Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Fetal exposure to phthalates and bisphenols and childhood general and organ fat. A population-based prospective cohort study

A Correction to this article was published on 26 April 2022

This article has been updated

Abstract

Objectives

Fetal exposure to phthalates and bisphenols might have long-lasting effects on growth and fat development. Not much is known about the effects on general and organ fat development in childhood. We assessed the associations of fetal exposure to phthalates and bisphenols with general and organ fat measures in school-aged children.

Methods

In a population-based, prospective cohort study among 1128 mother–child pairs, we measured maternal urinary phthalate metabolites and bisphenol concentrations in first, second, and third trimester. Offspring body mass index, fat mass index by dual-energy X-ray absorptiometry, and visceral and pericardial fat indices and liver fat fraction were measured by magnetic resonance imaging at 10 years.

Results

After adjustment for confounders and correction for multiple testing, an interquartile range increase in first trimester phthalic acid concentrations remained associated with a 0.14 (95% confidence interval: 0.05, 0.22) standard deviation score increase in pericardial fat index. We also observed tendencies for associations of higher maternal low molecular weight phthalate urinary concentrations in second trimester with childhood pericardial fat index, but these were not significant after adjustment for multiple testing. High molecular weight phthalate, di-2-ethylhexyl phthalate, and di-n-octyl phthalate concentrations were not associated with childhood outcomes. Maternal urinary bisphenol concentrations were not associated with childhood adiposity.

Conclusions

Maternal first trimester phthalic acid concentrations are associated with increased childhood pericardial fat index at 10 years of age, whereas maternal bisphenol concentrations are not associated with childhood adiposity. We did not find significant sex-specific effects. These findings should be considered as hypothesis generating and need further replication and identification of underlying mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

References

  1. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ Health Perspect. 2011;119:878–85.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ye X, Pierik FH, Hauser R, Duty S, Angerer J, Park MM, et al. Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands: the Generation R Study. Environ Res. 2008;108:260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schettler T. Human exposure to phthalates via consumer products. Int J Androl. 2006;29:134–9.

    Article  CAS  PubMed  Google Scholar 

  4. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24:139–77.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7:21.

    Article  PubMed Central  CAS  Google Scholar 

  6. Mose T, Knudsen LE, Hedegaard M, Mortensen GK. Transplacental transfer of monomethyl phthalate and mono(2-ethylhexyl) phthalate in a human placenta perfusion system. Int J Toxicol. 2007;26:221–9.

    Article  CAS  PubMed  Google Scholar 

  7. Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002;110:A703–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nahar MS, Liao C, Kannan K, Harris C, Dolinoy DC. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere. 2015;124:54–60.

    Article  CAS  PubMed  Google Scholar 

  9. Mattison DR, Karyakina N, Goodman M, LaKind JS. Pharmaco- and toxicokinetics of selected exogenous and endogenous estrogens: a review of the data and identification of knowledge gaps. Crit Rev Toxicol. 2014;44:696–724.

    Article  CAS  PubMed  Google Scholar 

  10. Taxvig C, Dreisig K, Boberg J, Nellemann C, Schelde AB, Pedersen D, et al. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARgamma activation. Mol Cell Endocrinol. 2012;361:106–15.

    Article  CAS  PubMed  Google Scholar 

  11. Meng Z, Wang D, Liu W, Li R, Yan S, Jia M, et al. Perinatal exposure to bisphenol S (BPS) promotes obesity development by interfering with lipid and glucose metabolism in male mouse offspring. Environ Res. 2019;173:189–98.

    Article  CAS  PubMed  Google Scholar 

  12. Desai M, Ferrini MG, Jellyman JK, Han G, Ross MG. In vivo and in vitro bisphenol A exposure effects on adiposity. J Dev Orig Health Dis. 2018;9:678–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee KI, Chiang CW, Lin HC, Zhao JF, Li CT, Shyue SK, et al. Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring. Arch Toxicol. 2016;90:1211–24.

    Article  CAS  PubMed  Google Scholar 

  14. Harley KG, Berger K, Rauch S, Kogut K, Claus Henn B, Calafat AM, et al. Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity. Pediatr Res. 2017;82:405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoepner LA, Whyatt RM, Widen EM, Hassoun A, Oberfield SE, Mueller NT, et al. Bisphenol A and adiposity in an inner-city birth cohort. Environ Health Perspect. 2016;124:1644–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harley KG, Aguilar Schall R, Chevrier J, Tyler K, Aguirre H, Bradman A, et al. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ Health Perspect. 2013;121:514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maresca MM, Hoepner LA, Hassoun A, Oberfield SE, Mooney SJ, Calafat AM, et al. Prenatal exposure to phthalates and childhood body size in an urban cohort. Environ Health Perspect. 2016;124:514–20.

    Article  CAS  PubMed  Google Scholar 

  18. Buckley JP, Engel SM, Mendez MA, Richardson DB, Daniels JL, Calafat AM, et al. Prenatal phthalate exposures and childhood fat mass in a New York City cohort. Environ Health Perspect. 2016;124:507–13.

    Article  CAS  PubMed  Google Scholar 

  19. Shoaff J, Papandonatos GD, Calafat AM, Ye X, Chen A, Lanphear BP, et al. Early-life phthalate exposure and adiposity at 8 years of age. Environ Health Perspect. 2017;125:097008.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vafeiadi M, Myridakis A, Roumeliotaki T, Margetaki K, Chalkiadaki G, Dermitzaki E, et al. Association of early life exposure to phthalates with obesity and cardiometabolic traits in childhood: sex specific associations. Front Public Health. 2018;6:327.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang TC, Peterson KE, Meeker JD, Sanchez BN, Zhang Z, Cantoral A, et al. Bisphenol A and phthalates in utero and in childhood: association with child BMI z-score and adiposity. Environ Res. 2017;156:326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buckley JP, Herring AH, Wolff MS, Calafat AM, Engel SM. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children’s Environmental Health Study. Environ Int. 2016;91:350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buckley JP, Engel SM, Braun JM, Whyatt RM, Daniels JL, Mendez MA, et al. Prenatal phthalate exposures and body mass index among 4- to 7-year-old children: a pooled analysis. Epidemiology. 2016;27:449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang TC, Peterson KE, Meeker JD, Sanchez BN, Zhang Z, Cantoral A, et al. Exposure to bisphenol A and phthalates metabolites in the third trimester of pregnancy and BMI trajectories. Pediatr Obes. 2018;13:550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim S, Meigs JB. Ectopic fat and cardiometabolic and vascular risk. Int J Cardiol. 2013;169:166–76.

    Article  PubMed  Google Scholar 

  26. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31:1243–64.

    Article  PubMed  Google Scholar 

  27. Philips EM, Jaddoe VWV, Asimakopoulos AG, Kannan K, Steegers EAP, Santos S, et al. Bisphenol and phthalate concentrations and its determinants among pregnant women in a population-based cohort in the Netherlands, 2004-5. Environ Res. 2018;161:562–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hornung RWRL. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg. 1990;5:46–51.

    Article  CAS  Google Scholar 

  29. Fredriks AM, van Buuren S, Wit JM, Verloove-Vanhorick SP. Body index measurements in 1996-7 compared with 1980. Arch Dis Child. 2000;82:107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity. 2012;20:1313–8.

    Article  PubMed  Google Scholar 

  31. Santos S, Monnereau C, Felix JF, Duijts L, Gaillard R, Jaddoe VWV. Maternal body mass index, gestational weight gain, and childhood abdominal, pericardial, and liver fat assessed by magnetic resonance imaging. Int J Obes. 2019;43:581–93.

    Article  Google Scholar 

  32. Hu HH, Nayak KS, Goran MI. Assessment of abdominal adipose tissue and organ fat content by magnetic resonance imaging. Obes Rev. 2011;12:e504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. VanItallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA. Height-normalized indices of the body’s fat-free mass and fat mass: potentially useful indicators of nutritional status. Am J Clin Nutr. 1990;52:953–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wells JC, Cole TJ. ALSPAC study steam. Adjustment of fat-free mass and fat mass for height in children aged 8 y. Int J Obes Relat Metab Disord. 2002;26:947–52.

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen AN, de Barse LM, Tiemeier H, Jaddoe VWV, Franco OH, Jansen PW, et al. Maternal history of eating disorders: diet quality during pregnancy and infant feeding. Appetite. 2017;109:108–14.

    Article  PubMed  Google Scholar 

  36. Santos S, Zugna D, Pizzi C, Richiardi L. Sources of confounding in life course epidemiology. J Dev Orig Health Dis. 2019;10:299–305.

    Article  CAS  PubMed  Google Scholar 

  37. Lewin A, Arbuckle TE, Fisher M, Liang CL, Marro L, Davis K, et al. Univariate predictors of maternal concentrations of environmental chemicals: the MIREC study. Int J Hyg Environ Health. 2017;220:77–85.

    Article  CAS  PubMed  Google Scholar 

  38. Al-Saleh I, Coskun S, Al-Doush I, Al-Rajudi T, Abduljabbar M, Al-Rouqi R, et al. The extent and predictors of phthalate exposure among couples undergoing in vitro fertilization treatment. Environ Monit Assess. 2019;191:316.

    Article  CAS  PubMed  Google Scholar 

  39. Gules O, Yildiz M, Naseer Z, Tatar M. Effects of folic acid on testicular toxicity induced by bisphenol-A in male Wistar rats. Biotech Histochem. 2019;94:26–35.

    Article  CAS  PubMed  Google Scholar 

  40. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA. 2007;104:13056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, et al. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics. 2017;9:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li MX, Yeung JM, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012;131:747–56.

    Article  CAS  PubMed  Google Scholar 

  43. Fall CH. Evidence for the intra-uterine programming of adiposity in later life. Ann Hum Biol. 2011;38:410–28.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Fox CS, Hickson D, Sarpong D, Ekunwe L, May WD, et al. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson heart study. Diabetes Care. 2010;33:1635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah RV, Anderson A, Ding J, Budoff M, Rider O, Petersen SE, et al. Pericardial, but not hepatic, fat by CT is associated with CV outcomes and structure: the multi-ethnic study of atherosclerosis. JACC Cardiovasc Imaging. 2017;10:1016–27.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ay L, Hokken-Koelega AC, Mook-Kanamori DO, Hofman A, Moll HA, Mackenbach JP, et al. Tracking and determinants of subcutaneous fat mass in early childhood: the Generation R Study. Int J Obes. 2008;32:1050–9.

    Article  CAS  Google Scholar 

  47. Freitas D, Beunen G, Maia J, Claessens A, Thomis M, Marques A, et al. Tracking of fatness during childhood, adolescence and young adulthood: a 7-year follow-up study in Madeira Island, Portugal. Ann Hum Biol. 2012;39:59–67.

    Article  PubMed  Google Scholar 

  48. Botton J, Philippat C, Calafat AM, Carles S, Charles MA, Slama R, et al. Phthalate pregnancy exposure and male offspring growth from the intra-uterine period to five years of age. Environ Res. 2016;151:601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagana X, Robinson O, et al. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ Health Perspect. 2015;123:1030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Valvi D, Monfort N, Ventura R, Casas M, Casas L, Sunyer J, et al. Variability and predictors of urinary phthalate metabolites in Spanish pregnant women. Int J Hyg Environ Health. 2015;218:220–31.

    Article  CAS  PubMed  Google Scholar 

  51. Braun JM, Li N, Arbuckle TE, Dodds L, Massarelli I, Fraser WD, et al. Association between gestational urinary bisphenol a concentrations and adiposity in young children: the MIREC study. Environ Res. 2019;172:454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Braun JM, Lanphear BP, Calafat AM, Deria S, Khoury J, Howe CJ, et al. Early-life bisphenol a exposure and child body mass index: a prospective cohort study. Environ Health Perspect. 2014;122:1239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vafeiadi M, Roumeliotaki T, Myridakis A, Chalkiadaki G, Fthenou E, Dermitzaki E, et al. Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environ Res. 2016;146:379–87.

    Article  CAS  PubMed  Google Scholar 

  54. Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, et al. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc Natl Acad Sci USA. 2015;112:2070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wei J, Lin Y, Li Y, Ying C, Chen J, Song L, et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology. 2011;152:3049–61.

    Article  CAS  PubMed  Google Scholar 

  56. Nohr EA, Liew Z. How to investigate and adjust for selection bias in cohort studies. Acta Obstet Gynecol Scand. 2018;97:407–16.

    Article  PubMed  Google Scholar 

  57. Braun JM, Sathyanarayana S, Hauser R. Phthalate exposure and children’s health. Curr Opin Pediatr. 2013;25:247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect. 2004;112:1734–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Braun JM, Smith KW, Williams PL, Calafat AM, Berry K, Ehrlich S, et al. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ Health Perspect. 2012;120:739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mahalingaiah S, Meeker JD, Pearson KR, Calafat AM, Ye X, Petrozza J, et al. Temporal variability and predictors of urinary bisphenol A concentrations in men and women. Environ Health Perspect. 2008;116:173–8.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Meng X, Chen L, Li D, Zhao L, Zhao Y, et al. Age and sex-specific relationships between phthalate exposures and obesity in Chinese children at puberty. PLoS ONE. 2014;9:e104852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang H, Zhou Y, Tang C, He Y, Wu J, Chen Y, et al. Urinary phthalate metabolites are associated with body mass index and waist circumference in Chinese school children. PLoS ONE. 2013;8:e56800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Teitelbaum SL, Mervish N, Moshier EL, Vangeepuram N, Galvez MP, Calafat AM, et al. Associations between phthalate metabolite urinary concentrations and body size measures in New York City children. Environ Res. 2012;112:186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trasande L, Attina TM, Sathyanarayana S, Spanier AJ, Blustein J. Race/ethnicity-specific associations of urinary phthalates with childhood body mass in a nationally representative sample. Environ Health Perspect. 2013;121:501–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of the participating children, their mothers, general practitioners, hospitals, midwives, and pharmacies in Rotterdam.

Funding

The general design of the Generation R Study is made possible by financial support from the Erasmus MC, University Medical Center, Rotterdam, the Netherlands, the Organization for Health Research and Development (ZonMw) and the Ministry of Health, Welfare and Sport. This study was supported by grant RO1-ES022972 and RO1-ES029779 from the National Institutes of Health, USA. This work was supported by the European Union’s Horizon 2020 research and innovation program under grant agreement 874583 (ATHLETE Project). The content is solely the responsibility of the authors and does not represent the official views of the National Institutes of Health. VWVJ received an additional grant from the European Research Council (ERC Consolidator Grant, ERC-2014-CoG-64916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent W. V. Jaddoe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sol, C.M., Santos, S., Duijts, L. et al. Fetal exposure to phthalates and bisphenols and childhood general and organ fat. A population-based prospective cohort study. Int J Obes 44, 2225–2235 (2020). https://doi.org/10.1038/s41366-020-00672-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-00672-7

Search

Quick links