Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and Population Health

Child-to-adult body mass index trajectories and the risk of subclinical renal damage in middle age

Abstract

Background

Although it is well established that obesity is a risk factor for chronic kidney disease, the impact of distinct long-term body mass index (BMI) developmental patterns on renal function in later life is poorly understood.

Methods

This study utilized data derived from the Hanzhong Adolescent Hypertension Cohort, a prospective cohort followed over 30 years. We used latent class growth mixture modeling method to identify the BMI trajectories of participants who had received BMI measurements at least three times from childhood (age: 6–15 years) to adulthood (age: 36–45 years). The modified Poisson regression model was used to identify potential associations between BMI trajectories and subclinical renal damage (SRD) in midlife.

Results

Within a total of 2162 individuals, we identified four distinct long-term BMI trajectories: stable normal (54.72%), moderately increasing overweight (32.42%), resolving (10.27%), and progressively increasing obese (2.59%). By the latest follow-up in 2017, a total of 257 (13.1%) individuals were diagnosed with SRD. Compared with the stable normal group, the moderately increasing overweight group and the progressively increasing obese group exhibited significantly a higher urinary albumin-to-creatinine ratio and a higher odd of existing SRD in 2017 (risk ratio [RR], 1.70 [95% confidence interval (CI), 1.33–2.19] and 4.35 [95% CI, 3.00–6.30], respectively). However, individuals who resolved their elevated BMI in early life had a similar risk for SRD as those who had never been obese or overweight (RR, 1.17 [95% CI, 0.77–1.79]).

Conclusions

Child-to-adult BMI trajectories that worsen or persist at high levels were associated with an increased risk for SRD in midlife. Maintaining a normal BMI or reversing an elevated BMI in early life may be beneficial to renal function over the long term.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Body mass index trajectories identified from childhood to middle age in the Hanzhong Adolescent Hypertension Cohort.
Fig. 2: Proportion of participants (%) with hypertension, diabetes, and SRD in 2017 by BMI trajectory group.
Fig. 3: Comparisons of four BMI trajectory groups.

Similar content being viewed by others

Code availability

The code used in this study are available from the corresponding author, upon reasonable request.

References

  1. Levin A, Tonelli M, Bonventre J, Coresh J, Donner J-A, Fogo AB, et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet. 2017;390:1888–917.

    Article  PubMed  Google Scholar 

  2. Saran R, Robinson B, Abbott KC, Agodoa LYC, Bragg-Gresham J, Balkrishnan R, et al. US Renal Data System 2018 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2019;73:A7–A8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389:1238–52.

    Article  PubMed  Google Scholar 

  4. Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management: a review. JAMA. 2019;322:1294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacLaughlin HL, Hall WL, Sanders TA, Macdougall IC. Risk for chronic kidney disease increases with obesity: Health Survey for England 2010. Public Health Nutr. 2015;18:3349–54.

    Article  PubMed  Google Scholar 

  6. Zheng W, Mu J, Chu C, Hu J, Yan Y, Ma Q, et al. Association of blood pressure trajectories in early life with subclinical renal damage in middle age. J Am Soc Nephrol. 2018;29:2835–46.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Whaley-Connell A, Sowers JR. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int. 2017;92:313–23.

    Article  CAS  PubMed  Google Scholar 

  8. Andres-Hernando A, Lanaspa MA, Kuwabara M, Orlicky DJ, Cicerchi C, Bales E, et al. Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice. Am J Physiol Renal Physiol. 2019;317:F941–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Chen X, Klag MJ, Caballero B. Epidemic of childhood obesity: implications for kidney disease. Adv Chronic Kidney Dis. 2006;13:336–51.

    Article  PubMed  Google Scholar 

  10. Tullus K. Is there an obesity-related epidemic of CKD starting already in childhood?. Nephrol Dial Transplant. 2013;28(Suppl 4):iv114–6.

    Article  PubMed  Google Scholar 

  11. Kovesdy CP, Furth S, Zoccali C. Obesity and kidney disease: hidden consequences of the epidemic. Physiol Int. 2017;104:1–14.

    Article  CAS  PubMed  Google Scholar 

  12. Hsu C-Y, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–28.

    Article  PubMed  Google Scholar 

  13. Hsu C-Y, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease: 25-year follow-up. Arch Intern Med. 2009;169:342–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mu J, Zheng S, Lian Q, Liu F, Liu Z. Evolution of blood pressure from adolescents to youth in salt sensitivies: a 18-year follow-up study in Hanzhong children cohort. Nutr J. 2012;11:70.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chu C, Dai Y, Mu J, Yang R, Wang M, Yang J. et al. Associations of risk factors in childhood with arterial stiffness 26 years later: the Hanzhong adolescent hypertension cohort. J Hypertens. 2017;35(Suppl 1):S10–5.

    Article  CAS  PubMed  Google Scholar 

  16. Liao Y-Y, Ma Q, Chu C, Wang Y, Zheng W-L, Hu J-W, et al. The predictive value of repeated blood pressure measurements in childhood for cardiovascular risk in adults: the Hanzhong Adolescent Hypertension Study. Hypertens Res. 2020:969–78.

  17. Yuan Y, Chu C, Zheng W-L, Ma Q, Hu J-W, Wang Y. et al. Body mass index trajectories in early life is predictive of cardiometabolic risk. J Pediatr.2020;219:31–37.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Chen C, Yan Y, Yuan Y, Wang K, Chu C, et al. Association of uric acid in serum and urine with subclinical renal damage: Hanzhong Adolescent Hypertension Study. PLoS ONE. 2019;14:e0224680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leoncini G, Viazzi F, Conti N, Baratto E, Tomolillo C, Bezante GP, et al. Renal and cardiac abnormalities in primary hypertension. J Hypertens. 2009;27:1064–73.

    Article  CAS  PubMed  Google Scholar 

  20. Mulè G, Calcaterra I, Costanzo M, Geraci G, Guarino L, Foraci AC, et al. Relationship between short-term blood pressure variability and subclinical renal damage in essential hypertensive patients. J Clin Hypertens (Greenwich). 2015;17:473–80.

    Article  Google Scholar 

  21. Ma Y-C, Zuo L, Chen J-H, Luo Q, Yu X-Q, Li Y, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol. 2006;17:2937–44.

    Article  PubMed  Google Scholar 

  22. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379:815–22.

    Article  PubMed  Google Scholar 

  23. Proust-Lima C, Philipps V, Liquet B. Estimation of extended mixed models using latent classes and latent processes: the R Package lcmm. J Statistics. 2017;078:1–56.

  24. Buscot M-J, Thomson RJ, Juonala M, Sabin MA, Burgner DP, Lehtimäki T, et al. Distinct child-to-adult body mass index trajectories are associated with different levels of adult cardiometabolic risk. Eur Heart J. 2018;39:2263–70.

    Article  PubMed  Google Scholar 

  25. Fan B, Yang Y, Dayimu A, Zhou G, Liu Y, Li S, et al. Body mass index trajectories during young adulthood and incident hypertension: a longitudinal cohort in Chinese population. J Am Heart Assoc. 2019;8:e011937.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marioni RE, Proust-Lima C, Amieva H, Brayne C, Matthews FE, Dartigues J-F, et al. Cognitive lifestyle jointly predicts longitudinal cognitive decline and mortality risk. Eur J Epidemiol. 2014;29:211–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280:1690–1.

    Article  CAS  PubMed  Google Scholar 

  28. Zou GY, Donner A. Extension of the modified Poisson regression model to prospective studies with correlated binary data. Stat Methods Med Res. 2013;22:661–70.

    Article  CAS  PubMed  Google Scholar 

  29. Kramer H, Luke A, Bidani A, Cao G, Cooper R, McGee D. Obesity and prevalent and incident CKD: the Hypertension Detection and Follow-Up Program. A J Kidney Dis. 2005;46:587–94.

    Article  Google Scholar 

  30. Gelber RP, Kurth T, Kausz AT, Manson JE, Buring JE, Levey AS, et al. Association between body mass index and CKD in apparently healthy men. Am J Kidney Dis. 2005;46:871–80.

    Article  PubMed  Google Scholar 

  31. Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004;65:1870–6.

    Article  PubMed  Google Scholar 

  32. Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172:1644–50.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yun H-R, Kim H, Park JT, Chang TI, Yoo T-H, Kang S-W, et al. Obesity, metabolic abnormality, and progression of CKD. Am J Kidney Dis. 2018;72:400–10.

    Article  CAS  PubMed  Google Scholar 

  34. Chang AR, Grams ME, Ballew SH, Bilo H, Correa A, Evans M, et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ. 2019;364:k5301.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Piché M-E, Poirier P, Lemieux I, Després J-P. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Prog Cardiovasc Dis. 2018;61:103–13.

    Article  PubMed  Google Scholar 

  36. Chughtai HL, Morgan TM, Rocco M, Stacey B, Brinkley TE, Ding J, et al. Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension. 2010;56:901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116:6.

    Article  Google Scholar 

  38. Robertson J, Schaufelberger M, Lindgren M, Adiels M, Schiöler L, Torén K, et al. Higher body mass index in adolescence predicts cardiomyopathy risk in midlife. Circulation. 2019;140:117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koning M, Hoekstra T, de Jong E, Visscher TLS, Seidell JC, Renders CM. Identifying developmental trajectories of body mass index in childhood using latent class growth (mixture) modelling: associations with dietary, sedentary and physical activity behaviors: a longitudinal study. BMC Public Health. 2016;16:1128.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mattsson M, Maher GM, Boland F, Fitzgerald AP, Murray DM, Biesma R. Group-based trajectory modelling for BMI trajectories in childhood: a systematic review. Obes Rev.2019;20:998–1015.

    Article  PubMed  Google Scholar 

  41. Buscot M-J, Thomson RJ, Juonala M, Sabin MA, Burgner DP, Lehtimäki T, et al. BMI trajectories associated with resolution of elevated youth BMI and incident adult obesity. Pediatrics. 2018;141:e20172003.

  42. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365:1876–85.

    Article  CAS  PubMed  Google Scholar 

  43. Charakida M, Khan T, Johnson W, Finer N, Woodside J, Whincup PH, et al. Lifelong patterns of BMI and cardiovascular phenotype in individuals aged 60-64 years in the 1946 British birth cohort study: an epidemiological study. Lancet Diabetes Endocrinol. 2014;2:648–54.

    Article  PubMed  Google Scholar 

  44. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128 Suppl 5:S213–56.

  45. Xie W, Lundberg DJ, Collins JM, Johnston SS, Waggoner JR, Hsiao C-W, et al. Association of weight loss between early adulthood and midlife with all-cause mortality risk in the US. JAMA Netw Open. 2020;3:e2013448.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jia G, Shu X-O, Liu Y, Li H-L, Cai H, Gao J, et al. Association of adult weight gain with major health outcomes among middle-aged Chinese persons with low body weight in early adulthood. JAMA Netw Open. 2019;2:e1917371.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jezewska-Zychowicz M, Gębski J, Plichta M, Guzek D, Kosicka-Gębska M. Diet-related factors, physical activity, and weight status in Polish adults. Nutrients. 2019;11:2532.

  48. Mushtaq MU, Gull S, Mushtaq K, Shahid U, Shad MA, Akram J. Dietary behaviors, physical activity and sedentary lifestyle associated with overweight and obesity, and their socio-demographic correlates, among Pakistani primary school children. Int J Behav Nutr Phys Act. 2011;8:130.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et al. Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med. 2011;364:719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang C, He Y, Xu P, Yang Y, Saito K, Xia Y, et al. TAp63 contributes to sexual dimorphism in POMC neuron functions and energy homeostasis. Nat Commun. 2018;9:1544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Formanek P, Salisbury-Afshar E, Afshar M. Helping patients with ESRD and earlier stages of CKD to quit smoking. Am J Kidney Dis. 2018;72:255–66.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cosola C, Sabatino A, di Bari I, Fiaccadori E, Gesualdo L. Nutrients, nutraceuticals, and xenobiotics affecting renal health. Nutrients. 2018;10:808.

  53. Locatelli F, Pozzoni P, Del Vecchio L. Renal manifestations in the metabolic syndrome. J Am Soc Nephrol. 2006;17:S81–5.

    Article  PubMed  Google Scholar 

  54. Afshinnia F, Pennathur S. Lipids and cardiovascular risk with CKD. Clin J Am Soc Nephrol. 2020;15:5–7.

    Article  PubMed  Google Scholar 

  55. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–74.

    Article  PubMed  Google Scholar 

  56. Sharaf El Din UAA, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review. J Adv Res. 2017;8:537–48.

    Article  CAS  PubMed  Google Scholar 

  57. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.

  58. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15:367–85.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen CM. Overview of obesity in Mainland China. Obes Rev. 2008;9(Suppl 1):14–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China No. 81870319 and No. 81700368 (CC), National Key R&D Program of China (2016YFC1300100); Grant 2017YFC1307604 from the Major Chronic Non-communicable Disease Prevention and Control Research Key Project of the Ministry of Science and Technology of the People’s Republic of China; Grant 2017ZDXM-SF-107 from the Key Research Project of Shaanxi Province, and Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaoton University, China (No.XJTU1AF-CRF-2019-004). The authors thank Ruihai Yang, Jun Yang, Yong Ren, Bo Yan, and Ying Deng for assistance with data collection, and Fangyao Chen for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Mu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zheng, W., Ma, Q. et al. Child-to-adult body mass index trajectories and the risk of subclinical renal damage in middle age. Int J Obes 45, 1095–1104 (2021). https://doi.org/10.1038/s41366-021-00779-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00779-5

This article is cited by

Search

Quick links