Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical Research

Obesity and cardiovascular disease in women

Abstract

As the prevalence of obesity continues to grow worldwide, the health and financial burden of obesity-related comorbidities grows too. Cardiovascular disease (CVD) is clearly associated with increased adiposity. Importantly, women are at higher risk of CVD when obese and insulin resistant, in particular at higher risk of developing heart failure with preserved ejection fraction and ischemic heart disease. Increased aldosterone and mineralocorticoid receptor activation, aberrant estrogenic signaling and elevated levels of androgens are among some of the proposed mechanisms explaining the heightened CVD risk. In addition to traditional cardiovascular risk factors, understanding nontraditional risk factors specific to women, like excess weight gain during pregnancy, preeclampsia, gestational diabetes, and menopause are central to designing personalized interventions aimed to curb the epidemic of CVD. In the present review, we examine the available evidence supporting a differential cardiovascular impact of increased adiposity in women compared with men and the proposed pathophysiological mechanisms behind these differences. We also discuss women-specific cardiovascular risk factors associated with obesity and insulin resistance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cardiovascular disease manifestations and risk factors in obese women.

References

  1. 1.

    Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659–724.

    Article  Google Scholar 

  2. 2.

    Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. Lancet. 2016;387:1377–96.

    Article  Google Scholar 

  3. 3.

    Kim DD, Basu A. Estimating the medical care costs of obesity in the United States: systematic review, meta-analysis, and empirical analysis. Value Health. 2016;19:602–13.

    PubMed  Article  Google Scholar 

  4. 4.

    Ballotari P, Venturelli F, Greci M, Giorgi Rossi P, Manicardi V. Sex Differences in the effect of Type 2 diabetes on major cardiovascular diseases: results from a population-based study in Italy. Int J Endocrinol. 2017;2017:6039356.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Peters SA, Huxley RR, Sattar N, Woodward M. Sex differences in the excess risk of cardiovascular diseases associated with Type 2 diabetes: potential explanations and clinical implications. Current Cardiovasc Risk Rep. 2015;9:36.

    Article  Google Scholar 

  6. 6.

    Peters SA, Huxley RR, Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet. 2014;383:1973–80.

    PubMed  Article  Google Scholar 

  7. 7.

    Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Collaborators GO. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  9. 9.

    Jones-Smith JC, Gordon-Larsen P, Siddiqi A, Popkin BM. Cross-national comparisons of time trends in overweight inequality by socioeconomic status among women using repeated cross-sectional surveys from 37 developing countries, 1989-2007. Am J Epidemiol. 2011;173:667–75.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Howe LD, Patel R, Galobardes B. Commentary: tipping the balance: wider waistlines in men but wider inequalities in women. Int J Epidemiol. 2010;39:404–5.

    PubMed  Article  Google Scholar 

  11. 11.

    Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet. 2006;368:666–78.

    PubMed  Article  Google Scholar 

  12. 12.

    Romero-Corral A, Somers VK, Sierra-Johnson J, Korenfeld Y, Boarin S, Korinek J, et al. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J. 2009;31:737–46.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Chen G-C, Arthur R, Iyengar NM, Kamensky V, Xue X, Wassertheil-Smoller S, et al. Association between regional body fat and cardiovascular disease risk among postmenopausal women with normal body mass index. Eur Heart J. 2019;40:2849–55.

    PubMed  Article  Google Scholar 

  14. 14.

    Ridderstrale M, Gudbjornsdottir S, Eliasson B, Nilsson PM, Cederholm J. Obesity and cardiovascular risk factors in type 2 diabetes: results from the Swedish National Diabetes Register. J Intern Med. 2006;259:314–22.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011;34:1249–57.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Williams K, Tchernof A, Hunt KJ, Wagenknecht LE, Haffner SM, Sniderman AD. Diabetes, abdominal adiposity, and atherogenic dyslipoproteinemia in women compared with men. Diabetes. 2008;57:3289–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Du T, Fernandez C, Barshop R, Guo Y, Krousel-Wood M, Chen W, et al. Sex differences in cardiovascular risk profile from childhood to midlife between individuals who did and did not develop diabetes at follow-up: the Bogalusa Heart Study. Diabetes Care. 2019;42:635–43.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Garcia M, Mulvagh SL, Bairey Merz CN, Buring JE, Manson JE. Cardiovascular disease in women: clinical perspectives. Circ Res. 2016;118:1273–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017;356:j1.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Ramsay JE, Ferrell WR, Crawford L, Wallace AM, Greer IA, Sattar N. Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. J Clin Endocrinol Metab. 2002;87:4231–7.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    To WW, Cheung W. The relationship between weight gain in pregnancy, birth-weight and postpartum weight retention. Aust N Z J Obstet Gynaecol. 1998;38:176–9.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Vesco KK, Dietz PM, Rizzo J, Stevens VJ, Perrin NA, Bachman DJ, et al. Excessive gestational weight gain and postpartum weight retention among obese women. Obstet Gynecol. 2009;114:1069–75.

    PubMed  Article  Google Scholar 

  23. 23.

    Kew S, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B, et al. Cardiometabolic implications of postpartum weight changes in the first year after delivery. Diabetes Care. 2014;37:1998–2006.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Fraser A, Tilling K, Macdonald-Wallis C, Hughes R, Sattar N, Nelson SM, et al. Associations of gestational weight gain with maternal body mass index, waist circumference, and blood pressure measured 16 y after pregnancy: the Avon Longitudinal Study of Parents and Children (ALSPAC). American J Clin Nutr. 2011;93:1285–92.

    CAS  Article  Google Scholar 

  25. 25.

    Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B, Speizer FE, et al. Weight, weight change, and coronary heart disease in women: risk within the’normal’weight range. JAMA. 1995;273:461–5.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012;36:56–9.

    PubMed  Article  Google Scholar 

  27. 27.

    Bhattacharya S, Campbell DM, Liston WA, Bhattacharya S. Effect of body mass index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health. 2007;7:168.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Bodnar LM, Ness RB, Markovic N, Roberts JM. The risk of preeclampsia rises with increasing prepregnancy body mass index. Ann Epidemiol. 2005;15:475–82.

    PubMed  Article  Google Scholar 

  29. 29.

    Spradley FT, Palei AC, Granger JP. Increased risk for the development of preeclampsia in obese pregnancies: weighing in on the mechanisms. Am J Physiol Regul Integr Comp Physiol. 2015;309:R1326–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Wolf M, Kettyle E, Sandler L, Ecker JL, Roberts J, Thadhani R. Obesity and preeclampsia: the potential role of inflammation. Obstet Gynecol. 2001;98:757–62.

    CAS  PubMed  Google Scholar 

  31. 31.

    Rodie VA, Freeman DJ, Sattar N, Greer IA. Pre-eclampsia and cardiovascular disease: metabolic syndrome of pregnancy? Atherosclerosis. 2004;175:189–202.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Honigberg MC, Zekavat SM, Aragam K, Klarin D, Bhatt DL, Scott NS, et al. Long-term cardiovascular risk in women with hypertension during pregnancy. J Am Coll Cardiol. 2019;74:2743–54.

    PubMed  Article  Google Scholar 

  33. 33.

    Bellamy L, Casas J-P, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335:974.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Association AD. 14. Management of diabetes in pregnancy: standards of medical care in diabetes—2019. Diabetes Care. 2019;42:S165–72.

    Article  Google Scholar 

  35. 35.

    Vrachnis N, Augoulea A, Iliodromiti Z, Lambrinoudaki I, Sifakis S, Creatsas G. Previous gestational diabetes mellitus and markers of cardiovascular risk. Int J Endocrinol. 2012;2012:458610.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Villamor E, Cnattingius S. Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. Lancet. 2006;368:1164–70.

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ratner RE, Christophi CA, Metzger BE, Dabelea D, Bennett PH, Pi-Sunyer X, et al. Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. J Clin Endocrinol Metab. 2008;93:4774–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Bellamy L, Casas J-P, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373:1773–9.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Wassertheil-Smoller S, Hendrix S, Limacher M, Heiss G, Kooperberg C, Baird A, et al. Effect of estrogen plus progestin on stroke in postmenopausal women: the Women’s Health Initiative: a randomized trial. JAMA. 2003;289:2673–84.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Study TWsHI. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials. 1998;19:61–109.

    Article  Google Scholar 

  41. 41.

    Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA. 2004;291:1701–12.

  42. 42.

    Marjoribanks J, Farquhar C, Roberts H, Lethaby A. Long term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 2012;1:CD004143.

    Google Scholar 

  43. 43.

    Huang Z, Willett WC, Manson JE, Rosner B, Stampfer MJ, Speizer FE, et al. Body weight, weight change, and risk for hypertension in women. Ann Intern Med. 1998;128:81–8.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Wilson PW, D’Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162:1867–72.

    PubMed  Article  Google Scholar 

  45. 45.

    Menazza S, Murphy E. The expanding complexity of estrogen receptor signaling in the cardiovascular system. Circ Res. 2016;118:994–1007.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Barton M, Meyer MR. Postmenopausal hypertension: mechanisms and therapy. Hypertension. 2009;54:11–8.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Channanath AM, Farran B, Behbehani K, Thanaraj TA. Association between body mass index and onset of hypertension in men and women with and without diabetes: a cross-sectional study using national health data from the State of Kuwait in the Arabian Peninsula. BMJ Open. 2015;5:e007043.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Gu Q, Burt VL, Paulose-Ram R, Dillon CF. Gender differences in hypertension treatment, drug utilization patterns, and blood pressure control among US adults with hypertension: data from the National Health and Nutrition Examination Survey 1999–2004. Am J Hypertens. 2008;21:789–98.

    PubMed  Article  Google Scholar 

  49. 49.

    Peters SA, Huxley RR, Sattar N, Woodward M. Sex differences in the excess risk of cardiovascular diseases associated with type 2 diabetes: potential explanations and clinical implications. Curr Cardiovasc Risk Rep. 2015;9:36.

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Kannel WB, Wilson PW. Risk factors that attenuate the female coronary disease advantage. Arch Intern Med. 1995;155:57–61.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Lyon A, Jackson EA, Kalyani RR, Vaidya D, Kim C. Sex-specific differential in risk of diabetes-related macrovascular outcomes. Current Diabetes Rep. 2015;15:85.

    Article  CAS  Google Scholar 

  52. 52.

    Al-Salameh A, Chanson P, Bucher S, Ringa V, Becquemont L. Cardiovascular disease in type 2 diabetes: a review of sex-related differences in predisposition and prevention. Mayo Clin Proc. 2019;94:287–308.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Williams K, Tchernof A, Hunt KJ, Wagenknecht LE, Haffner SM, Sniderman AD. Diabetes, abdominal adiposity, and atherogenic dyslipoproteinemia in women compared with men. Diabetes. 2008;57:3289–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MS, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7:687–98.

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017;136:1840–50.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Drager LF, Pedrosa RP, Diniz PM, Diegues-Silva L, Marcondes B, Couto RB, et al. The effects of continuous positive airway pressure on prehypertension and masked hypertension in men with severe obstructive sleep apnea. Hypertension. 2011;57:549–55.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Mokhlesi B, Ham SA, Gozal D. The effect of sex and age on the comorbidity burden of OSA: an observational analysis from a large nationwide US health claims database. Eur Respir J. 2016;47:1162–9.

    PubMed  Article  Google Scholar 

  58. 58.

    Matsumoto T, Murase K, Tabara Y, Gozal D, Smith D, Minami T, et al. Impact of sleep characteristics and obesity on diabetes and hypertension across genders and menopausal status: the Nagahama study. Sleep. 2018;41:zsy071.

    Article  Google Scholar 

  59. 59.

    Mashaqi SGD. The impact of obstructive sleep apnea and PAP therapy on all-cause and cardiovascular mortality based on age and gender—a literature review. Respir Investig. 2019;58:7–20.

    PubMed  Article  Google Scholar 

  60. 60.

    Block A, Wynne JW, Boysen PG. Sleep-disordered breathing and nocturnal oxygen desaturation in postmenopausal women. Am J Med. 1980;69:75–9.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Bixler EO, Vgontzas AN, Lin H-M, Ten Have T, Rein J, Vela-Bueno A, et al. Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med. 2001;163:608–13.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–5.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Young T, Finn L. Epidemiological insights into the public health burden of sleep disordered breathing: sex differences in survival among sleep clinic patients. Thorax. 1998;53:S16–9.

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Greenberg-Dotan S, Reuveni H, Simon-Tuval T, Oksenberg A, Tarasiuk A. Gender differences in morbidity and health care utilization among adult obstructive sleep apnea patients. Sleep. 2007;30:1173–80.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Baldwin CM, Kapur VK, Holberg CJ, Rosen C, Nieto FJ, Group SHHS. Associations between gender and measures of daytime somnolence in the Sleep Heart Health Study. Sleep. 2004;27:305–11.

    PubMed  Article  Google Scholar 

  66. 66.

    Valipour A, Lothaller H, Rauscher H, Zwick H, Burghuber OC, Lavie P. Gender-related differences in symptoms of patients with suspected breathing disorders in sleep: a clinical population study using the sleep disorders questionnaire. Sleep. 2007;30:312–9.

    PubMed  Article  Google Scholar 

  67. 67.

    Marin JM, Agusti A, Villar I, Forner M, Nieto D, Carrizo SJ, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA. 2012;307:2169–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O’Connor GT, Resnick HE, et al. Obstructive sleep apnea–hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med. 2010;182:269–77.

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31:1071–8.

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365:1046–53.

    PubMed  Article  Google Scholar 

  71. 71.

    Marshall NS, Wong KK, Liu PY, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep. 2008;31:1079–85.

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Campos-Rodriguez F, Martinez-Garcia MA, de la Cruz-Moron I, Almeida-Gonzalez C, Catalan-Serra P, Montserrat JM. Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure treatment: a cohort study. Ann Intern Med. 2012;156:115–22.

    PubMed  Article  Google Scholar 

  73. 73.

    Iftikhar IH, Valentine CW, Bittencourt LR, Cohen DL, Fedson AC, Gíslason T, et al. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: a meta-analysis. J Hypertens. 2014;32:2341.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Montesi SB, Edwards BA, Malhotra A, Bakker JP. The effect of continuous positive airway pressure treatment on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Clin Sleep Med. 2012;8:587–96.

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Yu J, Zhou Z, McEvoy RD, Anderson CS, Rodgers A, Perkovic V, et al. Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea: a systematic review and meta-analysis. JAMA. 2017;318:156–66.

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375:919–31.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Barbé F, Durán-Cantolla J, Sánchez-de-la-Torre M, Martínez-Alonso M, Carmona C, Barceló A, et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;307:2161–8.

    PubMed  Article  Google Scholar 

  78. 78.

    Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunström E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA randomized controlled trial. Am J Respir Crit Care Med. 2016;194:613–20.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Martinez-Garcia MA, Campos-Rodriguez F, Javaheri S, Gozal D. Pro: continuous positive airway pressure and cardiovascular prevention. Eur Respir Soc. 2018;51:2018.

    Google Scholar 

  80. 80.

    Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ, DuPont JJ, et al. Sex-specific mechanisms of resistance vessel endothelial dysfunction induced by cardiometabolic risk factors. J Am Heart Assoc. 2018;7:e007675.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci. 2017;131:833–46.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Stokes J III, Kannel WB, Wolf PA, Cupples LA, D’Agostino RB. The relative importance of selected risk factors for various manifestations of cardiovascular disease among men and women from 35 to 64 years old: 30 years of follow-up in the Framingham Study. Circulation. 1987;75:V65–73.

    PubMed  Google Scholar 

  83. 83.

    Divens LL, Chatmon BN. Cardiovascular disease management in minority women: special considerations. Crit Care Nurs Clin N Am. 2019;31:39–47.

    Article  Google Scholar 

  84. 84.

    Sciomer S, Moscucci F, Maffei S, Gallina S, Mattioli A. Prevention of cardiovascular risk factors in women: the lifestyle paradox and stereotypes we need to defeat. Eur J Prev Cardiol. 2018;26:2047487318810560.

    Google Scholar 

  85. 85.

    Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Investig. 2019;129:3990–4000.

    PubMed  Article  Google Scholar 

  86. 86.

    Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68:975–81.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507–24.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Witberg G, Ayers CR, Turer AT, Lev E, Kornowski R, de Lemos J, et al. Relation of adiponectin to all-cause mortality, cardiovascular mortality, and major adverse cardiovascular events (from the Dallas Heart Study). Am J Cardiol. 2016;117:574–9.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Hascoet S, Elbaz M, Bongard V, Bouisset F, Verdier C, Vindis C, et al. Adiponectin and long-term mortality in coronary artery disease participants and controls. Arterioscler Thromb Vasc Biol. 2013;33:e19–29.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Ortega Moreno L, Copetti M, Fontana A, De Bonis C, Salvemini L, Trischitta V, et al. Evidence of a causal relationship between high serum adiponectin levels and increased cardiovascular mortality rate in patients with type 2 diabetes. Cardiovasc Diabetol. 2016;15:17.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Scarale MG, Fontana A, Trischitta V, Copetti M, Menzaghi C. Circulating adiponectin levels are paradoxically associated with mortality rate: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2018;104:1357–68.

    Article  Google Scholar 

  93. 93.

    Yaghootkar H, Lamina C, Scott RA, Dastani Z, Hivert MF, Warren LL, et al. Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes. Diabetes. 2013;62:3589–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Borges MC, Lawlor DA, de Oliveira C, White J, Horta BL, Barros AJ. Role of adiponectin in coronary heart disease risk: a Mendelian Randomization Study. Circ Res. 2016;119:491–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Lindberg S, Jensen JS, Hoffmann S, Pedersen SH, Iversen AZ, Galatius S, et al. Interplay between adiponectin and pro-atrial natriuretic peptide and prognosis in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2015;116:1340–5.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    York MK, Gupta DK, Reynolds CF, Farber-Eger E, Wells QS, Bachmann KN, et al. B-type natriuretic peptide levels and mortality in patients with and without heart failure. J Am Coll Cardiol. 2018;71:2079–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Kistorp C, Faber J, Galatius S, Gustafsson F, Frystyk J, Flyvbjerg A, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation. 2005;112:1756–62.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Menzaghi C, Xu M, Salvemini L, De Bonis C, Palladino G, Huang T, et al. Circulating adiponectin and cardiovascular mortality in patients with type 2 diabetes mellitus: evidence of sexual dimorphism. Cardiovasc Diabetol. 2014;13:130.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1:1155–61.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Lew J, Sanghavi M, Ayers CR, McGuire DK, Omland T, Atzler D, et al. Sex-based differences in cardiometabolic biomarkers. Circulation. 2017;135:544–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Lau ES, Paniagua SM, Guseh JS, Bhambhani V, Zanni MV, Courchesne P, et al. Sex differences in circulating biomarkers of cardiovascular disease. J Am Coll Cardiol. 2019;74:1543–53.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Wallace AM, McMahon AD, Packard CJ, Kelly A, Shepherd J, Gaw A, et al. Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation. 2001;104:3052–6.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Soderberg S, Ahren B, Stegmayr B, Johnson O, Wiklund PG, Weinehall L, et al. Leptin is a risk marker for first-ever hemorrhagic stroke in a population-based cohort. Stroke. 1999;30:328–37.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Zahner GJ, Ramirez JL, Spaulding KA, Khetani SA, Gasper WJ, Grunfeld C, et al. Leptinemia is associated with peripheral artery disease. J Surg Res. 2019;238:48–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Huby A-C, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132:2134–45.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Huby A-C, Otvos L, Belin de Chantemèle EJ. Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension. 2016;67:1020–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Anand SS, Yusuf S. C-reactive protein is a bystander of cardiovascular disease. Eur Heart J. 2010;31:2092–6.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–43.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Khera A, McGuire DK, Murphy SA, Stanek HG, Das SR, Vongpatanasin W, et al. Race and gender differences in C-reactive protein levels. J Am Coll Cardiol. 2005;46:464–9.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Santos AC, Lopes C, Guimaraes JT, Barros H. Central obesity as a major determinant of increased high-sensitivity C-reactive protein in metabolic syndrome. Int J Obes. 2005;29:1452–6.

    CAS  Article  Google Scholar 

  111. 111.

    Menazza S, Sun J, Appachi S, Chambliss KL, Kim SH, Aponte A, et al. Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion injury in mice. J Mol Cell Cardiol. 2017;107:41–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Murphy E. Estrogen signaling and cardiovascular disease. Circ Res. 2011;109:687–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Prabhushankar R, Krueger C, Manrique C. Membrane estrogen receptors: their role in blood pressure regulation and cardiovascular disease. Current Hypertens Rep. 2014;16:408.

    Article  CAS  Google Scholar 

  114. 114.

    Coutinho T. Arterial stiffness and its clinical implications in women. Can J Cardiol. 2014;30:756–64.

    PubMed  Article  Google Scholar 

  115. 115.

    Chu SH, Goldspink P, Kowalski J, Beck J, Schwertz DW. Effect of estrogen on calcium-handling proteins, beta-adrenergic receptors, and function in rat heart. Life Sci. 2006;79:1257–67.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Kim JK, Pedram A, Razandi M, Levin ER. Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem. 2006;281:6760–7.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Pugach EK, Blenck CL, Dragavon JM, Langer SJ, Leinwand LA. Estrogen receptor profiling and activity in cardiac myocytes. Mol Cell Endocrinol. 2016;431:62–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Alencar AK, da Silva JS, Lin M, Silva AM, Sun X, Ferrario CM, et al. Effect of age, estrogen status, and late-life GPER activation on cardiac structure and function in the Fischer344×Brown Norway Female Rat. J Gerontol Ser A. 2017;72:152–62.

    CAS  Article  Google Scholar 

  119. 119.

    Bopassa JC, Eghbali M, Toro L, Stefani E. A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2010;298:H16–23.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Deschamps AM, Murphy E. Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am J Physiol Heart Circul Physiol. 2009;297:H1806–13.

    CAS  Article  Google Scholar 

  121. 121.

    Steinberg HO, Paradisi G, Cronin J, Crowde K, Hempfling A, Hook G, et al. Type II diabetes abrogates sex differences in endothelial function in premenopausal women. Circulation. 2000;101:2040–6.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Koh KK, Kang MH, Jin DK, Lee SK, Ahn JY, Hwang HY, et al. Vascular effects of estrogen in type II diabetic postmenopausal women. J Am Coll Cardiol. 2001;38:1409–15.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Manrique-Acevedo C, Ramirez-Perez FI, Padilla J, Vieira-Potter VJ, Aroor AR, Barron BJ, et al. Absence of endothelial eralpha results in arterial remodeling and decreased stiffness in western diet-fed male mice. Endocrinology. 2017;158:1875–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Manrique C, Lastra G, Ramirez-Perez FI, Haertling D, DeMarco VG, Aroor AR, et al. Endothelial estrogen receptor-alpha does not protect against vascular stiffness induced by western diet in female mice. Endocrinology. 2016;157:1590–600.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Padilla J, Woodford ML, Lastra-Gonzalez G, Martinez-Diaz V, Fujie S, Yang Y, et al. Sexual dimorphism in obesity-associated endothelial ENaC activity and stiffening in mice. Endocrinology. 2019;160:2918–28.

    PubMed  Article  Google Scholar 

  126. 126.

    Yanes LL, Romero DG, Moulana M, Lima R, Davis DD, Zhang H, et al. Cardiovascular-renal and metabolic characterization of a rat model of polycystic ovary syndrome. Gend Med. 2011;8:103–15.

    PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Lee CG, Carr MC, Murdoch SJ, Mitchell E, Woods NF, Wener MH, et al. Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J Clin Endocrinol Metab. 2009;94:1104–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Yanes Cardozo LL, Romero DG, Reckelhoff JF. Cardiometabolic features of polycystic ovary syndrome: role of androgens. Physiology. 2017;32:357–66.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Wang C, Zhang W, Wang Y, Wan H, Chen Y, Xia F, et al. Novel associations between sex hormones and diabetic vascular complications in men and postmenopausal women: a cross-sectional study. Cardiovasc Diabetol. 2019;18:97.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. 130.

    Zhao D, Guallar E, Ouyang P, Subramanya V, Vaidya D, Ndumele CE, et al. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. J Am Coll Cardiol. 2018;71:2555–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Wenner MM, Taylor HS, Stachenfeld NS. Endothelin B receptor contribution to peripheral microvascular function in women with polycystic ovary syndrome. J Physiol. 2011;589:4671–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Wenner MM, Taylor HS, Stachenfeld NS. Androgens influence microvascular dilation in PCOS through ET-A and ET-B receptors. Am J Physiol Endocrinol Metab. 2013;305:E818–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Reckelhoff JF. Androgens and blood pressure control: sex differences and mechanisms. Mayo Clin Proc. 2019;94:536–43.

    CAS  PubMed  Google Scholar 

  134. 134.

    Faulkner JL, Kennard S, Huby A-C, Antonova G, Lu Q, Jaffe IZ, et al. Progesterone predisposes females to obesity-associated leptin-mediated endothelial dysfunction via upregulating endothelial MR (mineralocorticoid receptor) expression. Hypertension. 2019;74:678–86.

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Tuck ML, Sowers J, Dornfeld L, Kledzik G, Maxwell M. The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. N Engl J Med. 1981;304:930–3.

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Nayyar M, Lastra G, Acevedo CM. Mineralocorticoids and cardiovascular disease in females with insulin resistance and obesity. Curr Hypertens Rep. 2018;20:88.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. 137.

    Rossi GP, Sacchetto A, Pavan E, Scognamiglio R, Pietra M. Left ventricular systolic function in primary aldosteronism and hypertension. J Hypertens. 1998;16:2075–7.

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Rocchini AP, Katch VL, Grekin R, Moorehead C, Anderson J. Role for aldosterone in blood pressure regulation of obese adolescents. Am J Cardiol. 1986;57:613–8.

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    DuPont JJ, Jaffe IZ. 30 years of the mineralocorticoid receptor: the role of the mineralocorticoid receptor in the vasculature. J Endocrinol. 2017;234:T67–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Lombès M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet J-P. Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase in the human heart. Circulation. 1995;92:175–82.

    PubMed  Article  Google Scholar 

  141. 141.

    Jaffe IZ, Mendelsohn ME. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ Res. 2005;96:643–50.

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Newfell BG, Iyer LK, Mohammad NN, McGraw AP, Ehsan A, Rosano G, et al. Aldosterone regulates vascular gene transcription via oxidative stress-dependent and -independent pathways. Arterioscler Thromb Vasc Biol. 2011;31:1871–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Moss ME, Carvajal B, Jaffe IZ. The endothelial mineralocorticoid receptor: contributions to sex differences in cardiovascular disease. Pharmacol Ther. 2019;203:107387.

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Bretschneider M, Busch B, Mueller D, Nolze A, Schreier B, Gekle M, et al. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. FASEB J. 2016;30:1610–22.

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Cooper JN, Tepper P, Barinas-Mitchell E, Woodard GA, Sutton-Tyrrell K. Serum aldosterone is associated with inflammation and aortic stiffness in normotensive overweight and obese young adults. Clin Exp Hypertens. 2012;34:63–70.

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59:1069–78.

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Bentley-Lewis R, Adler GK, Perlstein T, Seely EW, Hopkins PN, Williams GH, et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab. 2007;92:4472–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Goodfriend TL, Kelley DE, Goodpaster BH, Winters SJ. Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obesity Res. 1999;7:355–62.

    CAS  Article  Google Scholar 

  149. 149.

    Nguyen Dinh Cat A, Briones AM, Callera GE, Yogi A, He Y, Montezano AC, et al. Adipocyte-derived factors regulate vascular smooth muscle cells through mineralocorticoid and glucocorticoid receptors. Hypertension. 2011;58:479–88.

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Huby A-C, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132:2134–45.

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Huby AC, Otvos L Jr, Belin de Chantemele EJ. Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension. 2016;67:1020–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Manrique C, DeMarco VG, Aroor AR, Mugerfeld I, Garro M, Habibi J, et al. Obesity and insulin resistance induce early development of diastolic dysfunction in young female mice fed a Western diet. Endocrinology. 2013;154:3632–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Bostick B, Habibi J, DeMarco VG, Jia G, Domeier TL, Lambert MD, et al. Mineralocorticoid receptor blockade prevents Western diet-induced diastolic dysfunction in female mice. Am J Physiol Heart Circ Physiol. 2015;308:H1126–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ, DuPont JJ, et al. Sex‐specific mechanisms of resistance vessel endothelial dysfunction induced by cardiometabolic risk factors. J Am Heart Assoc. 2018;7:e007675.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  155. 155.

    DeMarco VG, Habibi J, Jia G, Aroor AR, Ramirez-Perez FI, Martinez-Lemus LA, et al. Low-dose mineralocorticoid receptor blockade prevents western diet-induced arterial stiffening in female mice. Hypertension. 2015;66:99–107.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Jia G, Habibi J, Aroor AR, Martinez-Lemus LA, DeMarco VG, Ramirez-Perez FI, et al. Endothelial mineralocorticoid receptor mediates diet induced aortic stiffness in females. Circ Res. 2016;118:935–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Hwang M-H, Yoo J-K, Luttrell M, Kim H-K, Meade TH, English M, et al. Mineralocorticoid receptors modulate vascular endothelial function in human obesity. Clin Sci. 2013;125:513–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Garg R, Hurwitz S, Williams GH, Hopkins PN, Adler GK. Aldosterone production and insulin resistance in healthy adults. J Clin Endocrinol Metab. 2010;95:1986–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Kathiresan S, Larson MG, Benjamin EJ, Corey D, Murabito JM, Fox CS, et al. Clinical and genetic correlates of serum aldosterone in the community: the Framingham Heart Study. Am J Hypertens. 2005;18:657–65.

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Shukri MZ, Tan JW, Manosroi W, Pojoga LH, Rivera A, Williams JS, et al. Biological sex modulates the adrenal and blood pressure responses to angiotensin II. Hypertension. 2018;71:1083–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45:356–62.

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Shah NS, Lloyd-Jones DM, O’Flaherty M, Capewell S, Kershaw K, Carnethon M, et al. Trends in cardiometabolic mortality in the United States, 1999–2017. JAMA. 2019;322:780–2.

    PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Wilmot KA, O’Flaherty M, Capewell S, Ford ES, Vaccarino V. Coronary heart disease mortality declines in the United States from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation. 2015;132:997–1002.

    PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67.

    PubMed  Article  Google Scholar 

  165. 165.

    Anand SS, Islam S, Rosengren A, Franzosi MG, Steyn K, Yusufali AH, et al. Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J. 2008;29:932–40.

    PubMed  Article  Google Scholar 

  166. 166.

    Vikulova DN, Grubisic M, Zhao Y, Lynch K, Humphries KH, Pimstone SN, et al. Premature atherosclerotic cardiovascular disease: trends in incidence, risk factors, and sex-related differences, 2000 to 2016. J Am Heart Assoc. 2019;8:e012178.

    PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Gehrie ER, Reynolds HR, Chen AY, Neelon BH, Roe MT, Gibler WB, et al. Characterization and outcomes of women and men with non–ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: results from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines (CRUSADE) quality improvement initiative. Am Heart J. 2009;158:688–94.

    PubMed  Article  Google Scholar 

  168. 168.

    Reynolds HR, Srichai MB, Iqbal SN, Slater JN, Mancini GJ, Feit F, et al. Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation. 2011;124:1414–25.

    PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Sharaf B, Wood T, Shaw L, Johnson BD, Kelsey S, Anderson RD, et al. Adverse outcomes among women presenting with signs and symptoms of ischemia and no obstructive coronary artery disease: findings from the National Heart, Lung, and Blood Institute–sponsored Women’s Ischemia Syndrome Evaluation (WISE) angiographic core laboratory. Am Heart J. 2013;166:134–41.

    PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112:2254–62.

    PubMed  Article  Google Scholar 

  171. 171.

    Taqueti VR, Shaw LJ, Cook NR, Murthy VL, Shah NR, Foster CR, et al. Excess cardiovascular risk in women relative to men referred for coronary angiography is associated with severely impaired coronary flow reserve, not obstructive disease. Circulation. 2017;135:566–77.

    PubMed  Article  Google Scholar 

  172. 172.

    Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129:2518–27.

    PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000;343:16–22.

    CAS  PubMed  Article  Google Scholar 

  174. 174.

    Merz CN. The Yentl syndrome is alive and well. Eur Heart J. 2011;32:1313–5.

    PubMed  Article  Google Scholar 

  175. 175.

    Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305–13.

    PubMed  PubMed Central  Article  Google Scholar 

  176. 176.

    Reddy YN, Borlaug BA. Heart failure with preserved ejection fraction. Curr Probl Cardiol. 2016;41:145–88.

    PubMed  Article  Google Scholar 

  177. 177.

    Kitzman DW, Shah SJ. The HFpEF obesity phenotype: the elephant in the room. J Am Coll Cardiol. 2016;68:200–3.

    PubMed  Article  Google Scholar 

  178. 178.

    Meyer S, Brouwers FP, Voors AA, Hillege HL, de Boer RA, Gansevoort RT, et al. Sex differences in new-onset heart failure. Clin Res Cardiol. 2015;104:342–50.

    PubMed  Article  Google Scholar 

  179. 179.

    Reddy YNV, Lewis GD, Shah SJ, Obokata M, Abou-Ezzedine OF, Fudim M, et al. Characterization of the obese phenotype of heart failure with preserved ejection fraction: a RELAX Trial Ancillary Study. Mayo Clin Proc. 2019;94:1199–209.

    PubMed  Article  Google Scholar 

  180. 180.

    Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease etiology and risk factors to heart failure with preserved or reduced ejection fraction: insights from the national heart, lung, and blood institute’s Framingham heart study. Circulation. 2009;119:3070.

    PubMed  PubMed Central  Article  Google Scholar 

  181. 181.

    Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6:701–9.

    PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Kim HL, Kim MA, Oh S, Kim M, Park SM, Yoon HJ, et al. Sex difference in the association between metabolic syndrome and left ventricular diastolic dysfunction. Metab Syndr Relat Disord. 2016;14:507–12.

    PubMed  Article  Google Scholar 

  183. 183.

    Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11.

    PubMed  PubMed Central  Article  Google Scholar 

  184. 184.

    Chow B, Rabkin SW. The relationship between arterial stiffness and heart failure with preserved ejection fraction: a systemic meta-analysis. Heart Fail Rev. 2015;20:291–303.

    PubMed  Article  Google Scholar 

  185. 185.

    De Angelis L, Millasseau SC, Smith A, Viberti G, Jones RH, Ritter JM, et al. Sex differences in age-related stiffening of the aorta in subjects with type 2 diabetes. Hypertension. 2004;44:67–71.

    PubMed  Article  CAS  Google Scholar 

  186. 186.

    Kim HL, Lee JM, Seo JB, Chung WY, Kim SH, Zo JH, et al. The effects of metabolic syndrome and its components on arterial stiffness in relation to gender. J Cardiol. 2015;65:243–9.

    PubMed  Article  Google Scholar 

  187. 187.

    Gottsater M, Lanne T, Nilsson PM. Predictive markers of abdominal aortic stiffness measured by echo-tracking in subjects with varying insulin sensitivity. J Hum Hypertens. 2014;28:456–60.

    CAS  PubMed  Article  Google Scholar 

  188. 188.

    Beale AL, Nanayakkara S, Kaye DM. Impact of sex on ventricular-vascular stiffness and long-term outcomes in heart failure with preserved ejection fraction: TOPCAT trial substudy. J Am Heart Assoc. 2019;8:e012190.

    PubMed  PubMed Central  Article  Google Scholar 

  189. 189.

    Landahl S, Bengtsson C, Sigurdsson JA, Svanborg A, Svärdsudd K. Age-related changes in blood pressure. Hypertension. 1986;8:1044–9.

    CAS  PubMed  Article  Google Scholar 

  190. 190.

    Riedinger MS, Dracup KA, Brecht M-L, Padilla G, Sarna L, Ganz PA. Quality of life in patients with heart failure: do gender differences exist? Heart Lung. 2001;30:105–16.

    CAS  PubMed  Article  Google Scholar 

  191. 191.

    Baker SJBSL, Huster GA. Quality of life in women with heart failure. Health Care Women Int. 1998;19:217–29.

    PubMed  Article  Google Scholar 

  192. 192.

    Melloni C, Berger JS, Wang TY, Gunes F, Stebbins A, Pieper KS, et al. Representation of women in randomized clinical trials of cardiovascular disease prevention. Circ Cardiovasc Qual Outcomes. 2010;3:135–42.

    PubMed  Article  Google Scholar 

  193. 193.

    Aimo A, Vergaro G, Barison A, Maffei S, Borrelli C, Morrone D, et al. Sex-related differences in chronic heart failure. Int J Cardiol. 2018;255:145–51.

    PubMed  Article  Google Scholar 

  194. 194.

    Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, et al. Effect of Spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trialspironolactone in patients with heart failure. JAMA. 2013;309:781–91.

    CAS  PubMed  Article  Google Scholar 

  195. 195.

    Merrill M, Sweitzer NK, Lindenfeld J, Kao DP. Sex differences in outcomes and responses to spironolactone in heart failure with preserved ejection fraction: a secondary analysis of TOPCAT trial. JACC Heart Fail. 2019;7:228–38.

    PubMed  PubMed Central  Article  Google Scholar 

  196. 196.

    Kurvers H, Van der Graaf Y, Blankensteijn J, Visseren F, Eikelboom B, Group SS. Screening for asymptomatic internal carotid artery stenosis and aneurysm of the abdominal aorta: comparing the yield between patients with manifest atherosclerosis and patients with risk factors for atherosclerosis only. J Vasc Surg. 2003;37:1226–33.

    CAS  PubMed  Article  Google Scholar 

  197. 197.

    Lee J-Y, Lee S-W, Lee WS, Han S, Park YK, Kwon CH, et al. Prevalence and clinical implications of newly revealed, asymptomatic abnormal ankle-brachial index in patients with significant coronary artery disease. JACC Cardiovasc Interv. 2013;6:1303–13.

    PubMed  Article  Google Scholar 

  198. 198.

    Leertouwer TC, Pattynama PM, Van Den, Berg-Huysmans A. Incidental renal artery stenosis in peripheral vascular disease: a case for treatment? Kidney Int. 2001;59:1480–3.

    CAS  PubMed  Article  Google Scholar 

  199. 199.

    Allison MA, Ho E, Denenberg JO, Langer RD, Newman AB, Fabsitz RR, et al. Ethnic-specific prevalence of peripheral arterial disease in the United States. Am J Prev Med. 2007;32:328–33.

    PubMed  Article  Google Scholar 

  200. 200.

    Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69:1465–508.

    PubMed  Article  Google Scholar 

  201. 201.

    McDermott MM, Greenland P, Liu K, Criqui MH, Guralnik JM, Celic L, et al. Sex differences in peripheral arterial disease: leg symptoms and physical functioning. J Am Geriatr So. 2003;51:222–8.

    Article  Google Scholar 

  202. 202.

    Hirsch AT, Allison MA, Gomes AS, Corriere MA, Duval S, Ershow AG, et al. A call to action: women and peripheral artery disease: a scientific statement from the American Heart Association. Circulation. 2012;125:1449–72.

    PubMed  Article  Google Scholar 

  203. 203.

    Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: the GBD 2013 study. Neuroepidemiology. 2015;45:161–76.

    PubMed  PubMed Central  Article  Google Scholar 

  204. 204.

    Barker-Collo S, Bennett DA, Krishnamurthi RV, Parmar P, Feigin VL, Naghavi M, et al. Sex differences in stroke incidence, prevalence, mortality and disability-adjusted life years: results from the Global Burden of Disease Study 2013. Neuroepidemiology. 2015;45:203–14.

    PubMed  PubMed Central  Article  Google Scholar 

  205. 205.

    Howard VJ, Judd SE, Letter AJ, Kleindorfer DO, McClure LA, Safford MM, et al. Abstract P287: sex differences in stroke incidence: the REGARDS study. Am Heart Assoc. 2012.

  206. 206.

    Sealy-Jefferson S, Wing JJ, Sánchez BN, Brown DL, Meurer WJ, Smith MA, et al. Age-and ethnic-specific sex differences in stroke risk. Gend Med. 2012;9:121–8.

    PubMed  PubMed Central  Article  Google Scholar 

  207. 207.

    Saito I, Iso H, Kokubo Y, Inoue M, Tsugane S. Body mass index, weight change and risk of stroke and stroke subtypes: the Japan Public Health Center-based prospective (JPHC) study. Int J Obes. 2011;35:283.

    CAS  Article  Google Scholar 

  208. 208.

    Kurth T, Gaziano JM, Rexrode KM, Kase CS, Cook NR, Manson JE, et al. Prospective study of body mass index and risk of stroke in apparently healthy women. Circulation. 2005;111:1992–8.

    PubMed  Article  Google Scholar 

  209. 209.

    Lu M, Ye W, Adami HO, Weiderpass E. Prospective study of body size and risk for stroke amongst women below age 60. J Intern Med. 2006;260:442–50.

    CAS  PubMed  Article  Google Scholar 

  210. 210.

    Rexrode KM, Hennekens CH, Willett WC, Colditz GA, Stampfer MJ, Rich-Edwards JW, et al. A prospective study of body mass index, weight change, and risk of stroke in women. JAMA. 1997;277:1539–45.

    CAS  PubMed  Article  Google Scholar 

  211. 211.

    Zhang X, Shu X-O, Gao Y-T, Yang G, Li H, Zheng W. General and abdominal adiposity and risk of stroke in Chinese women. Stroke. 2009;40:1098–104.

    PubMed  PubMed Central  Article  Google Scholar 

  212. 212.

    Cornier M-A, Despres J-P, Davis N, Grossniklaus DA, Klein S, Lamarche B, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124:1996–2019.

    PubMed  Article  Google Scholar 

  213. 213.

    Tedrow UB, Conen D, Ridker PM, Cook NR, Koplan BA, Manson JE, et al. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (women’s health study). J Am Coll Cardiol. 2010;55:2319–27.

    PubMed  PubMed Central  Article  Google Scholar 

  214. 214.

    Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53:944–51.

    CAS  PubMed  Article  Google Scholar 

  215. 215.

    Gillum LA, Mamidipudi SK, Johnston SC. Ischemic stroke risk with oral contraceptives: a meta-analysis. JAMA. 2000;284:72–8.

    CAS  PubMed  Article  Google Scholar 

  216. 216.

    Miller EC. Preeclampsia and cerebrovascular disease: the maternal brain at risk. Hypertension. 2019;118:11513.

    Google Scholar 

  217. 217.

    Khalangot M, Tronko M, Kravchenko V, Kulchinska J, Hu G. Body mass index and the risk of total and cardiovascular mortality among patients with type 2 diabetes: a large prospective study in Ukraine. Heart. 2009;95:454–60.

    CAS  PubMed  Article  Google Scholar 

  218. 218.

    Uretsky S, Messerli FH, Bangalore S, Champion A, Cooper-DeHoff RM, Zhou Q, et al. Obesity paradox in patients with hypertension and coronary artery disease. Am J Med. 2007;120:863–70.

    PubMed  Article  Google Scholar 

  219. 219.

    Galal W, van Gestel YR, Hoeks SE, Sin DD, Winkel TA, Bax JJ, et al. The obesity paradox in patients with peripheral arterial disease. Chest. 2008;134:925–30.

    PubMed  Article  Google Scholar 

  220. 220.

    Schmidt D, Salahudeen A. The obesity‐survival paradox in hemodialysis patients: why do overweight hemodialysis patients live longer? Nutrition Clin Pract. 2007;22:11–5.

    Article  Google Scholar 

  221. 221.

    Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38:789–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  222. 222.

    Padwal R, McAlister FA, McMurray JJV, Cowie MR, Rich M, Pocock S, et al. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int J Obes. 2014;38:1110–4.

    Article  Google Scholar 

  223. 223.

    Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115:1428–34.

    PubMed  PubMed Central  Article  Google Scholar 

  224. 224.

    Alpert MA, Lavie CJ, Agrawal H, Aggarwal KB, Kumar SA. Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl Res. 2014;164:345–56.

    CAS  PubMed  Article  Google Scholar 

  225. 225.

    Wang ZJ, Zhou YJ, Galper BZ, Gao F, Yeh RW, Mauri L. Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart. 2015;101:1631–8.

    CAS  PubMed  Article  Google Scholar 

  226. 226.

    Kapoor JR, Heidenreich PA. Obesity and survival in patients with heart failure and preserved systolic function: a U-shaped relationship. Am Heart J. 2010;159:75–80.

    PubMed  Article  Google Scholar 

  227. 227.

    Nagarajan V, Cauthen CA, Starling RC, Tang WHW. Prognosis of morbid obesity patients with advanced heart failure. Congest Heart Fail. 2013;19:160–4.

    CAS  PubMed  Article  Google Scholar 

  228. 228.

    Vest AR, Wu Y, Hachamovitch R, Young JB, Cho L. The heart failure overweight/obesity survival paradox: the missing sex link. JACC Heart Fail. 2015;3:917–26.

    PubMed  PubMed Central  Article  Google Scholar 

  229. 229.

    Iliodromiti S, Celis-Morales CA, Lyall DM, Anderson J, Gray SR, Mackay DF, et al. The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: a cohort study of 296 535 adults of white European descent. Eur Heart J. 2018;39:1514–20.

    PubMed  PubMed Central  Article  Google Scholar 

  230. 230.

    Banack HR, Kaufman JS. Does selection bias explain the obesity paradox among individuals with cardiovascular disease? Ann Epidemiol. 2015;25:342–9.

    PubMed  Article  Google Scholar 

  231. 231.

    Ades PA, Savage PD. The obesity paradox: perception vs knowledge. Mayo Clin Proc. 2010;85:112–4.

    PubMed  PubMed Central  Article  Google Scholar 

  232. 232.

    McAuley PA, Kokkinos PF, Oliveira RB, Emerson BT, Myers JN. Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years. Mayo Clin Proc. 2010;85:115–21.

    PubMed  PubMed Central  Article  Google Scholar 

  233. 233.

    Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  234. 234.

    Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE. 2015;10:e0124599.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  235. 235.

    Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72:1027–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  236. 236.

    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  237. 237.

    Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS ONE. 2016;11:e0154090.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  238. 238.

    Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. 2017;61:1600324.

    Article  CAS  Google Scholar 

  239. 239.

    Tang WW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  240. 240.

    Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17:49–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  241. 241.

    Fuchs HF, Broderick RC, Harnsberger CR, Chang DC, Sandler BJ, Jacobsen GR, et al. Benefits of bariatric surgery do not reach obese men. J Laparoendosc Adv Surg Tech. 2015;25:196–201.

    Article  Google Scholar 

  242. 242.

    Athyros V, Tziomalos K, Karagiannis A, Mikhailidis D. Cardiovascular benefits of bariatric surgery in morbidly obese patients. Obes Rev. 2011;12:515–24.

    CAS  PubMed  Article  Google Scholar 

  243. 243.

    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376:641–51.

    PubMed  PubMed Central  Article  Google Scholar 

  244. 244.

    Vest AR, Heneghan HM, Agarwal S, Schauer PR, Young JB. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart. 2012;98:1763–77.

    PubMed  Article  Google Scholar 

  245. 245.

    Pontiroli AE, Morabito A. Long-term prevention of mortality in morbid obesity through bariatric surgery. a systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann Surg. 2011;253:484–7.

    PubMed  Article  Google Scholar 

  246. 246.

    Christ JP, Falcone T. Bariatric surgery improves hyperandrogenism, menstrual irregularities, and metabolic dysfunction among women with polycystic ovary syndrome (PCOS). Obes Surg. 2018;28:2171–7.

    PubMed  Article  Google Scholar 

  247. 247.

    Escobar-Morreale HF, Botella-Carretero JI, Alvarez-Blasco F, Sancho J, San Millán JL. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2005;90:6364–9.

    CAS  PubMed  Article  Google Scholar 

  248. 248.

    Aminian A, Zajichek A, Arterburn DE, Wolski KE, Brethauer SA, Schauer PR, et al. Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. JAMA. 2019;322:1271–82.

    PubMed Central  Article  Google Scholar 

  249. 249.

    Ducarme G, Revaux A, Rodrigues A, Aissaoui F, Pharisien I, Uzan M. Obstetric outcome following laparoscopic adjustable gastric banding. Int J Gynecol Obstet. 2007;98:244–7.

    CAS  Article  Google Scholar 

  250. 250.

    Patel JA, Patel NA, Thomas RL, Nelms JK, Colella JJ. Pregnancy outcomes after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2008;4:39–45.

    PubMed  Article  Google Scholar 

  251. 251.

    Akhter Z, Rankin J, Ceulemans D, Ngongalah L, Ackroyd R, Devlieger R, et al. Pregnancy after bariatric surgery and adverse perinatal outcomes: a systematic review and meta-analysis. PLoS Med. 2019;16:e1002866.

    PubMed  PubMed Central  Article  Google Scholar 

  252. 252.

    Kwong W, Tomlinson G, Feig DS. Maternal and neonatal outcomes after bariatric surgery; a systematic review and meta-analysis: do the benefits outweigh the risks? Am J Obstet Gynecol. 2018;218:573–80.

    PubMed  Article  Google Scholar 

  253. 253.

    Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:2054–70.

    CAS  PubMed  Article  Google Scholar 

  254. 254.

    Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, Dragano N, et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation. 2007;116:489–96.

    CAS  PubMed  Article  Google Scholar 

  255. 255.

    Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;356:447–58.

    CAS  PubMed  Article  Google Scholar 

  256. 256.

    Bell ML, Son J-Y, Peng RD, Wang Y, Dominici F. Brief report: ambient PM: 2.5: and risk of hospital admissions: do risks differ for men and women? Epidemiology. 2015;26:575–9.

    PubMed  PubMed Central  Article  Google Scholar 

  257. 257.

    Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull. 2017;143:783–822.

    PubMed  PubMed Central  Article  Google Scholar 

  258. 258.

    Hare DL, Toukhsati SR, Johansson P, Jaarsma T. Depression and cardiovascular disease: a clinical review. Eur Heart J. 2014;35:1365–72.

    PubMed  Article  Google Scholar 

  259. 259.

    May HT, Horne BD, Knight S, Knowlton KU, Bair TL, Lappé DL, et al. The association of depression at any time to the risk of death following coronary artery disease diagnosis. Eur Heart J Qual Care Clin Outcomes. 2017;3:296–302.

    PubMed  Article  Google Scholar 

  260. 260.

    Smolderen KG, Strait KM, Dreyer RP, D’Onofrio G, Zhou S, Lichtman JH, et al. Depressive symptoms in younger women and men with acute myocardial infarction: insights from the VIRGO study. J Am Heart Assoc. 2015;4:e001424.

    PubMed  PubMed Central  Google Scholar 

  261. 261.

    Whang W, Kubzansky LD, Kawachi I, Rexrode KM, Kroenke CH, Glynn RJ, et al. Depression and risk of sudden cardiac death and coronary heart disease in women: results from the Nurses’ Health Study. J Am Coll Cardiol. 2009;53:950–8.

    PubMed  PubMed Central  Article  Google Scholar 

  262. 262.

    Dhar AK, Barton DA. Depression and the link with cardiovascular disease. Front Psychiatry. 2016;7:33.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

Funding support CM-A is supported by the National Institutes of Health (NIH) grants R01 HL142770, R21 DK116081-01, K08 HL129074, and the Department of Veterans Affairs (BX003391); JP is supported by NIH grant R01 HL137769; LM-L is supported by NIH grant R01 HL088105; DG is supported by NIH grants R01 HL130984, R01 HL140548, and R01 G061824.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Gozal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manrique-Acevedo, C., Chinnakotla, B., Padilla, J. et al. Obesity and cardiovascular disease in women. Int J Obes 44, 1210–1226 (2020). https://doi.org/10.1038/s41366-020-0548-0

Download citation

Search

Quick links