue histology was analyzed by hematoxylin/eosin and immunofluorescent staining. Expression of genes involved in thermogenesis, angiogenesis and fibrosis in adipose tissues were analyzed by real-time PCR.

Results

Under RD feeding, adipose tissue-specific GHS-R deletion had little or no impact on metabolic parameters. However, under HFD feeding, adipose tissue-specific GHS-R deletion attenuated diet-induced obesity and insulin resistance, showing elevated physical activity and heat production. In addition, adipose tissue-specific GHS-R deletion increased expression of master adipose transcription regulator of peroxisome proliferator-activated receptor (PPAR) γ1 and adipokines of adiponectin and fibroblast growth factor (FGF) 21; and differentially modulated angiogenesis and fibrosis evident in both gene expression and histological analysis.

Conclusions

These results show that GHS-R has cell-autonomous effects in adipocytes, and suppression of GHS-R in adipose tissues protects against diet-induced obesity and insulin resistance by modulating adipose angiogenesis and fibrosis. These findings suggest adipose GHS-R may constitute a novel therapeutic target for treatment of obesity and metabolic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Validation of Adipoq-Cre;Ghsrf/f mouse model and adipose tissue-specific GHS-R deletion reduced body weight and fat mass under HFD feeding.
Fig. 2: HFD-fed adipose tissue-specific GHS-R deletion improved insulin sensitivity.
Fig. 3: Adipose tissue-specific GHS-R deletion had no effect on thermogenesis.
Fig. 4: Adipose tissue-specific GHS-R deletion did not affect lipogenesis but increased transcription factor PPARγ1, and adipokines of FGF21 and adiponectin in epiWAT.
Fig. 5: Adipose tissue-specific GHS-R deletion modulated angiogenesis and fibrosis in epiWAT under HFD feeding.
Fig. 6: Schematic diagram of the proposed actions of GHS-R in adipose tissue under obesity.

Similar content being viewed by others

References

  1. Kursawe R, Caprio S, Giannini C, Narayan D, Lin A, D’Adamo E, et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes. 2013;62:837–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta. 2014;1842:358–69.

    Article  CAS  PubMed  Google Scholar 

  3. Kozak LP, Koza RA, Anunciado-Koza R. Brown fat thermogenesis and body weight regulation in mice: relevance to humans. Int J Obes. 2010;34 Suppl 1:S23–7.

    Article  Google Scholar 

  4. Lin L, Lee JH, Bongmba OY, Ma X, Sheikh-Hamad D, Sun Y. The suppression of ghrelin signaling mitigates age-associated thermogenic impairment. Aging. 2014;6:1019–32.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sacks H, Symonds ME. Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes. 2013;62:1783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252–63.

    Article  CAS  PubMed  Google Scholar 

  7. Fang C, Kim H, Noratto G, Sun Y, Talcott ST, Mertens-Talcott SU. Gallotannin derivatives from mango (Mangifera indica L.) suppress adipogenesis and increase thermogenesis in 3T3-L1 adipocytes in part through the AMPK pathway. J Funct Foods. 2018;46:101–9.

    Article  CAS  Google Scholar 

  8. Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92:1023–33.

    Article  CAS  PubMed  Google Scholar 

  9. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115:911–9.

    Article  CAS  PubMed  Google Scholar 

  10. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol. 2016;7:30.

    Article  Google Scholar 

  11. Lee M-J, Wu Y, Fried SK. Adipose tissue remodeling in pathophysiology of obesity. Curr Opin Clin Nutr Metab Care. 2010;13:371.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Investig. 2017;127:74–82.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Davies JS, Kotokorpi P, Eccles SR, Barnes SK, Tokarczuk PF, Allen SK, et al. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Mol Endocrinol. 2009;23:914–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kojima M, Hosoda H, Matsuo H, Kangawa K. Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab. 2001;12:118–22.

    Article  CAS  PubMed  Google Scholar 

  15. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  CAS  PubMed  Google Scholar 

  16. Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci USA. 2004;101:4679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee JH, Lin L, Wei Q, Bongmba OY, Pradhan G, Sun Y. Neuronal deletion of ghrelin receptor almost completely prevents diet-induced obesity. Diabetes. 2016;65:2169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.

    Article  CAS  PubMed  Google Scholar 

  20. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Investig. 2005;115:3564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin L, Saha PK, Ma X, Chan L, McGuinness OP, Sun Y. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell. 2011;10:996–1010.

    Article  CAS  PubMed  Google Scholar 

  22. Wu C-S, Bongmba OY, Yue J, Lee JH, Lin L, Sun Y. Suppression of GHS-R in AgRP neurons mitigates diet-induced obesity by activating thermogenesis. Int J Mol Sci. 2017;18:832.

    Article  PubMed Central  Google Scholar 

  23. Lin L, Lee JH, Wang R, Sheikh-Hamad D, Zang QS, Sun Y. aP2-Cre mediated ablation of GHS-R attenuates adiposity and improves insulin sensitivity during aging. Int J Mol Sci. 2018;19:3002.

    Article  PubMed Central  Google Scholar 

  24. Lin L, Lee JH, Smith CW, Wu H, Sheikh-Hamad D, Sun Y. Ghrelin receptor regulates adipose tissue inflammation in aging. Aging. 2016;8:178–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng W, Pirzgalska RM, Pereira MM, Kubasova N, Barateiro A, Seixas E, et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell. 2015;163:84–94.

    Article  CAS  PubMed  Google Scholar 

  26. Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab. 2012;302:E19–31.

    Article  CAS  PubMed  Google Scholar 

  27. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Wu G, Fang Q, Zhang M, Hui X, Sheng B, et al. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nat Commun. 2018;9:272.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941–6.

    Article  CAS  PubMed  Google Scholar 

  30. Sun K, Wernstedt Asterholm I, Kusminski CM, Bueno AC, Wang ZV, Pollard JW, et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA. 2012;109:5874–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 2013;18:478–89.

    Article  CAS  PubMed  Google Scholar 

  32. Sun K, Park J, Gupta OT, Holland WL, Auerbach P, Zhang N, et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun. 2014;5:3485.

    Article  PubMed  Google Scholar 

  33. Sun K, Tordjman J, Clément K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013;18:470–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee JH, Eshghjoo S, Davis J, Alaniz RC, Sun Y. New insights on neuronal functions of ghrelin receptor GHS-R in obesity. J Neurol Neuromedicine. 2018;3:69–74.

    Article  Google Scholar 

  35. Edwards A, Abizaid A. Clarifying the ghrelin system’s ability to regulate feeding behaviours despite enigmatic spatial separation of the GHSR and its endogenous ligand. Int J Mol Sci. 2017;18:859.

    Article  PubMed Central  Google Scholar 

  36. Rediger A, Piechowski CL, Yi CX, Tarnow P, Strotmann R, Gruters A, et al. Mutually opposite signal modulation by hypothalamic heterodimerization of ghrelin and melanocortin-3 receptors. J Biol Chem. 2011;286:39623–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poehlman ET. A review: exercise and its influence on resting energy metabolism in man. Med Sci Sports Exerc. 1989;21:515–25.

    Article  CAS  PubMed  Google Scholar 

  38. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Investig. 2011;121:2094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Downes NL, Laham-Karam N, Kaikkonen MU, Yla-Herttuala S. Differential but complementary HIF1alpha and HIF2alpha transcriptional regulation. Mol Ther. 2018;26:1735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-and pro-angiogenic therapies. Genes Cancer. 2011;2:1097–105.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burr AW, Hillan KJ, McLaughlin KE, Ferrier R, Chapman C, Mathew J, et al. Hepatocyte growth factor levels in liver and serum increase during chemical hepatocarcinogenesis. Hepatology. 1996;24:1282–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med. 1999;5:1359.

    Article  CAS  PubMed  Google Scholar 

  43. Henry T, Annex B, Azrin M, McKendall G, Willerson J, Hendel R, et al. Double blind, placebo controlled trial of recombinant human vascular endothelial growth factor: the VIVA trial. J Am Coll Cardiol. 1999;33:384A.

    Google Scholar 

  44. Sung H-K, Doh K-O, Son JE, Park JG, Bae Y, Choi S, et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab. 2013;17:61–72.

    Article  CAS  PubMed  Google Scholar 

  45. Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001;158:1111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29:4467–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol. 2008;74:403–12.

    Article  CAS  PubMed  Google Scholar 

  48. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50:2094–9.

    Article  CAS  PubMed  Google Scholar 

  49. Guo M, Li C, Lei Y, Xu S, Zhao D, Lu XY. Role of the adipose PPARgamma-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry. 2017;22:1056–68.

    Article  CAS  PubMed  Google Scholar 

  50. Keinicke H, Sun G, Mentzel CMJ, Fredholm M, John LM, Andersen B, et al. FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation. Endocr Connect. 2020;9:755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li H, Zhang J, Jia W. Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology. Front Med. 2013;7:25–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Metabolic analysis was performed in the Mouse Metabolic Research Unit at the USDA/ARS Children’s Nutrition Research Center (CNRC), Baylor College of Medicine. This study was supported by NIH 1R01DK118334 and AG064869, and BrightFocus A2019630S (YS). This work was also supported in part by the USDA National Institute of Food and Agriculture Hatch project 1010840 and Multistate Research NE1939 (YS), NIH P30 ES029067(PI: David Threadgill), and NIH DK109001 (KS).

Author information

Authors and Affiliations

Authors

Contributions

JHL, CF, XL, and JYN conducted research and analyzed data; JHL, CF, XY, and YS. wrote the paper. RSC, KS consulted the study. All authors read and approved the final paper.

Corresponding author

Correspondence to Yuxiang Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Fang, C., Li, X. et al. GHS-R suppression in adipose tissues protects against obesity and insulin resistance by regulating adipose angiogenesis and fibrosis. Int J Obes 45, 1565–1575 (2021). https://doi.org/10.1038/s41366-021-00820-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00820-7

This article is cited by

Search

Quick links