Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Early life overnutrition impairs plasticity of non-neuronal brainstem cells and drives obesity in offspring across development in rats



The prevalence of adolescent obesity has increased dramatically, becoming a serious public health concern. While previous evidence suggests that in utero- and early postnatal overnutrition increases adult-onset obesity risk, the neurobiological mechanisms underlying this outcome are not well understood. Non-neuronal cells play an underestimated role in the physiological responses to metabolic/nutrient signals. Hypothalamic glial-mediated inflammation is now considered a contributing factor in the development and perpetuation of obesity; however, attention on the role of gliosis and microglia activation in other nuclei is still needed.


Here, we demonstrate that early life consumption of high-fat/sucrose diet (HFSD) is sufficient to increase offspring body weight, hyperleptinemia and potentially maladaptive cytoarchitectural changes in the brainstem dorsal-vagal-complex (DVC), an essential energy balance processing hub, across postnatal development. Our data demonstrate that pre- and postnatal consumption of HFSD result in increased body weight, hyperleptinemia and dramatically affects the non-neuronal landscape, and therefore the plasticity of the DVC in the developing offspring.


Current findings are very provocative, considering the importance of the DVC in appetite regulation, suggesting that HFSD-consumption during early life may contribute to subsequent obesity risk via DVC cytoarchitectural changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental design, body weight and energy intake of dams.
Fig. 2: Body weight and energy intake of male and female pups across development.
Fig. 3: Insulin, Leptin and GLP-1 measurements in the developing offspring.
Fig. 4: Immunohistochemistry for astroglial cells in the DVC of developing offspring.
Fig. 5: Immunohistochemistry for microglia in the DVC of developing offspring.
Fig. 6: Immunohistochemistry for tanycytes in the DVC of developing offspring.


  1. 1.

    Reynolds CM, Segovia SA, Vickers MH. Experimental models of maternal obesity and neuroendocrine programming of metabolic disorders in offspring. Front Endocrinol (Lausanne). 2017;8:245.

    Google Scholar 

  2. 2.

    Salam RA, Das JK, Bhutta ZA. Impact of intrauterine growth restriction on long-term health. Curr Opin Clin Nutr Metab Care. 2014;17:249–54.

    CAS  PubMed  Google Scholar 

  3. 3.

    Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279:E83–7.

    CAS  PubMed  Google Scholar 

  4. 4.

    Noble EE, Kanoski SE. Early life exposure to obesogenic diets and learning and memory dysfunction. Curr Opin Behav Sci. 2016;9:7–14.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kanoski SE, Davidson TL. Different patterns of memory impairments accompany short- and longer-term maintenance on a high-energy diet. J Exp Psychol Anim Behav Process. 2010;36:313–9.

    PubMed  Google Scholar 

  6. 6.

    Kanoski SE, Davidson TL. Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav. 2011;103:59–68.

    CAS  PubMed  Google Scholar 

  7. 7.

    Fuente-Martin E, Garcia-Caceres C, Diaz F, Argente-Arizon P, Granado M, Barrios V, et al. Hypothalamic inflammation without astrogliosis in response to high sucrose intake is modulated by neonatal nutrition in male rats. Endocrinology. 2013;154:2318–30.

    CAS  PubMed  Google Scholar 

  8. 8.

    Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012;16:296–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bayol SA, Farrington SJ, Stickland NC. A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr. 2007;98:843–51.

    CAS  PubMed  Google Scholar 

  10. 10.

    Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol. 2009;587:905–15.

    CAS  PubMed  Google Scholar 

  11. 11.

    Gorski JN, Dunn-Meynell AA, Hartman TG, Levin BE. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2006;291:R768–78.

    CAS  PubMed  Google Scholar 

  12. 12.

    Steculorum SM, Bouret SG. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology. 2011;152:4171–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bouret SG. Role of early hormonal and nutritional experiences in shaping feeding behavior and hypothalamic development. J Nutr. 2010;140:653–7.

    CAS  PubMed  Google Scholar 

  14. 14.

    Morris MJ, Chen H. Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. Int J Obes (Lond). 2009;33:115–22.

    CAS  Google Scholar 

  15. 15.

    Grill HJ. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity (Silver Spring). 2006;14(Suppl 5):216S–21S.

    Google Scholar 

  16. 16.

    Grill HJ, Kaplan JM. The neuroanatomical axis for control of energy balance. Front Neuroendocrinol. 2002;23:2–40.

    CAS  PubMed  Google Scholar 

  17. 17.

    Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci. 2016;10:566.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.

    CAS  PubMed  Google Scholar 

  19. 19.

    Edlow AG, Glass RM, Smith CJ, Tran PK, James K, Bilbo S. Placental macrophages: a window into fetal microglial function in maternal obesity. Int J Dev Neurosci. 2018;77:60–8.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood). 2001;226:963–77.

    CAS  Google Scholar 

  21. 21.

    Pan W, Hsuchou H, Jayaram B, Khan RS, Huang EY, Wu X, et al. Leptin action on nonneuronal cells in the CNS: potential clinical applications. Ann NY Acad Sci. 2012;1264:64–71.

    CAS  PubMed  Google Scholar 

  22. 22.

    Reiner DJ, Mietlicki-Baase EG, McGrath LE, Zimmer DJ, Bence KK, Sousa GL, et al. Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J Neurosci. 2016;36:3531–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Marina N, Turovsky E, Christie IN, Hosford PS, Hadjihambi A, Korsak A, et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia. 2018;66:1185–99.

    PubMed  Google Scholar 

  24. 24.

    Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81:229–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Dorfman MD, Thaler JP. Hypothalamic inflammation and gliosis in obesity. Curr Opin Endocrinol Diabetes Obes. 2015;22:325–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes. 2013;62:2629–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Horvath TL, Sarman B, Garcia-Caceres C, Enriori PJ, Sotonyi P, Shanabrough M, et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci USA. 2010;107:14875–80.

    CAS  PubMed  Google Scholar 

  28. 28.

    Buckman LB, Thompson MM, Moreno HN, Ellacott KL. Regional astrogliosis in the mouse hypothalamus in response to obesity. J Comp Neurol. 2013;521:1322–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36:180–90.

    CAS  PubMed  Google Scholar 

  30. 30.

    Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1:14.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bandeira F, Lent R, Herculano-Houzel S. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci USA. 2009;106:14108–13.

    CAS  PubMed  Google Scholar 

  32. 32.

    Hartfuss E, Galli R, Heins N, Gotz M. Characterization of CNS precursor subtypes and radial glia. Dev Biol. 2001;229:15–30.

    CAS  PubMed  Google Scholar 

  33. 33.

    Alves JA, Barone P, Engelender S, Froes MM, Menezes JR. Initial stages of radial glia astrocytic transformation in the early postnatal anterior subventricular zone. J Neurobiol. 2002;52:251–65.

    PubMed  Google Scholar 

  34. 34.

    Schmechel DE, Rakic P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl). 1979;156:115–52.

    CAS  Google Scholar 

  35. 35.

    Voigt T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol. 1989;289:74–88.

    CAS  PubMed  Google Scholar 

  36. 36.

    Group TS, Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med. 2012;366:2247–56.

    Google Scholar 

  37. 37.

    Levin BE. Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci. 2006;361:1107–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561:355–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L, et al. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288:R127–33.

    CAS  PubMed  Google Scholar 

  40. 40.

    Ventura AK, Worobey J. Early influences on the development of food preferences. Curr Biol. 2013;23:R401–8.

    CAS  PubMed  Google Scholar 

  41. 41.

    Ainge H, Thompson C, Ozanne SE, Rooney KB. A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. Int J Obes (Lond). 2011;35:325–35.

    CAS  Google Scholar 

  42. 42.

    Liberini CG, Lhamo R, Ghidewon M, Ling T, Juntereal N, Chen J, et al. Liraglutide pharmacotherapy reduces body weight and improves glycaemic control in juvenile obese/hyperglycaemic male and female rats. Diabetes Obes Metab. 2019;21:866–75.

    CAS  PubMed  Google Scholar 

  43. 43.

    Sun B, Purcell RH, Terrillion CE, Yan J, Moran TH, Tamashiro KL. Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes. 2012;61:2833–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Parlee SD, MacDougald OA. Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. Biochim Biophys Acta. 2014;1842:495–506.

    CAS  PubMed  Google Scholar 

  45. 45.

    Cordero P, Gomez-Uriz AM, Milagro FI, Campion J, Martinez JA. Maternal weight gain induced by an obesogenic diet affects adipose accumulation, liver weight, and insulin homeostasis in the rat offspring depending on the sex. J Endocrinol Invest. 2012;35:981–6.

    CAS  PubMed  Google Scholar 

  46. 46.

    Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101:1020–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Cottrell EC, Cripps RL, Duncan JS, Barrett P, Mercer JG, Herwig A, et al. Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am J Physiol Regul Integr Comp Physiol. 2009;296:R631–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakao K, et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab. 2005;1:371–8.

    CAS  PubMed  Google Scholar 

  49. 49.

    Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits. Clin Genet. 2006;70:295–301.

    CAS  PubMed  Google Scholar 

  50. 50.

    Tamashiro KL, Moran TH. Perinatal environment and its influences on metabolic programming of offspring. Physiol Behav. 2010;100:560–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Stocker CJ, Cawthorne MA. The influence of leptin on early life programming of obesity. Trends Biotechnol. 2008;26:545–51.

    CAS  PubMed  Google Scholar 

  52. 52.

    Kirk SL, Samuelsson AM, Argenton M, Dhonye H, Kalamatianos T, Poston L, et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS ONE. 2009;4:e5870.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Nusken E, Wohlfarth M, Lippach G, Rauh M, Schneider H, Dotsch J, et al. Reduced perinatal leptin availability may contribute to adverse metabolic programming in a rat model of uteroplacental insufficiency. Endocrinology. 2016;157:1813–25.

    PubMed  Google Scholar 

  54. 54.

    Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298:556–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.

    CAS  PubMed  Google Scholar 

  56. 56.

    Tasker JG, Oliet SH, Bains JS, Brown CH, Stern JE. Glial regulation of neuronal function: from synapse to systems physiology. J Neuroendocrinol. 2012;24:566–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Moran TH. Gut peptide signaling in the controls of food intake. Obesity (Silver Spring). 2006;14:250S–3S.

    CAS  Google Scholar 

  58. 58.

    Heindel JJ, vom Saal FS. Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity. Mol Cell Endocrinol. 2009;304:90–6.

    CAS  PubMed  Google Scholar 

  59. 59.

    Anzman SL, Rollins BY, Birch LL. Parental influence on children’s early eating environments and obesity risk: implications for prevention. Int J Obes (Lond). 2010;34:1116–24.

    CAS  Google Scholar 

  60. 60.

    Rosales FJ, Reznick JS, Zeisel SH. Understanding the role of nutrition in the brain and behavioral development of toddlers and preschool children: identifying and addressing methodological barriers. Nutr Neurosci. 2009;12:190–202.

    PubMed  PubMed Central  Google Scholar 

Download references


This research was supported by NIH-DK115762 (M.R.H.) and the Swiss National Foundation FNSNF-P22HP3_172289 (CGL). M.R.H. receives research support from Eli Lilly & Co., and Boehringer Ingelheim, none of which was used in the collection of these data.

Author information




C.G.L. and M.R.H. conceptualized of and designed the experiments; C.G.L., R.L., M.G., T.L., N.J., and L.M.S. conducted the research, C.G.L. and M.R.H. analyzed the data, C.G.L. and M.R.H. wrote the manuscript, and all authors reviewed/edited the manuscript. M.R.H. is the guarantor of this work and, as such, has full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Claudia G. Liberini or Matthew R. Hayes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liberini, C.G., Ghidewon, M., Ling, T. et al. Early life overnutrition impairs plasticity of non-neuronal brainstem cells and drives obesity in offspring across development in rats. Int J Obes 44, 2405–2418 (2020).

Download citation


Quick links