Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Circulating LEAP-2 is associated with puberty in girls

Abstract

Background/Objectives

Liver-expressed antimicrobial peptide 2 (LEAP-2) was recently identified as an endogenous non-competitive allosteric antagonist of the growth hormone secretagogue receptor 1a (GHSR1a). LEAP-2 blunts ghrelin-induced feeding and its plasma levels are modulated in response to nutritional status in humans. Despite the relevant role of ghrelin in childhood, puberty, and childhood obesity, the potential implication of LEAP-2 in these aspects remains totally unknown. We aimed to investigate the regulation of circulating plasma LEAP-2 in childhood and adolescent either lean or obese.

Methods and results

Plasma levels of LEAP-2 were analyzed in a cross-sectional study with lean and obese children and adolescents (n = 150). Circulating LEAP-2 levels were significantly higher in girls than in boys independently of whether they were obese or lean. In addition, LEAP-2 was significantly increased (p < 0.001) in pubertal than in prepubertal girls, while no changes were found in boys between both developmental stages. Moreover, in girls LEAP-2 was positively correlated with insulin, IGF-1, HOMA-IR and triglycerides and negatively with ghrelin. In boys, LEAP-2 was positively correlated with leptin and negatively with vitamin D levels.

Conclusion

This study reveals a sexual dimorphism in LEAP-2 levels in children and adolescents. These changes and the higher levels during puberty imply that LEAP-2 may contribute to some of the biological adaptations occurring during pubertal development in terms of food intake, energy balance, growth rate, and puberty onset. Future studies assessing LEAP-2 levels in longitudinal studies and its implications in growth rate, puberty onset, and reproductive hormones will help to understand the relevance of this hormone in this stage of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LEAP-2 circulating levels in the study population.
Fig. 2: Ghrelin circulating levels in the study population.

Similar content being viewed by others

References

  1. Plant TM. Neuroendocrine control of the onset of puberty. Front Neuroendocrinol. 2015;38:73–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abreu AP, Kaiser UB. Pubertal development and regulation. Lancet Diabetes Endocrinol. 2016;4:254–64.

    PubMed  PubMed Central  Google Scholar 

  3. Marcovecchio ML, Chiarelli F. Obesity and growth during childhood and puberty. World Rev Nutr Diet. 2013;106:135–41.

    PubMed  Google Scholar 

  4. Ahmed ML, Ong KK, Dunger DB. Childhood obesity and the timing of puberty. Trends Endocrinold Metab. 2009;20:237–42.

    CAS  Google Scholar 

  5. Comninos AN, Jayasena CN, Dhillo WS. The relationship between gut and adipose hormones, and reproduction. Hum Reprod Update. 2014;20:153–74.

    CAS  PubMed  Google Scholar 

  6. Casanueva FF, Dieguez C. Neuroendocrine regulation and actions of leptin. Front Neuroendocrinol. 1999;20:317–63.

    CAS  PubMed  Google Scholar 

  7. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.

    CAS  PubMed  Google Scholar 

  8. Garcia-Mayor RV, Andrade MA, Rios M, Lage M, Dieguez C, Casanueva FF. Serum leptin levels in normal children: relationship to age, gender, body mass index, pituitary-gonadal hormones, and pubertal stage. J Clin Endocrinol Metab. 1997;82:2849–55.

    CAS  PubMed  Google Scholar 

  9. Hassink SG, Sheslow DV, de Lancey E, Opentanova I, Considine RV, Caro JF. Serum leptin in children with obesity: relationship to gender and development. Pediatrics. 1996;98:201–3.

    CAS  PubMed  Google Scholar 

  10. Mantzoros CS, Flier JS, Rogol AD. A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metab. 1997;82:1066–70.

    CAS  PubMed  Google Scholar 

  11. Muccioli G, Tschop M, Papotti M, Deghenghi R, Heiman M, Ghigo E. Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol. 2002;440:235–54.

    CAS  PubMed  Google Scholar 

  12. Seoane LM, Tovar S, Baldelli R, Arvat E, Ghigo E, Casanueva FF, et al. Ghrelin elicits a marked stimulatory effect on GH secretion in freely-moving rats. Eur J Endocrinol. 2000;143:R7–9.

    CAS  PubMed  Google Scholar 

  13. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.

    CAS  PubMed  Google Scholar 

  14. Wortley KE, del Rincon JP, Murray JD, Garcia K, Iida K, Thorner MO, et al. Absence of ghrelin protects against early-onset obesity. J Clin Investig. 2005;115:3573–8.

    CAS  PubMed  Google Scholar 

  15. Pantel J, Legendre M, Cabrol S, Hilal L, Hajaji Y, Morisset S, et al. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J Clin Investig. 2006;116:760–8.

    CAS  PubMed  Google Scholar 

  16. Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci USA. 2004;101:4679–84.

    CAS  PubMed  Google Scholar 

  17. Bellone S, Rapa A, Vivenza D, Castellino N, Petri A, Bellone J, et al. Circulating ghrelin levels as function of gender, pubertal status and adiposity in childhood. J Endocrinol Investig. 2002;25:RC13–5.

    CAS  Google Scholar 

  18. Martos-Moreno GA, Barrios V, Martinez G, Hawkins F, Argente J. Acylated ghrelin levels in pre-pubertal obese children at diagnosis and after weight reduction: effect of oral glucose ingestion. J Endocrinol Investig. 2011;34:117–23.

    CAS  Google Scholar 

  19. Tena-Sempere M. Ghrelin, the gonadal axis and the onset of puberty. Endocr Dev. 2013;25:69–82.

    CAS  PubMed  Google Scholar 

  20. Whatmore AJ, Hall CM, Jones J, Westwood M, Clayton PE. Ghrelin concentrations in healthy children and adolescents. Clin Endocrinol. 2003;59:649–54.

    CAS  Google Scholar 

  21. Al Massadi O, Tschop MH, Tong J. Ghrelin acylation and metabolic control. Peptides. 2011;32:2301–8.

    CAS  PubMed  Google Scholar 

  22. Lim CT, Kola B, Korbonits M. The ghrelin/GOAT/GHS-R system and energy metabolism. Rev Endocr Metab Disord. 2011;12:173–86.

    CAS  PubMed  Google Scholar 

  23. Al-Massadi O, Muller T, Tschop M, Dieguez C, Nogueiras R. Ghrelin and LEAP-2: Rivals in Energy Metabolism. Trends Pharmacol Sci. 2018;39:685–94.

    CAS  PubMed  Google Scholar 

  24. Ge X, Yang H, Bednarek MA, Galon-Tilleman H, Chen P, Chen M, et al. LEAP2 Is an endogenous antagonist of the ghrelin receptor. Cell Metab. 2018;27:461–9. e6.

    CAS  PubMed  Google Scholar 

  25. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mani BK, Puzziferri N, He Z, Rodriguez JA, Osborne-Lawrence S, Metzger NP, et al. LEAP2 changes with body mass and food intake in humans and mice. J Clin Investig. 2019;129:3909–23.

    PubMed  Google Scholar 

  27. Pena-Bello L, Pertega-Diaz S, Outeirino-Blanco E, Garcia-Buela J, Tovar S, Sangiao-Alvarellos S, et al. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: the role of adiposity, insulin sensitivity and ghrelin. PLoS ONE. 2015;10:e0121087.

    PubMed  PubMed Central  Google Scholar 

  28. Barja-Fernandez S, Folgueira C, Castelao C, Pena-Leon V, Gonzalez-Saenz P, Vazquez-Cobela R. et al. ANGPTL-4 is associated with obesity and lipid profile in children and adolescents. Nutrients. 2019;11:1340.

    PubMed Central  Google Scholar 

  29. Must A, Anderson SE. Body mass index in children and adolescents: considerations for population-based applications. Int J Obes. 2006;30:590–4.

    CAS  Google Scholar 

  30. Emmanuel M, Bokor BR. Tanner stages. Treasure Island, FL: StatPearls; 2019.

  31. Muller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metab. 2015;4:437–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stasi C, Milani S. Functions of ghrelin in brain, gut and liver. CNS & Neurol Disord Drug Targets. 2016;15:956–63.

    CAS  Google Scholar 

  33. Menzies JR, Skibicka KP, Leng G, Dickson SL. Ghrelin, reward and motivation. Endocr Dev. 2013;25:101–11.

    CAS  PubMed  Google Scholar 

  34. Overduin J, Figlewicz DP, Bennett-Jay J, Kittleson S, Cummings DE. Ghrelin increases the motivation to eat, but does not alter food palatability. Am J Physiol. 2012;303:R259–69.

    CAS  Google Scholar 

  35. Yanagi S, Sato T, Kangawa K, Nakazato M. The homeostatic force of ghrelin. Cell Metab. 2018;27:786–804.

    CAS  PubMed  Google Scholar 

  36. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    CAS  PubMed  Google Scholar 

  37. Perez-Tilve D, Heppner K, Kirchner H, Lockie SH, Woods SC, Smiley DL, et al. Ghrelin-induced adiposity is independent of orexigenic effects. FASEB J. 2011;25:2814–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Poher AL, Tschop MH, Muller TD. Ghrelin regulation of glucose metabolism. Peptides. 2018;100:236–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nass RM, Gaylinn BD, Rogol AD, Thorner MO. Ghrelin and growth hormone: story in reverse. Proc Natl Acad Sci USA. 2010;107:8501–2.

    CAS  PubMed  Google Scholar 

  40. Delhanty PJ, van der Lely AJ. Ghrelin and glucose homeostasis. Peptides. 2011;32:2309–18.

    CAS  PubMed  Google Scholar 

  41. Goldstein JL, Zhao TJ, Li RL, Sherbet DP, Liang G, Brown MS. Surviving starvation: essential role of the ghrelin-growth hormone axis. Cold Spring Harb Symp Quant Biol. 2011;76:121–7.

    CAS  PubMed  Google Scholar 

  42. Zhao TJ, Liang G, Li RL, Xie X, Sleeman MW, Murphy AJ, et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc Natl Acad Sci USA. 2010;107:7467–72.

    CAS  PubMed  Google Scholar 

  43. Arvat E, Maccario M, Di Vito L, Broglio F, Benso A, Gottero C, et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab. 2001;86:1169–74.

    CAS  PubMed  Google Scholar 

  44. Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, et al. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab. 2000;85:4908–11.

    CAS  PubMed  Google Scholar 

  45. Muller EE, Locatelli V, Cocchi D. Neuroendocrine control of growth hormone secretion. Physiol Rev. 1999;79:511–607.

    CAS  PubMed  Google Scholar 

  46. Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med. 2002;8:643–4.

    CAS  PubMed  Google Scholar 

  47. DelParigi A, Tschop M, Heiman ML, Salbe AD, Vozarova B, Sell SM, et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome. J Clin Endocrinol Metab. 2002;87:5461–4.

    CAS  PubMed  Google Scholar 

  48. Chanoine JP. Ghrelin in growth and development. Horm Res. 2005;63:129–38.

    CAS  PubMed  Google Scholar 

  49. Cheng HL, Sainsbury A, Garden F, Sritharan M, Paxton K, Luscombe G, et al. Ghrelin and peptide YY change during puberty: relationships with adolescent growth, development, and obesity. J Clin Endocrinol Metab. 2018;103:2851–60.

    PubMed  Google Scholar 

  50. Fittipaldi AS, Hernández J, Castrogiovanni D, Lufrano D, De Francesco PN, Garrido V, et al. Plasma levels of ghrelin, des-acyl ghrelin and LEAP2 in children with obesity: correlation with age and insulin resistance. Eur J Endocrinol. 2020;182:165–75.

    CAS  PubMed  Google Scholar 

  51. Pomerants T, Tillmann V, Jürimäe J, Jürimäe T. Relationship between ghrelin and anthropometrical, body composition parameters and testosterone levels in boys at different stages of puberty. J Endocrinol Investig. 2006;29:962–7.

    CAS  Google Scholar 

  52. Soriano-Guillen L, Barrios V, Campos-Barros A, Argente J. Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J Pediatr. 2004;144:36–42.

    CAS  PubMed  Google Scholar 

  53. Holst B, Schwartz TW. Ghrelin receptor mutations–too little height and too much hunger. J Clin Investig. 2006;116:637–41.

    CAS  PubMed  Google Scholar 

  54. Arslanian S, Suprasongsin C, Kalhan SC, Drash AL, Brna R, Janosky JE. Plasma leptin in children: relationship to puberty, gender, body composition, insulin sensitivity, and energy expenditure. Metabolism. 1998;47:309–12.

    CAS  PubMed  Google Scholar 

  55. Ostlund RE Jr., Yang JW, Klein S, Gingerich R. Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metab. 1996;81:3909–13.

    CAS  PubMed  Google Scholar 

  56. Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cel Endocrinol. 2014;397:4–14.

    CAS  Google Scholar 

  57. Motta G, Allasia S, Ghigo E, Lanfranco F. Ghrelin actions on somatotropic and gonadotropic function in humans. Prog Mol Biol Transl Sci. 2016;138:3–25.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from Ministerio de Economía y Competitividad (ST: BFU2016-79208-R; CD: BFU2014-55871) Xunta de Galicia (ST: ED431F 2016/013 and RYC-2014-15811), Instituto de Salud Carlos III (PI11/02059 and PI16/01301) Xunta de Galicia: Centro singular de investigación de Galicia accreditation 2019-2022 and the European Union: European Regional Development Fund – ERDF (ED431G 2019/02). Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBERobn). CIBERobn is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain which is supported by FEDER funds. The authors would like to thank the children and the parents who participated in the study.

Author information

Authors and Affiliations

Authors

Contributions

SBF, JL, LMS, RL, CD, and ST made contributions to conception and design. SBF, JL, and RVC contributed to acquisition of the data. SBF, LMS, RL, CD, and ST contributed to the analysis and interpretation of the data. LMS, CD, and ST critically revised the manuscript for important intellectual content. SBF, JL, LMS, RL, CD, and ST gave final approval of the version to be published. ST and CD formulated the hypothesis, secured the funding, coordinated the project, and wrote the manuscript. ST is responsible for the integrity of the work as a whole.

Corresponding authors

Correspondence to Rosaura Leis or Sulay Tovar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barja-Fernández, S., Lugilde, J., Castelao, C. et al. Circulating LEAP-2 is associated with puberty in girls. Int J Obes 45, 502–514 (2021). https://doi.org/10.1038/s41366-020-00703-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-00703-3

Search

Quick links