Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bariatric Surgery

Dehydroepiandrosterone protects against hepatic glycolipid metabolic disorder and insulin resistance induced by high fat via activation of AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways

Abstract

Background/objectives

Mitochondrial dysfunction, oxidative stress, or fatty liver are the key pathophysiological features for insulin resistance and obesity. Dehydroepiandrosterone (DHEA) can ameliorate obesity and insulin resistance; however, the mechanisms of these actions are poorly understood. The present study aimed to investigate the effect and possible mechanism of DHEA against glycolipid metabolic disorder and insulin resistance.

Subjects/methods

Rats fed a high-fat diet (HFD) and palmitic acid (PA)-induced BRL-3A cells were employed to analyze the effect of DHEA on factors related to metabolic disorder and insulin resistance in vivo and in vitro.

Results

DHEA prevented lipid metabolism disorders by enhancing phospho (p)-protein kinase AMP-activated catalytic subunit alpha (AMPKα) (Thr172) protein level and its downstream lipid metabolism-related factors in liver of rats fed an HFD or in PA-induced BRL-3A cells. Meanwhile, DHEA ameliorated mitochondrial dysfunction through activation of the AMPK-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-nuclear respiratory factor-1 (NRF-1) pathway, which represented as the enhancing of the mtDNA copy number, ATP level, and membrane potential, and decreasing of reactive oxygen species production. Moreover, DHEA alleviated insulin resistance via increasing the phosphorylated insulin receptor substrate 1 (p-IRS1) (Tyr612) level and decreasing that of p-IRS1 (Ser307) level in liver of rats fed an HFD or in PA-induced BRL-3A cells, which subsequently enhanced p-protein kinase B (AKT) (Ser473) and membrane glucose transporter type 2 (GLUT2) expression levels.

Conclusions

The protective effect of DHEA on high-fat-induced hepatic glycolipid metabolic disorder and insulin resistance are achieved through activation of the AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways. The results provide compelling evidence for the mechanism by which DHEA prevents glycolipid metabolic disorder, and suggest its potential applications for controlling diabetes and obesity in animals and humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of DHEA on lipid accumulation, glucose uptake, and ATP levels in BRL-3A cells under metabolic disorders condition.
Fig. 2: Protective effect of DHEA on insulin resistance in PA-induced BRL-3A cells.
Fig. 3: DHEA ameliorates energy metabolism dysfunction in PA-induced BRL-3A cells.
Fig. 4: Impact of DHEA on AMPK and insulin signaling pathways in PA-induced BRL-3A cells.
Fig. 5: Role of NRF-1 in DHEA-mediated attenuation of PA-elicited oxidative stress and mitochondrial dysfunction in BRL-3A cells.
Fig. 6: Proposed model by which DHEA prevents glycolipid metabolic disorder and insulin resistance.

Similar content being viewed by others

References

  1. Stein CJ, Colditz GA. The epidemic of obesity. J Clin Endocrinol Metab. 2000;172:78–9.

    Google Scholar 

  2. Hernándezaguilera A, Rull A, Rodríguezgallego E, Rieraborrull M, Lucianomateo F, Camps J, et al. Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm. 2013;2013:135698.

    Google Scholar 

  3. Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem. 2009;284:14809–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mollica MP, Mattace Raso G, Cavaliere G, Trinchese G, De Filippo C, Aceto S, et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes. 2017;66:1405–18.

    Article  PubMed  CAS  Google Scholar 

  5. De Marchi U, Castelbou C, Demaurex N. Uncoupling protein 3 (UCP3) modulates the activity of Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) by decreasing mitochondrial ATP production. J Biol Chem. 2011;286:32533–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov. 2010;9:465–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Labrie F, Belanger A, Luu-The V, Labrie C, Simard J, Cusan L, et al. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids. 1998;63:322–8.

    Article  PubMed  CAS  Google Scholar 

  8. Bacsi K, Kosa J, Lazary A, Horvath H, Balla B, Lakatos P, et al. Significance of dehydroepiandrosterone and dehydroepiandrosterone sulfate in different diseases. Orv Hetil. 2007;148:651–7.

    Article  PubMed  Google Scholar 

  9. Coleman DL, Schwizer RW, Leiter EH. Effect of genetic background on the therapeutic effects of dehydroepiandrosterone (DHEA) in diabetes-obesity mutants and in aged normal mice. Diabetes. 1984;33:26–32.

    Article  PubMed  CAS  Google Scholar 

  10. Jarrar D, Wang P, Cioffi WG, Bland KI, Chaudry IH. Mechanisms of the salutary effects of dehydroepiandrosterone after trauma-hemorrhage: direct or indirect effects on cardiac and hepatocellular functions. Arch Surg. 2000;135:416–22.

    Article  PubMed  CAS  Google Scholar 

  11. Buffington CK, Pourmotabbed G, Kitabchi AE. Case report: amelioration of insulin resistance in diabetes with dehydroepiandrosterone. Am J Med Sci. 1993;306:320–4.

    Article  PubMed  CAS  Google Scholar 

  12. Li L, Ge C, Wang D, Yu L, Zhao J, Ma H. Dehydroepiandrosterone reduces accumulation of lipid droplets in primary chicken hepatocytes by biotransformation mediated via the cAMP/PKA-ERK1/2 signaling pathway. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:625–38.

    Article  PubMed  CAS  Google Scholar 

  13. Li L, Zhang H, Yao Y, Yang Z, Ma H. (−)−Hydroxycitric acid suppresses lipid droplet accumulation and accelerates energy metabolism via activation of the adiponectin-AMPK signaling pathway in broiler chickens. J Agric Food Chem. 2019;67:3188–97.

    Article  PubMed  CAS  Google Scholar 

  14. Ding X, Wang D, Li L, Ma H. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways. Int J Biochem Cell Biol. 2016;70:126–39.

    Article  PubMed  CAS  Google Scholar 

  15. Campbell CS, Caperuto LC, Hirata AE, Araujo EP, Velloso LA, Saad MJ, et al. The phosphatidylinositol/AKT/atypical PKC pathway is involved in the improved insulin sensitivity by DHEA in muscle and liver of rats in vivo. Life Sci. 2004;76:57–70.

    Article  PubMed  CAS  Google Scholar 

  16. Formoso G, Chen H, Kim JA, Montagnani M, Consoli A, Quon MJ. Dehydroepiandrosterone mimics acute actions of insulin to stimulate production of both nitric oxide and endothelin 1 via distinct phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-dependent pathways in vascular endothelium. Mol Endocrinol. 2006;20:1153–63.

    Article  PubMed  CAS  Google Scholar 

  17. Perrini S, Natalicchio A, Laviola L, Belsanti G, Montrone C, Cignarelli A, et al. Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes. 2004;53:41–52.

    Article  PubMed  CAS  Google Scholar 

  18. Hakkak R, Bell A, Korourian S. Dehydroepiandrosterone (DHEA) feeding protects liver steatosis in obese breast cancer rat model. Sci Pharm. 2017;85:13.

    Article  PubMed Central  CAS  Google Scholar 

  19. Rathinam A, Pari L. Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chem Biol Interact. 2016;256:161–6.

    Article  PubMed  CAS  Google Scholar 

  20. Kiersztan A, Trojan N, Tempes A, Nalepa P, Sitek J, Winiarska K, et al. DHEA supplementation to dexamethasone-treated rabbits alleviates oxidative stress in kidney-cortex and attenuates albuminuria. J Steroid Biochem Mol Biol. 2017;174:17–26.

    Article  PubMed  CAS  Google Scholar 

  21. Kang J, Ge C, Yu L, Li L, Ma H. Long-term administration of dehydroepiandrosterone accelerates glucose catabolism via activation of PI3K/Akt-PFK-2 signaling pathway in rats fed a high-fat diet. PLoS ONE. 2016;11:e0159077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jorgensen SB, Richter EA, Wojtaszewski JF. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol. 2006;574:17–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Madiraju AK, Alves T, Zhao X, Cline GW, Zhang D, Bhanot S, et al. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism. Proc Natl Acad Sci USA. 2016;113:E3423–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Foretz M, Even PC, Viollet B. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo. Int J Mol Sci. 2018;19:2826.

    Article  PubMed Central  CAS  Google Scholar 

  25. Fu M, Zhang W, Wu L, Yang G, Li H, Wang R. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci USA. 2012;109:2943–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA. Atomic structure of the entire mammalian mitochondrial complex I. Nature. 2016;538:406–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lim W, Ryu S, Bazer FW, Kim SM, Song G. Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. J Cell Physiol. 2018;233:3129–40.

    Article  PubMed  CAS  Google Scholar 

  28. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, et al. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55:120–7.

    Article  PubMed  CAS  Google Scholar 

  29. Lu Z, Xu X, Hu X, Fassett J, Zhu G, Tao Y, et al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal. 2010;13:1011–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458:1056–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kang D, Kim SH, Hamasaki N. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion. 2007;7:39–44.

    Article  PubMed  CAS  Google Scholar 

  32. Garcia-Roves PM, Osler ME, Holmstrom MH, Zierath JR. Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem. 2008;283:35724–34.

    Article  PubMed  CAS  Google Scholar 

  33. Herzig RP, Scacco S, Scarpulla RC. Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c. J Biol Chem. 2000;275:13134–41.

    Article  PubMed  CAS  Google Scholar 

  34. Kaarsholm NC, Lin S, Yan L, Kelly T, van Heek M, Mu J, et al. Engineering glucose responsiveness into insulin. Diabetes. 2018;67:299–308.

    Article  PubMed  CAS  Google Scholar 

  35. Raubenheimer PJ, Nyirenda MJ, Walker BR. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes. 2006;55:2015–20.

    Article  PubMed  CAS  Google Scholar 

  36. Coll T, Eyre E, Rodriguez-Calvo R, Palomer X, Sanchez RM, Merlos M, et al. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem. 2008;283:11107–16.

    Article  PubMed  CAS  Google Scholar 

  37. Qi G, Guo R, Tian H, Li L, Liu H, Mi Y, et al. Nobiletin protects against insulin resistance and disorders of lipid metabolism by reprogramming of circadian clock in hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:549–62.

    Article  PubMed  CAS  Google Scholar 

  38. Cheng KK, Iglesias MA, Lam KS, Wang Y, Sweeney G, Zhu W, et al. APPL1 potentiates insulin-mediated inhibition of hepatic glucose production and alleviates diabetes via Akt activation in mice. Cell Metab. 2009;9:417–27.

    Article  PubMed  CAS  Google Scholar 

  39. Chen K, Li G, Geng F, Zhang Z, Li J, Yang M, et al. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis. 2014;19:946–57.

    Article  PubMed  CAS  Google Scholar 

  40. Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res. 2009;69:4018–26.

    Article  PubMed  CAS  Google Scholar 

  41. Utriainen T, Takala T, Luotolahti M, Rönnemaa T, Laine H, Ruotsalainen U, et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia. 1998;41:555–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 31572483); the Fundamental Research Funds for the Central Universities (grant number KYDZ201901); the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_0715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitian Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yao, Y., Zhao, J. et al. Dehydroepiandrosterone protects against hepatic glycolipid metabolic disorder and insulin resistance induced by high fat via activation of AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways. Int J Obes 44, 1075–1086 (2020). https://doi.org/10.1038/s41366-019-0508-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0508-8

This article is cited by

Search

Quick links