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Abstract
Introduction A reliable and accurate estimate of the percentage and distribution of adipose tissue in the human body is
essential for evaluating the risk of developing chronic and noncommunicable diseases. A precise and differentiated method,
which at the same time is fast, noninvasive, and straightforward to perform, would, therefore, be desirable. We sought a
new approach to this research area by linking a person’s relative body fat with their body surface’s areal roughness
characteristics.
Materials and methods For this feasibility study, we compared areal surface roughness characteristics, assessed from 3D
photonic full-body scans of 76 Swiss young men, and compared the results with body impedance-based estimates of relative
body fat. We developed an innovative method for characterizing the areal surface roughness distribution of a person’s entire
body, in a similar approach as it is currently used in geoscience or material science applications. We then performed a
statistical analysis using different linear and stepwise regression models.
Results In a stepwise regression analysis of areal surface roughness frequency tables, a combination of standard deviation,
interquartile range, and mode showed the best association with relative body fat (R2= 0.55, p < 0.0001). The best results
were achieved by calculating the arithmetic mean height, capable of explaining up to three-quarters of the variance in relative
body fat (R2= 0.74, p < 0.001).
Discussion and conclusion This study shows that areal surface roughness characteristics assessed from 3D photonic whole-
body scans associate well with relative body fat, therefore representing a viable new approach to improve current 3D scanner-
based methods for determining body composition and obesity-associated health risks. Further investigations may validate our
method with other data or provide a more detailed understanding of the relation between the body’s areal surface characteristics
and adipose tissue distribution by including larger and more diverse populations or focusing on particular body segments.

Introduction

The use of 3D photonic body scans (BS) to assess body
shape in epidemiologic studies and for daily fitness tracking
is on the rise, thanks to developments in equipment and
measurement methods that provide fast, reproducible, and
increasingly accurate results [1–7]. However, an essential
limitation of many currently available approaches is the lack
of a precise approximation of adipose tissue distribution,
particularly in more obese individuals, despite its relevance
for assessing the risk for metabolic and cardiovascular
diseases [8–10]. Most established methods for assessing
relative body fat (%BF) or body fat distribution in the
clinical routine are suboptimal proxies for %BF or total
body fat [11, 12]. Dual-energy X-ray absorptiometry (DXA)
is the gold standard for assessing body composition and
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provides data on both volumetry and distribution of adipose
tissue. Due to costs, duration, and ionizing radiation, it is
not suited for the general clinical routine [13]. Several
recent studies aimed to bridge this gap between volume,
surface, and distribution of adipose tissue [14, 15], e.g.,
using multimodality registration of DXA data with 3D body
surface scans [16], however, published data only included
six individuals.

In order to reach a broad target population, measurement
methods are needed, which provide a precise and differ-
entiated assessment of %BF and, at the same time, remain
straightforward for an application in daily clinical practice.
Since this goal is still challenging to achieve, we sought a new
approach to this research area by linking a person’s %BF with
the roughness of the body surface. We recognize that the
influence of the prognostically relevant visceral body fat on
body surface characteristics may be somewhat limited. In
contrast, the amount and distribution of subcutaneous adipose
tissue, located between the musculoskeletal system and the
skin, are likely to significantly influence body surface mor-
phology and, thus, have a measurable impact on the areal
surface roughness characteristics.

To test our approach as a possible starting point for a
more accurate assessment of %BF, particularly sub-
cutaneous adipose tissue, we evaluated the roughness of
76 test subjects’ body surfaces and compared the results
with BIA estimates of their %BF.

Material and methods

3D models used for our study were taken from a prior study
in which the correlation of height and WC measured by BS
and manual anthropometric measurements in young Swiss
men was investigated [6, 17]. This prior study included a
cross-sectional part and a re-examination 4 months later.
The study was approved by the Cantonal Ethics Board of
Zurich (No. 2016–01625), and all participants were
required to sign a detailed form to ensure informed consent
to later scientific evaluation of their data. Participation was
voluntary, without further selection criteria such as origin,
demographic factors, or socioeconomic status [6]. A semi-
mobile 3D photonic full-body scanner (Anthroscan
VITUSbodyscan, Human Solution, Kaiserslautern, Ger-
many) was used for body surface data acquisition, providing
spatial resolution of <1 mm, with a point density of 300 data
points per cm3. Comparative %BF (relative body fat) esti-
mates were assessed by BIA (Seca mBCA 515, Reinach,
Switzerland). In the present study (Armed Forces basic
training), it was not feasible to perform more extensive or
time-consuming examinations than BIA. However, the
technique and, more specifically, the Seca mBCA 515
device have been validated in various studies and have been

widely used for benchmarking body composition mea-
surements derived from photonic 3D BS [18, 19]. In a
recent validation study, this device has shown high relia-
bility in estimating total body fat [20]. WC was measured
with a tension-stable hand-held tape measure with auto-
matic retraction (Seca 201, Seca AG, Reinach, Switzer-
land). Height and weight were measured with a standard
stadiometer (Seca 274, Seca AG, Reinach, Switzerland).
Further details of the measuring protocol are given in prior
studies [6, 17, 21]. Raw scan datasets—in a proprietary
point cloud format—were later triangulated and closed
using the standard scanner software (Anthroscan, Version
3.5.3, Human Solutions, Kaiserslautern, Germany) and
exported to the .obj file format.

For our study, we used data from the cross-sectional part,
for which 104 young male Swiss Armed Forces recruits
were examined on the same day, using the same measuring
protocol and equipment. We imported available 3D models
of 104 study subjects into a 3D modeling software (Rhi-
noceros 3D 6.19, Robert McNeel & Associates, Seattle,
WA, USA) to calculate total point count, volume, and
surface area of each model. To analyze the surfaces of the
3D BS, in a similar approach as currently used for
geoscience, material science, and further surface metrology-
related applications [22], we used a multiplatform, open-
source solution for point cloud analysis and editing
(CloudCompare 2.9.1, Électricité de France SA, Paris,
France). CloudCompare features a tool for areal surface
roughness evaluation to analyze particular geometric char-
acteristics of point clouds [23]. Unfortunately, 3D models
generated for the original study had been exported and
stored using two different resolution settings, and 28 out of
104 3D models had to be excluded from further analyses
due to inconsistent resolution. The 76 included high-
resolution 3D models contained a total of 425,691–594,259
points with a mean point count of 491,104 (±33,138). For
each point of a point cloud, CloudCompare can calculate an
areal roughness value according to the following steps:

(1) A sphere with a user-defined radius is fitted around
the point.

(2) A best-fitting plane through all the points included in
this sphere is determined.

(3) The distance between the point (center of the sphere)
and the best-fitting plane is calculated (areal rough-
ness value).

From these values CloudCompare then creates an areal
roughness histogram containing 256 classes, Class 1 being
smooth (smallest distances) and Class 256 being rough
(largest distances). We excluded Class 1 from statistical
evaluations since it typically represented artificial flat sur-
faces of the 3D model, such as the foot sole. Also, since the
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absolute number of points contained in the point cloud
models of our participants varied, absolute histogram values
(number of points), calculated by CloudCompare, had to be
divided by the total number of points contained within a
particular point cloud, to obtain relative frequency tables
and to be able to compare different 3D models statistically.

After a visual assessment (Fig. 1), we defined three dif-
ferent radii (R1= 1 cm, R2= 2 cm, R5= 5 cm) and calcu-
lated three different areal surface roughness frequency
tables for each of the 76 study subjects included in our
study. Radii higher than 5 cm were not deemed appropriate
since this way entire body parts were included in the cal-
culation of best-fitting planes, rather than an area of the

body’s surface. Also, some participants held their hands
quite close to the trunk, resulting in the trunk and the upper
extremities being mixed for the calculation of best-fitting
planes when the radius exceeded 5 cm. Radii smaller than
1 cm revealed noise artifacts beyond the effective resolution
of the scanner.

Statistical methods

Descriptive statistics (mean, standard deviation (SD),
minimum, maximum) of the basic parameters (age, height,
weight, body mass index, etc.) were calculated for all
included study subjects.

Fig. 1 Roughness analyses mapped to three representative 3D
surface models, with corresponding roughness frequency tables.
Roughness analysis at radius= 2 cm (R2) mapped onto the 3D surface
models of a slim (BMI= 19.5; relative body fat = 2.5%), a muscular
(BMI= 21.0; relative body fat= 4.3%), and an obese (BMI = 30.1;
relative body fat = 34.4%) study participant, illustrating the range of

body shapes in our study sample, and corresponding roughness fre-
quency tables with the mode and interquartile range (IQR) plotted as
measures of central tendency and statistical dispersion, respectively.
Standard deviation (SD) and arithmetic mean height (Sa), a quantita-
tive roughness parameter (as defined by ISO 25178), are also given.
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For further statistical analysis, the software R was used
(R, 2.6.3, the R Foundation, https://www.r-project.org). In a
first analysis step, we verified our initial assumption that the
distribution of areal surface roughness levels across the 256
classes in the frequency tables is associated with %BF.
For this, we computed different linear regression models
(M1–M6) by the measures of statistical dispersion—SD and
interquartile range (IQR)—for all three radius values (R1,
R2, R5). After a visual assessment, we also assumed an
association between the mode, defined as the class with the
highest peak, and %BF. Therefore, further linear regression
models, including the mode (M7–M9), were computed.
Linear regressions have proved suitable for initial evalua-
tions of associations between 3D photonic body scan
measurements and body composition (with relatively small
added value for nonlinear methods) [6, 17, 21].

In a second analysis step, to find the best association with
%BF, we then combined SD, IQR, and mode in stepwise
regression models for each radius (M10–M12). To inves-
tigate the importance of each explanatory variable (SD,
IQR, mode) for %BF, we separately excluded each expla-
natory variable from the model and calculated the Akaike’s
information criterion (AIC). Next, we calculated the dif-
ference between the AIC when excluding an explanatory
variable and the AIC of the complete model. Therefore, the
significance of the explanatory variable in the model cor-
responds to the differences of the respective AICs.

In a third and more explorative analysis step, to find an
association between the overall roughness of each partici-
pant and %BF, we also calculated the arithmetic mean
height (Sa), a quantitative roughness parameter (in mm), as
defined by ISO 25178, frequently used in surface metrol-
ogy. Sa is the extension of the concept of the arithmetic
mean height of a line (Ra) to a surface. It expresses the
average distance of any point of a surface to an arithmetic
mean of that surface. For our application, we determined Sa
by dividing the sum of all roughness values, as calculated
for each point, by the total number of points in the 3D
model. Therefore, Sa allows the comparison between par-
ticipants, despite the point clouds containing different
numbers of points, with normalization being part of the
measure. Finally, linear regression models for the associa-
tion between Sa and %BF (M13–M15) were also computed.

Results

Descriptive statistics about the young men (N= 76) inclu-
ded in our study are displayed in Table 1. The participants
were by average 20.5 years old (SD ± 1.1 years), 178.1 cm
tall (±6.9 cm), and weighted 74.3 kg (±12.9 kg). Their mean
BMI was 23.4 kg/m2 (±3.5 kg/m2), with 28% having excess
weight (BMI ≥ 25 kg/m2), and 14% of those being obese

(BMI ≥ 30 kg/m2) according to the WHO obesity classifi-
cation (http://www.euro.who.int/en/health-topics/disease-
prevention/nutrition/a-healthy-lifestyle/body-mass-index-
bmi). According to BIA estimates, average relative fat mass
(%BF) was 14.6% (±7.7%), and absolute fat mass was
11.7 kg (±8.0 kg). Linear regressions showed that BMI was
able to explain a high share of the variability in %BF (R2=
0.81, p < 0.001), the same applied for WC (R2= 0.77,
p < 0.001).

Before discussing the results of our analysis, we exem-
plified in Fig. 1 the range of body shapes in our study
sample with a roughness analysis at radius= 2 cm (R2)
mapped onto the 3D surface models of a slim (BMI= 19.5;
relative body fat= 2.5%), a muscular (BMI= 21.0; relative
body fat= 4.3%), and an obese (BMI= 30.1; relative body
fat= 34.4%) study participant and added the corresponding
roughness frequency tables. All frequency table distribu-
tions were right skewed. A visual evaluation also revealed
that in the most obese study subject, the absolute value of
the Peak Class (mode) was higher than the peaks of the
slimmest or the most muscular study subjects. Additionally,
the location of the mode in the most obese participant was
in a lower class (Class 10, using R2, radius= 2 cm) com-
pared to the peaks of the slimmest participant (Class 16) or
the most muscular participant (Class 12), i.e., most surface
points of the obese participants were located within
smoother surface areas.

In our first analysis step, we assessed the areal surface
roughness frequency tables by linear regressions, using the
basic measures of statistical dispersion SD, IQR, and mode
for the estimation of %BF. Among all basic models,
M1–M9 (details are given in Table 2), M5 (R2, IQR)
showed the best explanatory variance (R2= 0.55, p <
0.0001). All associations were negative (as expected). In
our second analysis step, M12 (R5, IQR, mode) showed the
best association with %BF among the stepwise regression

Table 1 Descriptive statistics about the young men (N= 76) included
in our study.

Mean Min Max SD

Age (years) 20.5 18.8 24.4 1.1

Height (cm) 178.1 164.0 194.0 6.9

Weight (kg) 74.3 47.5 114.4 12.9

Body mass index (kg/m2) 23.4 17.4 34.7 3.5

Waist circumference (cm) 81.0 65.0 107.0 9.1

Relative fat mass (%) 14.6 0.1 34.4 7.7

Absolute fat mass (kg) 11.7 0.1 39.1 8.0

Skeletal muscle mass (kg) 30.7 21.3 39.2 3.7

Surface area (m2) 1.85 1.44 2.27 0.17

Volume (m3) 0.07 0.05 0.12 0.01

Point cloud (n) 491,104 425,691 594,259 33,138
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models M10–M12 presented in Table 2. This model
M12 showed a higher proportion of explained variation for
%BF (R2= 0.69, p < 0.0001) than the models with single
parameters (M1–M9). The strongest contributions were
coming from mode (AIC= 29.11), followed by IQR
(AIC= 45.90). In our more explorative third analysis step
(models M13–M15 in Table 2), arithmetic mean height (Sa)
showed the overall best association with %BF. Model M14
(R2) showed the best association with %BF (R2= 0.74,
p < 0.001). All reported R2 are adjusted R2.

Surfaces of study subjects with higher %BF showed
more points lying in surface areas of lower roughness. SD
and IQR were lower, consistent with a higher %BF
(Fig. 2). Slimmer or more muscular study subjects’ body
surfaces featured more accentuated details, represented
by a broader distribution in the areal surface roughness
frequency tables. In the linear and stepwise regression
models, the explanatory variance was slightly lower
compared to models using BMI, WC, or Sa (arithmetic
mean height) (Table 2). The analysis of the areal surface
roughness frequency tables, assessed by SD, IQR, and
mode, as well as calculated Sa (arithmetic mean height),
showed negative associations of all parameters with %BF.
Overall, roughness distribution analyses, using radii greater
than 1 cm, showed better associations with %BF. Best

associations were achieved using a radius of 2 cm (R2) and
second-best using 5 cm (R5).

Discussion

Our feasibility study aimed at providing a proof of concept
that areal body surface roughness characteristics may be
used as a proxy for %BF. To the best of our knowledge, it
is the first study analyzing the association between the
areal roughness of the body’s surface and body composi-
tion. While the individual parameters of statistical dis-
persion (SD, IQR, and mode) in the calculated frequency
tables only showed moderate associations with %BF, a
stepwise regression analysis, considering multiple para-
meters, showed stronger associations. The best association
(quantified by R2) with %BF was observed for Sa (R2=
0.74), the arithmetic mean of roughness, which compared
to other association studies of individual scanner-based
measurements (e.g., circumferences, lengths, volumes)
with aspects of body composition, and using comparable
samples [17], represents a medium to strong association.
However, somewhat stronger associations have been
demonstrated when several scanner measurements were
combined using different statistical methods [21].

Fig. 2 Scatter plots comparing BIA body fat measurements and
statistical parameters of the frequency tables. Scatter plots with
fitted linear regression lines, providing a visual comparison of BIA
body fat measurements and areal surface roughness frequency tables

computed using radii of 1, 2, and 5 cm based on standard deviation
(SD), interquartile range (IQR) (Models M1–M6), location of the
mode (Models M7–M9), and Sa (Models M13–M15).

Associations between relative body fat and areal body surface roughness characteristics in 3D photonic. . . 911



The main limitation of the present study is that it is a
technical proof of concept and not a detailed validation
study requiring further external data. A detailed validation
of the proposed method is indeed the next logical step for
the future. Further, only young Swiss men aged 18–24 years
were included in the study; however, the distribution of
adipose tissue varies according to sex and age. Second,
while the association with %BF was quite successful, the
distinction between muscular and thin study subjects
remained imprecise, as it is also the case for the BMI. Also,
for our study, participants wore bathing caps and underpants
during scanning, which created wrinkles and may have
influenced the areal surface roughness distribution. We
considered BIA a sufficiently accurate estimate of %BF for
initial association tests in a feasibility study. However,
additional and more differentiated data from more precise
techniques (e.g., full-body MRI) may be required to fully
understand the relationship between specific body surface
parameters and underlying tissue composition.

In future investigations, we plan to focus on longitudinal
intraindividual observations. In follow-up measurements,
we shall, therefore, check whether changes in overall areal
surface roughness coincide with changes in %BF.
Depending on individual parameters, such as age, sex, or
physical activity level, shifts in body compositions may
follow distinct distribution patterns identifiable by areal
surface roughness measurements.

Conclusion

This study shows that 3D body surface roughness char-
acteristics associate well with body composition and
represent a viable new approach to improve today’s 3D
scanner-based methods to assess body composition and
obesity-associated health risks. Although the explanatory
variance of some parameters evaluated in our approach was
slightly lower than in comparable trials, this first evidence is
an auspicious starting point for future studies. The arith-
metic mean height reached medium to strong levels of
explanatory variance for relative body fat compared to the
BMI or WC. Further investigations may provide a more
detailed understanding of the association between areal
surface roughness characteristics and well-established
approaches, such as BIA body fat estimation, by includ-
ing larger and more diverse study cohorts or by focusing on
particular body segments.

Data availability

The data that support the findings of this study are available
from the corresponding author, PE, upon reasonable
request.
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