Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Techniques and Methods

Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats

Abstract

Background/Objectives

Brown adipose tissue (BAT) has gained growing interest as a potential target for treatment of obesity. Currently, the most widely used technique/method for in vivo measurements of BAT activity in humans is 18FDG PET/CT. To supplement these investigations novel radiation-free methods are warranted. Deuterium metabolic imaging (DMI) is a novel modality that combines magnetic resonance spectroscopic (MRS) imaging with deuterium-labelled glucose (2H-glucose). This allows for spatio-temporal and metabolic imaging beyond glucose uptake. We aimed to evaluate if DMI could discriminate glucose metabolism in BAT of cold-acclimatised and thermoneutral rats.

Subjects/Methods

Male Sprague-Dawley rats were housed in a cold environment (9 °C, n = 10) or at thermoneutrality (30 °C, n = 11) for 1 week. For imaging rats were anaesthetized, received a 2H-glucose (1 M, 1.95 g/kg) bolus and DMI was acquired at baseline followed by 20 min time intervals up to 2 h. Furthermore, Dixon MRI was performed for anatomical determination of the interscapular BAT (iBAT) depot along with dynamic contrast enhanced (DCE) MRI to evaluate perfusion.

Results

2H-glucose signal was higher in cold-acclimatised rats compared with thermoneutral rats (p ≤ 0.001) indicating an overall increase in glucose uptake and metabolism. This was in line with a lower fat/water threshold, higher perfusion and increased UCP1 mRNA expression in iBAT (ninefold increment) of cold-acclimatised rats compared with thermoneutral rats.

Conclusions

We find that DMI can discriminate cold-acclimatised and thermoneutral BAT in rats. This is the first study to evaluate BAT activity by DMI, which may open up for the use of the non-radioactive DMI method for BAT measurements in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dixon fat/water MR images with overlay of 2H-labelled metabolites in iBAT.
Fig. 2: Accumulated 2H-labelled signals normalized to the pre-2H-glucose signal in iBAT of cold-acclimatised (n = 10, black circles) and thermoneutral rats (n = 11, white circles).
Fig. 3: 2H-labelled metabolite ratios in iBAT.
Fig. 4: Perfusion in iBAT by dynamic contrast enhanched MRI.
Fig. 5: UCP1 mRNA expression in iBAT biopsy material from thermoneutral (n = 11) and cold-acclimatised (n = 9) rats.

Similar content being viewed by others

References

  1. Cypess AM. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 2014;20:408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  CAS  PubMed  Google Scholar 

  4. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  PubMed  Google Scholar 

  5. Blondin DP, Daoud A, Taylor T, Tingelstad HC, Bezaire V, Richard D, et al. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to BAT. J Physiol. 2017;595:2099–113. https://doi.org/10.1113/JP273395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brychta RJ, Chen KY. Cold-induced thermogenesis in humans. Eur J Clin Nutr. 2017;71:345–52. https://doi.org/10.1038/ejcn.2016.223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fukano K, Okamatsu-Ogura Y, Tsubota A, Nio-Kobayashi J, Kimura K. Cold exposure induces proliferation of mature brown adipocyte in a ss3-adrenergic receptor-mediated pathway. PloS ONE. 2016;11:e0166579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Villarroya J, Cereijo R, Villarroya F. An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab. 2013;305:E567–72.

    Article  CAS  PubMed  Google Scholar 

  9. Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte EE. Brown adipose tissue energy metabolism in humans. Front Endocrinol. 2018;9:447.

    Article  Google Scholar 

  10. Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. 2015;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 2013;1:353–60.

    Article  CAS  PubMed  Google Scholar 

  12. Virtanen KA. The rediscovery of BAT in adult humans using imaging. Best practice & research. Clin Endocrinol Metab. 2016;30:471–7.

    CAS  Google Scholar 

  13. Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, et al. Brown adipose reporting criteria in Imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24:210–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Riis-Vestergaard MJ, Breining P, Pedersen SB, Laustsen C, Stodkilde-Jorgensen H, Borghammer P, et al. Evaluation of active brown adipose tissue by the use of hyperpolarized [1-(13)C]pyruvate MRI in mice. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19092597.

    Article  PubMed Central  CAS  Google Scholar 

  15. Lau AZ, Chen AP, Gu Y, Ladouceur-Wodzak M, Nayak KS, Cunningham CH. Noninvasive identification and assessment of functional brown adipose tissue in rodents using hyperpolarized (1)(3)C imaging. Int J Obes. 2005;38:126–31.

    Article  CAS  Google Scholar 

  16. Branca RT, He T, Zhang L, Floyd CS, Freeman M, White C, et al. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci USA. 2014;111:18001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kurhanewicz JC. MRI: path to clinical translation in oncology. Neoplasia. 2019;21(1):1–16.

    Article  PubMed  Google Scholar 

  18. De Feyter HM, Behar KL, Corbin ZA, Fulbright RK, Brown PB, McIntyre S, et al. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Sci Adv. 2018;4:eaat7314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Investig. 1996;98:378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Decaris ML, Li KW, Emson CL, Gatmaitan M, Liu S, Wang Y. et al. Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood. Hepatology. 2017;65:78–88.

    Article  CAS  PubMed  Google Scholar 

  21. Macallan DC, Asquith B, Zhang Y, de Lara C, Ghattas H, Defoiche J, et al. Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labeled glucose. Nat Protoc. 2009;4:1313–27.

    Article  CAS  PubMed  Google Scholar 

  22. Lu M, Zhu XH, Zhang Y, Mateescu G, Chen W. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 2017;37:3518–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang T-Y. Intermittent cold exposure improves glucose homeostasis associated with brown and white adipose tissues in mice. Life Sci. 1973;2015:153–9.

    Google Scholar 

  24. Wu C. Brown adipose tissue can be activated or inhibited within an hour before 18F-FDG injection: a preliminary study with microPET. J Biomed Biotechnol. 2011;2011:1–5.

    Google Scholar 

  25. Qi H, Mariager CO, Lindhardt J, Nielsen PM, Stodkilde-Jorgensen H, Laustsen C. Effects of anesthesia on renal function and metabolism in rats assessed by hyperpolarized MRI. Mag Reson Med. 2018;80:2073-80. https://doi.org/10.1002/mrm.27165.

    Article  CAS  PubMed  Google Scholar 

  26. Ohlson KB, Lindahl SG, Cannon B, Nedergaard J. Thermogenesis inhibition in brown adipocytes is a specific property of volatile anesthetics. Anesthesiology. 2003;98:437–48.

    Article  CAS  PubMed  Google Scholar 

  27. Nohr MK, Dudele A, Poulsen MM, Ebbesen LH, Radko Y, Christensen LP, et al. LPS-enhanced glucose-stimulated insulin secretion is normalized by resveratrol. PloS ONE. 2016;11:e0146840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B. QuantPrime-a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform. 2008;9:465.

    Article  CAS  Google Scholar 

  29. Terblanche SE. Effects of cold acclimation on the activity levels of creatine kinase, lactate dehydrogenase and lactate dehydrogenase isoenzymes in various tissues of the rat. Cell Biol Int. 1998;22:701–7.

    Article  CAS  PubMed  Google Scholar 

  30. López-Soriano FJ. Amino acid and glucose uptake by rat brown adipose tissue. Effect of cold-exposure and acclimation. Biochem J. 1988;252:843–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. López-Soriano FJ. Effect of cold-temperature exposure and acclimation on amino acid pool changes and enzyme activities of rat brown adipose tissue. Biochim et Biophys Acta. 1987;925:265–71.

    Article  Google Scholar 

  32. Lu J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev. 2019;38:157–64. https://doi.org/10.1007/s10555-019-09794-5.

    Article  CAS  PubMed  Google Scholar 

  33. McCallister A, Zhang L, Burant A, Katz L, Branca RT. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI. Magn Reson Med. 2017;78:1922–32. https://doi.org/10.1002/mrm.26589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Franz D. Discrimination between brown and white adipose tissue using a 2-point Dixon water-fat separation method in simultaneous PET/MRI. J Nucl Med. 1978;56:1742–7.

    Article  CAS  Google Scholar 

  35. Holstila M. MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure. Metab, Clin Exp. 2017;70:23–30.

    Article  CAS  Google Scholar 

  36. Holstila M. Measurement of brown adipose tissue mass using a novel dual-echo magnetic resonance imaging approach: a validation study. Metab, Clin Exp. 2013;62:1189–98.

    Article  CAS  Google Scholar 

  37. Khanna A. Detecting brown adipose tissue activity with BOLD MRI in mice. Magn Reson Med. 2012;68:1285–90.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Y. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–50.

    Article  CAS  PubMed  Google Scholar 

  39. McDonald RB. Age and gender effects on glucose utilization in skeletal muscle and brown adipose tissue of cold-exposed rats. Proc Soc Exp Biol Med Soc Exp Biol Med. 1994;207:102–9.

    Article  CAS  Google Scholar 

  40. Gabaldón AM. Effects of age and gender on brown fat and skeletal muscle metabolic responses to cold in F344 rats. Am J Physiol Regul, Integr Comp Physiol. 1995;268:R931–41.

    Article  Google Scholar 

  41. Morimoto S. Insulin gene expression pattern in rat pancreas during the estrous cycle. Life Sci. 1973;68:2979–85.

    Article  Google Scholar 

  42. Rebolledo-Solleiro D. Influence of sex and estrous cycle on blood glucose levels, body weight gain, and depressive-like behavior in streptozotocin-induced diabetic rats. Physiol Behav. 2018;194:560–7.

    Article  CAS  PubMed  Google Scholar 

  43. Cao W-H. Brown adipose tissue thermogenesis contributes to fentanyl-evoked hyperthermia. Am J Physiol Regul, Integr Comp Physiol. 2005;288:R723–32.

    Article  CAS  Google Scholar 

  44. Tucker BJ. Analysis of adrenergic effects of the anesthetics inactin and alpha-chloralose. Am J Physiol. 1982;243:F253-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Pia Hornbek and Lenette Pedersen at the Department of Endocrinology and Internal Medicine, Medical Research Lab, Aarhus University Hospital, Denmark, for excellent laboratory assistance.

Author information

Authors and Affiliations

Authors

Contributions

MJRV, CL, SBP and BR conceived and designed the study. MJRV, CL and CØM performed the experiments and acquired the data. MJRV analysed and interpreted the data with input from CL, SBP and BR. MJRV drafted and revised the manuscript with major input from CL, SBP, BR and RFS. All authors approved the final version of the manuscript and agreed to be accountable for all aspects of the work. MJRV has had full access to the data in the study and final responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Mette Ji Riis-Vestergaard.

Ethics declarations

Conflict of interest

RFS is employed by GE Healthcare, Munich, Germany. The rest of the authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riis-Vestergaard, M.J., Laustsen, C., Mariager, C.Ø. et al. Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats. Int J Obes 44, 1417–1427 (2020). https://doi.org/10.1038/s41366-020-0533-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-0533-7

This article is cited by

Search

Quick links