Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physiology and Biochemistry

The importance of 24-h metabolism in obesity-related metabolic disorders: opportunities for timed interventions

Abstract

Various metabolic processes in the body oscillate throughout the natural day, driven by a biological clock. Circadian rhythms are also influenced by time cues from the environment (light exposure) and behaviour (eating and exercise). Recent evidence from diurnal- and circadian-rhythm studies indicates rhythmicity in various circulating metabolites, insulin secretion and -sensitivity and energy expenditure in metabolically healthy adults. These rhythms have been shown to be disturbed in adults with obesity-related metabolic disturbances. Moreover, eating and being (in)active at a time that the body is not prepared for it, as in night-shift work, is related to poor metabolic outcomes. These findings indicate the relevance of 24-h metabolism in obesity-related metabolic alterations and have also led to novel strategies, such as timing of food intake and exercise, to reinforce the circadian rhythm and thereby improving metabolic health. This review aims to deepen the understanding of the influence of the circadian system on metabolic processes and obesity-related metabolic disturbances and to discuss novel time-based strategies that may be helpful in combating metabolic disease.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Organisation of circadian rhythms in the human body.
Fig. 2: Various study protocols to examine circadian rhythmicity in humans.

References

  1. Rice PM. Maya calender origins: monuments, mythistory, and the materialization of time. United States of America: University of Texas Press; 2007.

  2. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci. 2014;111:16219–24.

    CAS  PubMed  Google Scholar 

  3. Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science. 2016;354:994–9.

    CAS  PubMed  Google Scholar 

  4. Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos Trans R Soc B: Biol Sci. 2017;372:20160246.

    Google Scholar 

  5. Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22:789–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Eurofound. Sixth European Working Conditions Survey—overview report (2017 update). Luxembourg: Eurofound; 2017.

  7. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int. 2006;23:497–509.

    PubMed  Google Scholar 

  8. Proper KI, van de Langenberg D, Rodenburg W, Vermeulen RC, van der Beek AJ, van Steeg H, et al. The relationship between shift work and metabolic risk factors: a systematic review of longitudinal studies. Am J Prev Med. 2016;50:e147–57.

    PubMed  Google Scholar 

  9. Vetter C, Dashti HS, Lane JM, Anderson SG, Schernhammer ES, Rutter MK, et al. Night shift work, genetic risk, and type 2 diabetes in the UK biobank. Diabetes Care. 2018;41:762–9.

    PubMed  PubMed Central  Google Scholar 

  10. Al-Naimi S, Hampton S, Richard P, Tzung C, Morgan L. Postprandial metabolic profiles following meals and snacks eaten during simulated night and day shift work. Chronobiol Int. 2004;21:937–47.

    CAS  PubMed  Google Scholar 

  11. Koopman AD, Rauh SP, van ‘t Riet E, Groeneveld L, Van Der Heijden AA, Elders PJ, et al. The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: the new Hoorn study. J Biol Rhythms. 2017;32:359–68.

    PubMed  PubMed Central  Google Scholar 

  12. Parsons MJ, Moffitt TE, Gregory AM, Goldman-Mellor S, Nolan PM, Poulton R, et al. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int J Obes. 2015;39:842–8.

    CAS  Google Scholar 

  13. Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci. 2016;113:E1402–11.

    CAS  PubMed  Google Scholar 

  14. Wefers J, van Moorsel D, Hansen J, Connell NJ, Havekes B, Hoeks J, et al. Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc Natl Acad Sci. 2018;115:7789–94.

    CAS  PubMed  Google Scholar 

  15. Buijs RM, Ruiz MAG, Hernández RM, Cortés BR. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Auton Neurosci. 2019;218:43–50.

    PubMed  Google Scholar 

  16. Hughes S, Jagannath A, Hankins MW, Foster RG, Peirson S. Photic regulation of clock systems. Methods Enzymol. 2015;552:125–43.

    CAS  PubMed  Google Scholar 

  17. Buckley TM, Schatzberg AF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90:3106–14.

    CAS  PubMed  Google Scholar 

  18. Claustrat B, Leston J. Melatonin: physiological effects in humans. Neurochirurgie. 2015;61:77–84.

    CAS  PubMed  Google Scholar 

  19. Sinturel F, Petrenko V, Dibner C. Circadian clocks make metabolism run. J Mol Biol. 2020;432:3680–99.

    CAS  PubMed  Google Scholar 

  20. Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu P-L, Walz T, et al. Macromolecular assemblies of the mammalian circadian clock. Mol Cell. 2017;67:770–82.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao X, Hirota T, Han X, Cho H, Chong L-W, Lamia K, et al. Circadian amplitude regulation via FBXW7-targeted REV-ERBα degradation. Cell. 2016;165:1644–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 2019;20:227–41.

    CAS  PubMed  Google Scholar 

  23. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18:164.

    CAS  PubMed  Google Scholar 

  24. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009;326:437–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang C-S, Hawley SA, Zong Y, Li M, Wang Z, Gray A, et al. Fructose-1, 6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017;548:112–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Boden G, Ruiz J, Urbain J, Chen X. Evidence for a circadian rhythm of insulin secretion. Am J Physiol-Endocrinol Metab. 1996;271:E246–52.

    CAS  Google Scholar 

  27. Morgan L, Aspostolakou F, Wright J, Gama R. Diurnal variations in peripheral insulin resistance and plasma non-esterified fatty acid concentrations: a possible link? Ann Clin Biochem. 1999;36:447–50.

    CAS  PubMed  Google Scholar 

  28. Shapiro ET, Polonsky KS, Copinschig G, Bosson D, Tillil H, Blackman J, et al. Nocturnal elevation of glucose levels during fasting in noninsulin-dependent diabetes. J Clin Endocrinol Metab. 1991;72:444–54.

    CAS  PubMed  Google Scholar 

  29. Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocrine Rev. 1997;18:716–38.

    Google Scholar 

  30. van Moorsel D, Hansen J, Havekes B, Scheer FA, Jörgensen JA, Hoeks J, et al. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab. 2016;5:635–45.

    PubMed  PubMed Central  Google Scholar 

  31. Whichelow MJ, Sturge R, Keen H, Jarrett R, Stimmler L, Grainger S. Diurnal variation in response to intravenous glucose. Br Med J. 1974;1:488–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Aparicio NJ, Puchulu FE, Gagliardino JJ, Ruiz M, Llorens JM, Ruiz J, et al. Circadian variation of the blood glucose, plasma insulin and human growth hormone levels in response to an oral glucose load in normal subjects. Diabetes. 1974;23:132–7.

    CAS  PubMed  Google Scholar 

  33. Zimmet P, Wall J, Rome R, Stimmler L, Jarrett R. Diurnal variation in glucose tolerance: associated changes in plasma insulin, growth hormone, and non-esterified. Br Med J. 1974;1:485–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Morris CJ, Yang JN, Garcia JI, Myers S, Bozzi I, Wang W, et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci. 2015;112:E2225–34.

    CAS  PubMed  Google Scholar 

  35. Roberts H. Afternoon glucose tolerance testing: a key to the pathogenesis, early diagnosis and prognosis of diabetogenic hyperinsulinism. J Am Geriatr Soc. 1964;12:423–72.

    CAS  PubMed  Google Scholar 

  36. Gibson T, Jarrett R. Diurnal variation in insulin sensitivity. Lancet. 1972;300:947–8.

    Google Scholar 

  37. Saad A, Dalla Man C, Nandy DK, Levine JA, Bharucha AE, Rizza RA, et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes. 2012;61:2691–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee A, Ader M, Bray GA, Bergman RN. Diurnal variation in glucose tolerance: cyclic suppression of insulin action and insulin secretion in normal-weight, but not obese, subjects. Diabetes. 1992;41:750–9.

    CAS  PubMed  Google Scholar 

  39. Jarrett R, Baker I, Keen H, Oakley N. Diurnal variation in oral glucose tolerance: blood sugar and plasma insulin levels morning, afternoon, and evening. Br Med J. 1972;1:199–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Carroll KF, Nestel PJ. Diurnal variation in glucose tolerance and in insulin secretion in man. Diabetes. 1973;22:333–48.

    CAS  PubMed  Google Scholar 

  41. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci. 2012;109:2625–9.

    CAS  PubMed  Google Scholar 

  42. Loizides-Mangold U, Perrin L, Vandereycken B, Betts JA, Walhin J-P, Templeman I, et al. Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci. 2017;114:E8565–74.

    CAS  PubMed  Google Scholar 

  43. Held NM, Wefers J, van Weeghel M, Daemen S, Hansen J, Vaz FM, et al. Skeletal muscle in healthy humans exhibits a day-night rhythm in lipid metabolism. Mol Metab. 2020;37:100989.

    PubMed  PubMed Central  Google Scholar 

  44. Qian J, Scheer FA. Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol Metab. 2016;27:282–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bo S, Fadda M, Castiglione A, Ciccone G, De Francesco A, Fedele D, et al. Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. Int J Obes. 2015;39:1689–95.

    CAS  Google Scholar 

  46. Romon M, Edme J-L, Boulenguez C, Lescroart J-L, Frimat P. Circadian variation of diet-induced thermogenesis. Am J Clin Nutr. 1993;57:476–80.

    CAS  PubMed  Google Scholar 

  47. Morgan L, Arendt J, Owens D, Folkard S, Hampton S, Deacon S, et al. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism. J Endocrinol. 1998;157:443–52.

    CAS  PubMed  Google Scholar 

  48. Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Investig. 1991;88:934–42.

    PubMed  Google Scholar 

  49. Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab. 2005;90:2537–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zitting K-M, Vujovic N, Yuan RK, Isherwood CM, Medina JE, Wang W, et al. Human resting energy expenditure varies with circadian phase. Current Biol. 2018;28:3685–90.e3.

    CAS  Google Scholar 

  51. Morris CJ, Garcia JI, Myers S, Yang JN, Trienekens N, Scheer FA. The human circadian system has a dominating role in causing the morning/evening difference in diet‐induced thermogenesis. Obesity. 2015;23:2053–8.

    PubMed  Google Scholar 

  52. Campbell PJ, Bolli GB, Cryer PE, Gerich JE. Pathogenesis of the dawn phenomenon in patients with insulin-dependent diabetes mellitus: accelerated glucose production and impaired glucose utilization due to nocturnal surges in growth hormone secretion. N Eng J Med. 1985;312:1473–9.

    CAS  Google Scholar 

  53. Carroll MF, Hardy KJ, Burge MR, Schade DS. Frequency of the dawn phenomenon in type 2 diabetes: implications for diabetes therapy. Diabetes Technol Therapeutics. 2002;4:595–605.

    Google Scholar 

  54. Jarrett R, Keen H. Diurnal variation of oral glucose tolerance: a possible pointer to the evolution of diabetes mellitus. Br Med J. 1969;2:341–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes. 1996;45:1044–50.

    CAS  PubMed  Google Scholar 

  56. Shapoiro ET, Tillil H, Polonsky KS, Fang VS, Rubenstein AH, CauterR EV. Oscillations in insulin secretion during constant glucose infusion in normal man: relationship to changes in plasma glucose. J Clin Endocrinol Metab. 1988;67:307–14.

    Google Scholar 

  57. Basu A, Joshi N, Miles J, Carter RE, Rizza RA, Basu R. Paradigm shifts in nocturnal glucose control in type 2 diabetes. J Clin Endocrinol Metab. 2018;103:3801–9.

    PubMed  PubMed Central  Google Scholar 

  58. Radziuk J, Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia. 2006;49:1619–28.

    CAS  PubMed  Google Scholar 

  59. Coomans CP, van den Berg SA, Lucassen EA, Houben T, Pronk AC, van der Spek RD, et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes. 2013;62:1102–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. la Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes. 2001;50:1237–43.

    PubMed  Google Scholar 

  61. Lamia KA, Storch K-F, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci. 2008;105:15172–7.

    CAS  PubMed  Google Scholar 

  62. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hogenboom R, Kalsbeek MJ, Korpel NL, de Goede P, Koenen M, Buijs RM, et al. Loss of arginine vasopressin-and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes. Diabetologia. 2019;62:2088–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lederbogen F, Hummel J, Fademrecht C, Krumm B, Kühner C, Deuschle M, et al. Flattened circadian cortisol rhythm in type 2 diabetes. Exp Clin Endocrinol Diabetes. 2011;119:573–5.

    CAS  PubMed  Google Scholar 

  65. Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, et al. Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med. 2015;72:72–8.

    PubMed  Google Scholar 

  66. Gao Y, Gan T, Jiang L, Yu L, Tang D, Wang Y, et al. Association between shift work and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of observational studies. Chronobiol Int. 2020;37:29–46.

    PubMed  Google Scholar 

  67. Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011;8:e1001141.

    PubMed  PubMed Central  Google Scholar 

  68. Manodpitipong A, Saetung S, Nimitphong H, Siwasaranond N, Wongphan T, Sornsiriwong C, et al. Night‐shift work is associated with poorer glycaemic control in patients with type 2 diabetes. J Sleep Res. 2017;26:764–72.

    PubMed  Google Scholar 

  69. Clemmensen KK, Quist JS, Vistisen D, Witte DR, Jonsson A, Pedersen O, et al. Role of fasting duration and weekday in incretin and glucose regulation. Endocrine Connect. 2020;9:279–88.

    CAS  Google Scholar 

  70. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci. 2009;106:4453–8.

    CAS  PubMed  Google Scholar 

  71. Qian J, Morris CJ, Caputo R, Garaulet M, Scheer FA. Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans. Int J Obes. 2019;43:1644–9.

    CAS  Google Scholar 

  72. McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, Stothard ER, et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci. 2014;111:17302–7.

    CAS  PubMed  Google Scholar 

  73. Hampton S, Morgan L, Lawrence N, Anastasiadou T, Norris F, Deacon S, et al. Postprandial hormone and metabolic responses in simulated shift work. J Endocrinol. 1996;151:259–67.

    CAS  PubMed  Google Scholar 

  74. Morris CJ, Purvis TE, Mistretta J, Scheer FA. Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers. J Clin Endocrinol Metab. 2016;101:1066–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Qian J, Dalla Man C, Morris CJ, Cobelli C, Scheer FA. Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans. Diabetes, Obes Metab. 2018;20:2481–5.

    CAS  Google Scholar 

  76. Bescos R, Boden MJ, Jackson ML, Trewin AJ, Marin EC, Levinger I, et al. Four days of simulated shift work reduces insulin sensitivity in humans. Acta Physiol. 2018;223:e13039.

    CAS  Google Scholar 

  77. Ribeiro D, Hampton S, Morgan L, Deacon S, Arendt J. Altered postprandial hormone and metabolic responses in a simulated shift work environment. J Endocrinol. 1998;158:305–10.

    CAS  PubMed  Google Scholar 

  78. Sharma A, Laurenti MC, Dalla Man C, Varghese RT, Cobelli C, Rizza RA, et al. Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia. 2017;60:1483–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med. 2012;157:549–57.

    PubMed  PubMed Central  Google Scholar 

  80. Eckel RH, Depner CM, Perreault L, Markwald RR, Smith MR, McHill AW, et al. Morning circadian misalignment during short sleep duration impacts insulin sensitivity. Current Biol. 2015;25:3004–10.

    CAS  Google Scholar 

  81. Robertson MD, Russell-Jones D, Umpleby AM, Dijk D-J. Effects of three weeks of mild sleep restriction implemented in the home environment on multiple metabolic and endocrine markers in healthy young men. Metabolism. 2013;62:204–11.

    CAS  PubMed  Google Scholar 

  82. Spiegel K, Leproult R, Van, Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354:1435–9.

    CAS  PubMed  Google Scholar 

  83. St-Onge M-P, O’Keeffe M, Roberts AL, RoyChoudhury A, Laferrère B. Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women. Sleep. 2012;35:1503–10.

    PubMed  PubMed Central  Google Scholar 

  84. Leproult R, Holmbäck U, Van, Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63:1860–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Park MK, Freisling H, Huseinovic E, Winkvist A, Huybrechts I, Crispim SP, et al. Comparison of meal patterns across five European countries using standardized 24-h recall (GloboDiet) data from the EFCOVAL project. Eur J Nutr. 2018;57:1045–57.

    PubMed  Google Scholar 

  86. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23:1048–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014;20:991–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chow LS, Manoogian EN, Alvear A, Fleischer JG, Thor H, Dietsche K, et al. Time-restricted eating effects on body composition and metabolic measures in humans with overweight: a feasibility study. Obesity. 2020;28:860–9.

    CAS  PubMed  Google Scholar 

  90. Gabel K, Hoddy KK, Haggerty N, Song J, Kroeger CM, Trepanowski JF, et al. Effects of 8-h time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Healthy Aging. 2018;4:345–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilkinson MJ, Manoogian EN, Zadourian A, Lo H, Fakhouri S, Shoghi A, et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31:92–104.e5.

    CAS  PubMed  Google Scholar 

  92. Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM. Early time-restricted feeding improves 24-h glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 2019;11:1234.

    CAS  PubMed Central  Google Scholar 

  93. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27:1212–21.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hutchison AT, Regmi P, Manoogian EN, Fleischer JG, Wittert GA, Panda S, et al. Time‐restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity. 2019;27:724–32.

    CAS  PubMed  Google Scholar 

  95. Ravussin E, Beyl RA, Poggiogalle E, Hsia DS, Peterson CM. Early time‐restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity. 2019;27:1244–54.

    CAS  PubMed  Google Scholar 

  96. Parr EB, Devlin BL, Radford BE, Hawley JA. A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: a randomized controlled trial. Nutrients. 2020;12:505.

    CAS  PubMed Central  Google Scholar 

  97. Jakubowicz D, Wainstein J, Ahrén B, Bar-Dayan Y, Landau Z, Rabinovitz HR, et al. High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial. Diabetologia. 2015;58:912–9.

    CAS  PubMed  Google Scholar 

  98. Kahleova H, Belinova L, Malinska H, Oliyarnyk O, Trnovska J, Skop V, et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia. 2014;57:1552–60.

    PubMed  PubMed Central  Google Scholar 

  99. Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ, Lee Y-C, Ordovás JM, Scheer FA. Timing of food intake predicts weight loss effectiveness. Int J Obes. 2013;37:604–11.

    CAS  Google Scholar 

  100. Madjd A, Taylor MA, Delavari A, Malekzadeh R, Macdonald IA, Farshchi HR. Beneficial effect of high energy intake at lunch rather than dinner on weight loss in healthy obese women in a weight-loss program: a randomized clinical trial. Am J Clin Nutr. 2016;104:982–9.

    CAS  PubMed  Google Scholar 

  101. Ruiz-Lozano T, Vidal J, De Hollanda A, Scheer F, Garaulet M, Izquierdo-Pulido M. Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery. Clin Nutr. 2016;35:1308–14.

    CAS  PubMed  Google Scholar 

  102. Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity. 2013;21:2504–12.

    CAS  PubMed  Google Scholar 

  103. Wang J, Patterson R, Ang A, Emond J, Shetty N, Arab L. Timing of energy intake during the day is associated with the risk of obesity in adults. J Hum Nutr Dietetics. 2014;27:255–62.

    Google Scholar 

  104. McHill AW, Phillips AJ, Czeisler CA, Keating L, Yee K, Barger LK, et al. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr. 2017;106:1213–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wehrens SM, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN, et al. Meal timing regulates the human circadian system. Current Biol. 2017;27:1768–75.e3.

    CAS  Google Scholar 

  106. Bandin C, Scheer F, Luque A, Avila-Gandia V, Zamora S, Madrid J, et al. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: a randomized, crossover trial. Int J Obes. 2015;39:828–33.

    CAS  Google Scholar 

  107. Farshchi HR, Taylor MA, Macdonald IA. Deleterious effects of omitting breakfast on insulin sensitivity and fasting lipid profiles in healthy lean women. Am J Clin Nutr. 2005;81:388–96.

    CAS  PubMed  Google Scholar 

  108. Nas A, Mirza N, Hägele F, Kahlhöfer J, Keller J, Rising R, et al. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am J Clin Nutr. 2017;105:1351–61.

    CAS  PubMed  Google Scholar 

  109. Betts JA, Richardson JD, Chowdhury EA, Holman GD, Tsintzas K, Thompson D. The causal role of breakfast in energy balance and health: a randomized controlled trial in lean adults. Am J Clin Nutr. 2014;100:539–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chowdhury EA, Richardson JD, Holman GD, Tsintzas K, Thompson D, Betts JA. The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults. Am J Clin Nutr. 2016;103:747–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kelly KP, McGuinness OP, Buchowski M, Hughey JJ, Chen H, Powers J, et al. Eating breakfast and avoiding late-evening snacking sustains lipid oxidation. PLoS Biol. 2020;18:e3000622.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. St-Onge M-P, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135:e96–121.

    PubMed  Google Scholar 

  113. Hesselink MK, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12:633.

    CAS  PubMed  Google Scholar 

  114. Wolff G, Esser KA. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci Sports Exerc. 2012;44:1663.

    PubMed  PubMed Central  Google Scholar 

  115. Zambon AC, McDearmon EL, Salomonis N, Vranizan KM, Johansen KL, Adey D, et al. Time-and exercise-dependent gene regulation in human skeletal muscle. Genome Biol. 2003;4:R61.

    PubMed  PubMed Central  Google Scholar 

  116. Harfmann BD, Schroder EA, Kachman MT, Hodge BA, Zhang X, Esser KA. Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle. 2016;6:12.

    PubMed  PubMed Central  Google Scholar 

  117. Perrin L, Loizides-Mangold U, Chanon S, Gobet C, Hulo N, Isenegger L, et al. Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. Elife. 2018;7:e34114.

    PubMed  PubMed Central  Google Scholar 

  118. Hansen J, Timmers S, Moonen-Kornips E, Duez H, Staels B, Hesselink MK, et al. Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes. Sci Rep. 2016;6:35047.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Barger LK, Wright KP Jr, Hughes RJ, Czeisler CA. Daily exercise facilitates phase delays of circadian melatonin rhythm in very dim light. Am J Physiol-Regul, Integr Comp Physiol. 2004;286:R1077–84.

    CAS  Google Scholar 

  120. Marrin K, Drust B, Gregson W, Morris C, Chester N, Atkinson G. Diurnal variation in the salivary melatonin responses to exercise: relation to exercise-mediated tachycardia. Eur J Appl Physiol. 2011;111:2707–14.

    CAS  PubMed  Google Scholar 

  121. Paing A, McMillan K, Kirk A, Collier A, Hewitt A, Chastin S. Dose–response between frequency of interruption of sedentary time and fasting glucose, the dawn phenomenon and night‐time glucose in Type 2 diabetes. Diabetic Med. 2019;36:376–82.

    CAS  PubMed  Google Scholar 

  122. Sato S, Basse AL, Schönke M, Chen S, Samad M, Altıntaş A, et al. Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metab. 2019;30:92–110.e4.

    CAS  PubMed  Google Scholar 

  123. Francois ME, Baldi JC, Manning PJ, Lucas SJ, Hawley JA, Williams MJ, et al. ‘Exercise snacks’ before meals: a novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia. 2014;57:1437–45.

    CAS  PubMed  Google Scholar 

  124. Manohar C, Levine JA, Nandy DK, Saad A, Dalla Man C, McCrady-Spitzer SK, et al. The effect of walking on postprandial glycemic excursion in patients with type 1 diabetes and healthy people. Diabetes Care. 2012;35:2493–9.

    PubMed  PubMed Central  Google Scholar 

  125. Fernandes AL, Lopes-Silva JP, Bertuzzi R, Casarini DE, Arita DY, Bishop DJ, et al. Effect of time of day on performance, hormonal and metabolic response during a 1000-M cycling time trial. PloS ONE. 2014;9:e109954.

    PubMed  PubMed Central  Google Scholar 

  126. Ezagouri S, Zwighaft Z, Sobel J, Baillieul S, Doutreleau S, Ladeuix B, et al. Physiological and molecular dissection of daily variance in exercise capacity. Cell Metab. 2019;30:78–91.e4.

    CAS  PubMed  Google Scholar 

  127. Savikj M, Gabriel BM, Alm PS, Smith J, Caidahl K, Björnholm M, et al. Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: a randomised crossover trial. Diabetologia. 2019;62:233–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris Hoeks.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andriessen, C., Schrauwen, P. & Hoeks, J. The importance of 24-h metabolism in obesity-related metabolic disorders: opportunities for timed interventions. Int J Obes 45, 479–490 (2021). https://doi.org/10.1038/s41366-020-00719-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-00719-9

Search

Quick links