Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Animal Models

Fish oil supplementation alleviates metabolic and anxiodepressive effects of diet-induced obesity and associated changes in brain lipid composition in mice

Abstract

Objective

Obesity significantly elevates the odds of developing mood disorders. Chronic consumption of a saturated high-fat diet (HFD) elicits anxiodepressive behavior in a manner linked to metabolic dysfunction and neuroinflammation in mice. Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) can improve both metabolic and mood impairments by relieving inflammation. Despite these findings, the effects of n-3 PUFA supplementation on energy homeostasis, anxiodepressive behavior, brain lipid composition, and gliosis in the diet-induced obese state are unclear.

Methods

Male C57Bl/6J mice were fed a saturated high-fat diet (HFD) or chow for 20 weeks. During the last 5 weeks mice received daily gavage (“supplementation”) of fish oil (FO) enriched with equal amounts of docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) or control corn oil. Food intake and body weight were measured throughout while additional metabolic parameters and anxiety- and despair-like behavior (elevated-plus maze, light–dark box, and forced swim tasks) were evaluated during the final week of supplementation. Forebrain lipid composition and markers of microglia activation and astrogliosis were assessed by gas chromatography–mass spectrometry and real-time PCR, respectively.

Results

Five weeks of FO supplementation corrected glucose intolerance and attenuated hyperphagia in HFD-induced obese mice without affecting adipose mass. FO supplementation also defended against the anxiogenic and depressive-like effects of HFD. Brain lipids, particularly anti-inflammatory PUFA, were diminished by HFD, whereas FO restored levels beyond control values. Gene expression markers of brain reactive gliosis were supressed by FO.

Conclusions

Supplementing a saturated HFD with FO rich in EPA and DHA corrects glucose intolerance, inhibits food intake, suppresses anxiodepressive behaviors, enhances anti-inflammatory brain lipids, and dampens indices of brain gliosis in obese mice. Together, these findings support increasing dietary n-3 PUFA for the treatment of metabolic and mood disturbances associated with excess fat intake and obesity.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fish oil supplementation protects against diet-induced glucose intolerance and attenuates hyperphagia without affecting body composition.
Fig. 2: Fish oil supplementation alleviates anxiety- and despair-like behavior triggered by a saturated high-fat diet and obesity.
Fig. 3: Forebrain lipid composition changes associated with saturated high-fat feeding and fish oil supplementation.
Fig. 4: Fish oil supplementation suppresses forebrain markers of gliosis.

References

  1. 1.

    Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis. Int J Obes. 2010;34:407–19.

    CAS  Google Scholar 

  2. 2.

    Faith MS, Butryn M, Wadden TA, Fabricatore A, Nguyen AM, Heymsfield SB. Evidence for prospective associations among depression and obesity in population-based studies. Obesity Rev. 2011;12:e438–53.

    CAS  Google Scholar 

  3. 3.

    Mannan M, Mamun A, Doi S, Clavarino A. Prospective associations between depression and obesity for adolescent males and females—a systematic review and meta-analysis of longitudinal studies. PLoS ONE. 2016;11:e0157240.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BW, Zitman FG. Overweight, Obesity, and Depression: A Systematic Reviewand Meta-Analysis of Longitudinal Studies. Arch Gen Psychiatry. 2010;67:220–9.

    PubMed  Google Scholar 

  5. 5.

    Capuron L, Lasselin J, Castanon N. Role of adiposity-driven inflammation in depressive morbidity. Neuropsychopharmacology. 2017;42:115–28.

    CAS  PubMed  Google Scholar 

  6. 6.

    Hryhorczuk C, Sharma S, Fulton SE. Metabolic disturbances connecting obesity and depression. Front Neurosci. 2013;7:177.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lee ES, Kim YH, Beck SH, Lee S, Oh SW. Depressive mood and abdominal fat distribution in overweight premenopausal women. Obes Res. 2005;13:320–5.

    PubMed  Google Scholar 

  8. 8.

    Milaneschi Y, Simonsick EM, Vogelzangs N, Strotmeyer ES, Yaffe K, Harris TB, et al. Leptin, abdominal obesity, and onset of depression in older men and women. J Clin Psychiatry. 2012;73:1205–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes. 2013;37:382–9.

    CAS  Google Scholar 

  10. 10.

    Yamada N, Katsuura G, Ochi Y, Ebihara K, Kusakabe T, Hosoda K, et al. Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinology. 2011;152:2634–43.

    CAS  PubMed  Google Scholar 

  11. 11.

    Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.

    CAS  PubMed  Google Scholar 

  12. 12.

    Santos S, Oliveira A, Lopes C. Systematic review of saturated fatty acids on inflammation and circulating levels of adipokines. Nutr Res. 2013;33:687–95.

    CAS  PubMed  Google Scholar 

  13. 13.

    Decarie-Spain L, Sharma S, Hryhorczuk C, Issa-Garcia V, Barker PA, Arbour N, et al. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat. Mol Metab. 2018;10:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lai JS, Oldmeadow C, Hure AJ, McEvoy M, Hiles SA, Boyle M, et al. Inflammation mediates the association between fatty acid intake and depression in older men and women. Nutr Res. 2016;36:234–45.

    CAS  PubMed  Google Scholar 

  15. 15.

    Chan KL, Cathomas F, Russo SJ. Central and peripheral inflammation link metabolic syndrome and major depressive disorder. Physiology. 2019;34:123–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lassale C, Batty GD, Baghdadli A, Jacka F, Sanchez-Villegas A, Kivimaki M. et al. Healthy dietary indices and risk of depressive outcomes: a systematic review and meta-analysis of observational studies. Mol Psychiatry. 2019;24:965–86 .

    PubMed  Google Scholar 

  17. 17.

    Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor alpha: a meta-analysis. PLoS One. 2014;9:e88103.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Gao H, Geng T, Huang T, Zhao Q. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis. Lipids Health Dis. 2017;16:131.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Zemdegs J, Rainer Q, Grossmann CP, Rousseau-Ralliard D, Grynberg A, Ribeiro E, et al. Anxiolytic- and antidepressant-like effects of fish oil-enriched diet in brain-derived neurotrophic factor deficient mice. Front Neurosci. 2018;12:974.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Laye S, Nadjar A, Joffre C, Bazinet RP. Anti-inflammatory effects of omega-3 fatty acids in the brain: physiological mechanisms and relevance to pharmacology. Pharmacol Rev. 2018;70:12–38.

    CAS  PubMed  Google Scholar 

  21. 21.

    Dang R, Zhou X, Tang M, Xu P, Gong X, Liu Y, et al. Fish oil supplementation attenuates neuroinflammation and alleviates depressive-like behavior in rats submitted to repeated lipopolysaccharide. Eur J Nutr. 2018;57:893–906.

    CAS  PubMed  Google Scholar 

  22. 22.

    Grosso G, Micek A, Marventano S, Castellano S, Mistretta A, Pajak A, et al. Dietary n-3 PUFA, fish consumption and depression: a systematic review and meta-analysis of observational studies. J Affect Disord. 2016;205:269–81.

    CAS  PubMed  Google Scholar 

  23. 23.

    Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, et al. Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS ONE. 2014;9:e96905.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Deacon G, Kettle C, Hayes D, Dennis C, Tucci J. Omega 3 polyunsaturated fatty acids and the treatment of depression. Crit Rev Food Sci Nutr. 2017;57:212–23.

    CAS  PubMed  Google Scholar 

  25. 25.

    Auguste S, Sharma S, Fisette A, Fernandes MF, Daneault C, Des Rosiers C, et al. Perinatal deficiency in dietary omega-3 fatty acids potentiates sucrose reward and diet-induced obesity in mice. Int Soc Dev Neurosci. 2018;64:8–13.

    CAS  Google Scholar 

  26. 26.

    Mathieu G, Denis S, Lavialle M, Vancassel S. Synergistic effects of stress and omega-3 fatty acid deprivation on emotional response and brain lipid composition in adult rats. Prostaglandins Leukot Essent Fatty Acids. 2008;78:391–401.

    CAS  PubMed  Google Scholar 

  27. 27.

    Innis PMK-EaS. Position of the american dietetic association and dietitians of canada: dietary fatty acids. J Am Dietetic Association. 2007;107:1599.e1–15.

    Google Scholar 

  28. 28.

    Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gelinas R, Thompson-Legault J, Bouchard B, Daneault C, Mansour A, Gillis MA, et al. Prolonged QT interval and lipid alterations beyond beta-oxidation in very long-chain acyl-CoA dehydrogenase null mouse hearts. Am J Physiol Heart Circ Physiol. 2011;301:H813–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Turcot V, Brunet J, Daneault C, Tardif JC, Des Rosiers C, Lettre G. Validation of fatty acid intakes estimated by a food frequency questionnaire using erythrocyte fatty acid profiling in the Montreal Heart Institute Biobank. J Hum Nutr Dietetics. 2015;28:646–58.

    CAS  Google Scholar 

  31. 31.

    Thompson JA, Larion S, Mintz JD, Belin de Chantemele EJ, Fulton DJ, Stepp DW. Genetic deletion of NADPH oxidase 1 rescues microvascular function in mice with metabolic disease. Circ Res. 2017;121:502–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Howe P, Buckley J. Metabolic health benefits of long-chain omega-3 polyunsaturated fatty acids. Military Med. 2014;179:138–43.

    Google Scholar 

  33. 33.

    Thesing CS, Bot M, Milaneschi Y, Giltay EJ, Penninx B. Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders. Psychoneuroendocrinology. 2018;87:53–62.

    CAS  PubMed  Google Scholar 

  34. 34.

    Belzung F, Raclot T, Groscolas R. Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am J Physiol. 1993;264:R1111–8.

    CAS  PubMed  Google Scholar 

  35. 35.

    Huang XF, Xin X, McLennan P, Storlien L. Role of fat amount and type in ameliorating diet-induced obesity: insights at the level of hypothalamic arcuate nucleus leptin receptor, neuropeptide Y and pro-opiomelanocortin mRNA expression. Diabetes Obes Metab. 2004;6:35–44.

    CAS  PubMed  Google Scholar 

  36. 36.

    Burdge GC, Calder PC. Dietary alpha-linolenic acid and health-related outcomes: a metabolic perspective. Nutr Res Rev. 2006;19:26–52.

    CAS  PubMed  Google Scholar 

  37. 37.

    Oliveira V, Marinho R, Vitorino D, Santos GA, Moraes JC, Dragano N, et al. Diets Containing alpha-linolenic (omega3) or Oleic (omega9) fatty acids rescues obese mice from insulin resistance. Endocrinology. 2015;156:4033–46.

    CAS  PubMed  Google Scholar 

  38. 38.

    Kasbi Chadli F, Andre A, Prieur X, Loirand G, Meynier A, Krempf M, et al. n-3 PUFA prevent metabolic disturbances associated with obesity and improve endothelial function in golden Syrian hamsters fed with a high-fat diet. Br J Nutr. 2012;107:1305–15.

    CAS  PubMed  Google Scholar 

  39. 39.

    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Datilo MN, Sant’Ana MR, Formigari GP, Rodrigues PB, de Moura LP, da Silva ASR, et al. Omega-3 from Flaxseed Oil Protects Obese Mice Against Diabetic Retinopathy Through GPR120 Receptor. Sci Rep. 2018;8:14318.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Lopez-Alarcon M, Inda-Icaza P, Marquez-Maldonado MC, Armenta-Alvarez A, Barbosa-Cortes L, Maldonado-Hernandez J. A randomized control trial of the impact of LCPUFA-omega3 supplementation on body weight and insulin resistance in pubertal children with obesity. Pediatr Obes. 2019;14:e12499.

    PubMed  Google Scholar 

  42. 42.

    Helland A, Bratlie M, Hagen IV, Mjos SA, Sornes S, Ingvar Halstensen A, et al. High intake of fatty fish, but not of lean fish, improved postprandial glucose regulation and increased the n-3 PUFA content in the leucocyte membrane in healthy overweight adults: a randomised trial. Br J Nutr. 2017;117:1368–78.

    CAS  PubMed  Google Scholar 

  43. 43.

    Rodriguez-Navas C, Morselli E, Clegg DJ. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice. Mol Metab. 2016;5:680–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hryhorczuk C, Florea M, Rodaros D, Poirier I, Daneault C, Des Rosiers C, et al. Dampened mesolimbic dopamine function and signaling by saturated but not monounsaturated dietary lipids. Neuropsychopharmacology. 2016;41:811–21.

    CAS  PubMed  Google Scholar 

  45. 45.

    Tsuboi H, Watanabe M, Kobayashi F, Kimura K, Kinae N. Associations of depressive symptoms with serum proportions of palmitic and arachidonic acids, and alpha-tocopherol effects among male population–a preliminary study. Clin Nutr. 2013;32:289–93.

    CAS  PubMed  Google Scholar 

  46. 46.

    Holman HMaRT. Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids. J Neurochem. 1963;10:523–30.

    PubMed  Google Scholar 

  47. 47.

    Naliwaiko K, Araujo RL, da Fonseca RV, Castilho JC, Andreatini R, Bellissimo MI, et al. Effects of fish oil on the central nervous system: a new potential antidepressant? Nutr Neurosci. 2004;7:91–9.

    CAS  PubMed  Google Scholar 

  48. 48.

    Chen CT, Bazinet RP. beta-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fatty Acids. 2015;92:33–40.

    CAS  PubMed  Google Scholar 

  49. 49.

    Su KP, Lai HC, Yang HT, Su WP, Peng CY, Chang JP, et al. Omega-3 fatty acids in the prevention of interferon-alpha-induced depression: results from a randomized, controlled trial. Biol Psychiatry. 2014;76:559–66.

    CAS  PubMed  Google Scholar 

  50. 50.

    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Song C, Manku MS, Horrobin DF. Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J Nutr. 2008;138:954–63.

    CAS  PubMed  Google Scholar 

  52. 52.

    Lin PY, Huang SY, Su KP. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry. 2010;68:140–7.

    CAS  PubMed  Google Scholar 

  53. 53.

    Gopaldas M, Zanderigo F, Zhan S, Ogden RT, Miller JM, Rubin-Falcone H, et al. Brain serotonin transporter binding, plasma arachidonic acid and depression severity: a positron emission tomography study of major depression. J Affect Disord. 2019;257:495–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Delpech JC, Madore C, Joffre C, Aubert A, Kang JX, Nadjar A, et al. Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation. Neuropsychopharmacology. 2015;40:525–36.

    CAS  PubMed  Google Scholar 

  55. 55.

    Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Investig. 2012;122:153–62.

    CAS  PubMed  Google Scholar 

  56. 56.

    Morselli E, Fuente-Martin E, Finan B, Kim M, Frank A, Garcia-Caceres C, et al. Hypothalamic PGC-1alpha protects against high-fat diet exposure by regulating ERalpha. Cell Rep. 2014;9:633–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    de Mello AH, Schraiber RB, Goldim MPS, Garcez ML, Gomes ML, de Bem Silveira G, et al. Omega-3 fatty acids attenuate brain alterations in high-fat diet-induced obesity model. Mol Neurobiol. 2019;56:513–24.

    PubMed  Google Scholar 

  58. 58.

    Auguste S, Fisette A, Fernandes MF, Hryhorczuk C, Poitout V, Alquier T. et al. Central agonism of GPR120 acutely inhibits food intake and food reward and chronically suppresses anxiety-like behavior in mice. Int J Neuropsychopharmacol. 2016;19:1–10.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada to SF, Merck Sharp Dohme Corp to SF, TA, and CDR and Réseau cardiométabolique, diabète & obésité from Fonds de Recherche Québec-Santé (CMDO-FRQS) to TA and CDR. GD was supported by a FRQS graduate fellowship, JR by a FRQS postdoctoral fellowship, GF by an INRA fund for mobility/sabbatical stay, and SF and TA are supported by FRQS senior salary awards.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Stephanie Fulton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demers, G., Roy, J., Machuca-Parra, A.I. et al. Fish oil supplementation alleviates metabolic and anxiodepressive effects of diet-induced obesity and associated changes in brain lipid composition in mice. Int J Obes 44, 1936–1945 (2020). https://doi.org/10.1038/s41366-020-0623-6

Download citation

Further reading

Search

Quick links