Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical Research

Oxytocin reduces the functional connectivity between brain regions involved in eating behavior in men with overweight and obesity

Subjects

Abstract

Background

Oxytocin (OXT), shown to decrease food intake in animal models and men, is a promising novel treatment for obesity. We have shown that in men with overweight and obesity, intranasal (IN) OXT reduced the functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent signal in the ventral tegmental area (VTA), the origin of the mesolimbic dopaminergic reward system, in response to high-calorie food vs. nonfood images. Here, we employed functional connectivity fMRI analysis, which measures the synchrony in activation between neural systems in a context-dependent manner. We hypothesized that OXT would attenuate the functional connectivity of the VTA with key food motivation brain areas only when participants viewed high-calorie food stimuli.

Methods

This randomized, double-blind, and placebo-controlled crossover study of 24 IU IN OXT included ten men with overweight or obesity (mean ± SEM BMI: 28.9 ± 0.8 kg/m2). Following drug administration, subjects completed an fMRI food motivation paradigm including images of high and low-calorie foods, nonfood objects, and fixation stimuli. A psychophysiological interaction analysis was performed with the VTA as seed region.

Results

Following OXT administration, compared with placebo, participants exhibited significantly attenuated functional connectivity between the VTA and the insula, oral somatosensory cortex, amygdala, hippocampus, operculum, and middle temporal gyrus in response to viewing high-calorie foods (Z ≥ 3.1, cluster-corrected, p < 0.05). There was no difference in functional connectivity between VTA and these brain areas when comparing OXT and placebo for low-calorie food, nonfood, and fixation images.

Conclusion

In men with overweight and obesity, OXT attenuates the functional connectivity between the VTA and food motivation brain regions in response to high-calorie visual food images. These findings could partially explain the observed anorexigenic effect of OXT, providing insight into the mechanism through which OXT ameliorates food cue-induced reward anticipation in patients with obesity. Additional studies are ongoing to further delineate the anorexigenic effect of OXT in obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    World Health Organization. Obesity and overweight. World Health Organization. 2019. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  2. 2.

    Kouvelioti R, Vagenas G, Langley-Evans S. Effects of exercise and diet on weight loss maintenance in overweight and obese adults: a systematic review. J Sports Med Phys Fitness. 2014;54:456–74.

    CAS  PubMed  Google Scholar 

  3. 3.

    Zizzi SJ, Lima Fogaca J, Sheehy T, Welsh M, Abildso C. Changes in weight loss, health behaviors, and intentions among 400 participants who dropped out from an insurance-sponsored, community-based weight management program. J Obes. 2016;2016:7562890.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Devoto F, Zapparoli L, Bonandrini R, Berlingeri M, Ferrulli A, Luzi L, et al. Hungry brains: a meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. Neurosci Biobehav Rev. 2018;94:271–85.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Pursey KM, Stanwell P, Callister RJ, Brain K, Collins CE, Burrows TL. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies. Front Nutr. 2014;1:7.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Jastreboff AM, Sinha R, Lacadie C, Small DM, Sherwin RS, Potenza MN. Neural correlates of stress- and food cue-induced food craving in obesity: association with insulin levels. Diabetes Care. 2013;36:394–402.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Scharmuller W, Ubel S, Ebner F, Schienle A. Appetite regulation during food cue exposure: a comparison of normal-weight and obese women. Neurosci Lett. 2012;518:106–10.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Stoeckel LE, Weller RE, Cook EW 3rd, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage. 2008;41:636–47.

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Martens MJ, Born JM, Lemmens SG, Karhunen L, Heinecke A, Goebel R, et al. Increased sensitivity to food cues in the fasted state and decreased inhibitory control in the satiated state in the overweight. Am J Clin Nutr. 2013;97:471–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Martin LE, Holsen LM, Chambers RJ, Bruce AS, Brooks WM, Zarcone JR, et al. Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity. 2010;18:254–60.

    PubMed  Article  Google Scholar 

  11. 11.

    Ho A, Kennedy J, Dimitropoulos A. Neural correlates to food-related behavior in normal-weight and overweight/obese participants. PLoS ONE. 2012;7:e45403.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: an update. Biol Psychol. 2018;131:31–42.

    PubMed  Article  Google Scholar 

  13. 13.

    Spetter MS, Hallschmid M. Current findings on the role of oxytocin in the regulation of food intake. Physiol Behav. 2017;176:31–9.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Lawson EA. The effects of oxytocin on eating behaviour and metabolism in humans. Nat Rev Endocrinol. 2017;13:700–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Ludwig M, Leng G. Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci. 2006;7:126–36.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nat Rev Neurosci. 2011;12:524–38.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol. 2013;25:678–710.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, et al. Gating of social reward by oxytocin in the ventral tegmental area. Science. 2017;357:1406–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Knobloch HS, Grinevich V. Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci. 2014;8:31.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron. 2017;95:368–84 e5.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Meye FJ, Adan RA. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol Sci. 2014;35:31–40.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Blevins JE, Baskin DG. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans. Physiol Behav. 2015;152(Pt B):438–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Roberts ZS, Wolden-Hanson T, Matsen ME, Ryu V, Vaughan CH, Graham JL, et al. Chronic hindbrain administration of oxytocin is sufficient to elicit weight loss in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol. 2017;313:R357–R71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Zhang G, Cai D. Circadian intervention of obesity development via resting-stage feeding manipulation or oxytocin treatment. Am J Physiol Endocrinol Metab. 2011;301:E1004–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Blevins JE, Thompson BW, Anekonda VT, Ho JM, Graham JL, Roberts ZS, et al. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization. Am J Physiol Regul Integr Comp Physiol. 2016;310:R640–58.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, et al. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS ONE. 2011;6:e25565.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Maejima Y, Iwasaki Y, Yamahara Y, Kodaira M, Sedbazar U, Yada T. Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging. 2011;3:1169–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Altirriba J, Poher AL, Caillon A, Arsenijevic D, Veyrat-Durebex C, Lyautey J, et al. Divergent effects of oxytocin treatment of obese diabetic mice on adiposity and diabetes. Endocrinology. 2014;155:4189–201.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Plante E, Menaouar A, Danalache BA, Yip D, Broderick TL, Chiasson JL, et al. Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice. Endocrinology. 2015;156:1416–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Mullis K, Kay K, Williams DL. Oxytocin action in the ventral tegmental area affects sucrose intake. Brain Res. 2013;1513:85–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Lawson EA, Marengi DA, DeSanti RL, Holmes TM, Schoenfeld DA, Tolley CJ. Oxytocin reduces caloric intake in men. Obesity. 2015;23:950–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Thienel M, Fritsche A, Heinrichs M, Peter A, Ewers M, Lehnert H, et al. Oxytocin’s inhibitory effect on food intake is stronger in obese than normal-weight men. Int J Obes. 2016;40:1707–14.

    CAS  Article  Google Scholar 

  34. 34.

    Ott V, Finlayson G, Lehnert H, Heitmann B, Heinrichs M, Born J, et al. Oxytocin reduces reward-driven food intake in humans. Diabetes. 2013;62:3418–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Zhang H, Wu C, Chen Q, Chen X, Xu Z, Wu J, et al. Treatment of obesity and diabetes using oxytocin or analogs in patients and mouse models. PLoS ONE. 2013;8:e61477.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Kabasakalian A, Ferretti CJ, Hollander E. Oxytocin and Prader-Willi syndrome. Curr Top Behav Neurosci. 2018;35:529–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Dykens EM, Miller J, Angulo M, Roof E, Reidy M, Hatoum HT, et al. Intranasal carbetocin reduces hyperphagia in individuals with Prader-Willi syndrome. JCI Insight. 2018;3:e98333.

  38. 38.

    Spetter MS, Feld GB, Thienel M, Preissl H, Hege MA, Hallschmid M. Oxytocin curbs calorie intake via food-specific increases in the activity of brain areas that process reward and establish cognitive control. Sci Rep. 2018;8:2736.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    van der Klaauw AA, Ziauddeen H, Keogh JM, Henning E, Dachi S, Fletcher PC, et al. Oxytocin administration suppresses hypothalamic activation in response to visual food cues. Sci Rep. 2017;7:4266.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Plessow F, Marengi DA, Perry SK, Felicione JM, Franklin R, Holmes TM, et al. Effects of intranasal oxytocin on the blood oxygenation level-dependent signal in food motivation and cognitive control pathways in overweight and obese men. Neuropsychopharmacology. 2018;43:638–45.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1:13–36.

    PubMed  Article  Google Scholar 

  42. 42.

    O’Reilly JX, Woolrich MW, Behrens TE, Smith SM, Johansen-Berg H. Tools of the trade: Psychophysiological interactions and functional connectivity. Soc Cogn Affect Neurosci. 2012;7:604–9.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Holsen LM, Lawson EA, Blum J, Ko E, Makris N, Fazeli PK, et al. Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa. J Psychiatry Neurosci. 2012;37:322–32.

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Worsley KJ. Statistical analysis of activation images. In: Jezzard P, Matthews PM, Smith SM, editors. Functional MRI: in introduction to methods. Oxford: OUP; 2001.

  45. 45.

    Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage. 2007;37:410–21.

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Nummenmaa L, Hirvonen J, Hannukainen JC, Immonen H, Lindroos MM, Salminen P, et al. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS ONE. 2012;7:e31089.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Schlogl H, Horstmann A, Villringer A, Stumvoll M. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol. 2016;4:695–705.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Breton JM, Charbit AR, Snyder BJ, Fong PTK, Dias EV, Himmels P. Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat. J Comp Neurol. 2018;527:916–41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Simmons WK, Avery JA, Barcalow JC, Bodurka J, Drevets WC, Bellgowan P. Keeping the body in mind: Insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum Brain Mapp. 2013;34:2944–58.

    PubMed  Article  Google Scholar 

  51. 51.

    Simmons WK, Rapuano KM, Kallman SJ, Ingeholm JE, Miller B, Gotts SJ, et al. Category-specific integration of homeostatic signals in caudal but not rostral human insula. Nat Neurosci. 2013;16:1551–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Wang GJ, Tomasi D, Backus W, Wang R, Telang F, Geliebter A, et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage. 2008;39:1824–31.

    PubMed  Article  Google Scholar 

  53. 53.

    Small DM. Taste representation in the human insula. Brain Struct Funct. 2010;214:551–61.

    PubMed  Article  Google Scholar 

  54. 54.

    Nieuwenhuys R. The insular cortex: a review. Prog Brain Res. 2012;195:123–63.

    PubMed  Article  Google Scholar 

  55. 55.

    Frank S, Kullmann S, Veit R. Food related processes in the insular cortex. Front Hum Neurosci. 2013;7:499.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Namkung H, Kim SH, Sawa A. The insula: an underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends Neurosci. 2017;40:200–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7:189–95.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Yokum S, Ng J, Stice E. Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity. 2011;19:1775–83.

    PubMed  Article  Google Scholar 

  59. 59.

    Avery JA, Powell JN, Breslin FJ, Lepping RJ, Martin LE, Patrician TM, et al. Obesity is associated with altered mid-insula functional connectivity to limbic regions underlying appetitive responses to foods. J Psychopharmacol. 2017;31:1475–84.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Wistehube T, Rullmann M, Wiacek C, Braun P, Pleger B. Fat perception in the human frontal operculum, insular and somatosensory cortex. Sci Rep. 2018;8:11825.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Batterink L, Yokum S, Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage. 2010;52:1696–703.

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Holsen LM, Zarcone JR, Brooks WM, Butler MG, Thompson TI, Ahluwalia JS, et al. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity. 2006;14:1028–37.

    PubMed  Article  Google Scholar 

  63. 63.

    Rapuano KM, Huckins JF, Sargent JD, Heatherton TF, Kelley WM. Individual differences in reward and somatosensory-motor brain regions correlate with adiposity in adolescents. Cereb Cortex. 2016;26:2602–11.

    PubMed  Article  Google Scholar 

  64. 64.

    Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117:924–35.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Cornier MA, McFadden KL, Thomas EA, Bechtell JL, Bessesen DH, Tregellas JR. Propensity to obesity impacts the neuronal response to energy imbalance. Front Behav Neurosci. 2015;9:52.

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, et al. The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex. 2006;16:669–75.

    PubMed  Article  Google Scholar 

  67. 67.

    Grabski K, Lamalle L, Vilain C, Schwartz JL, Vallee N, Tropres I, et al. Functional MRI assessment of orofacial articulators: neural correlates of lip, jaw, larynx, and tongue movements. Hum Brain Mapp. 2012;33:2306–21.

    PubMed  Article  Google Scholar 

  68. 68.

    Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517:284–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Arnoni-Bauer Y, Bick A, Raz N, Imbar T, Amos S, Agmon O, et al. Is it me or my hormones? Neuroendocrine activation profiles to visual food stimuli across the menstrual cycle. J Clin Endocrinol Metab. 2017;102:3406–14.

    PubMed  Article  Google Scholar 

  70. 70.

    Basso F, Petit O, Le Bellu S, Lahlou S, Cancel A, Anton JL. Taste at first (person) sight: visual perspective modulates brain activity implicitly associated with viewing unhealthy but not healthy foods. Appetite. 2018;128:242–54.

    PubMed  Article  Google Scholar 

  71. 71.

    Verdejo-Roman J, Vilar-Lopez R, Navas JF, Soriano-Mas C, Verdejo-Garcia A. Brain reward system’s alterations in response to food and monetary stimuli in overweight and obese individuals. Hum Brain Mapp. 2017;38:666–77.

    PubMed  Article  Google Scholar 

  72. 72.

    Sun X, Kroemer NB, Veldhuizen MG, Babbs AE, de Araujo IE, Gitelman DR, et al. Basolateral amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. J Neurosci. 2015;35:7964–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM, et al. Persistence of abnormal neural responses to a meal in postobese individuals. Int J Obes Relat Metab Disord. 2004;28:370–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Park BY, Hong J, Park H. Neuroimaging biomarkers to associate obesity and negative emotions. Sci Rep. 2017;7:7664.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    van Meer F, van der Laan LN, Charbonnier L, Viergever MA, Adan RA, Smeets PA, et al. Developmental differences in the brain response to unhealthy food cues: an fMRI study of children and adults. Am J Clin Nutr. 2016;104:1515–22.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  76. 76.

    Hogenkamp PS, Zhou W, Dahlberg LS, Stark J, Larsen AL, Olivo G, et al. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake. Int J Obes. 2016;40:1687–92.

    CAS  Article  Google Scholar 

  77. 77.

    Garcia-Garcia I, Jurado MA, Garolera M, Segura B, Sala-Llonch R, Marques-Iturria I, et al. Alterations of the salience network in obesity: a resting-state fMRI study. Hum Brain Mapp. 2013;34:2786–97.

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Zhang B, Tian D, Yu C, Zhang J, Tian X, von Deneen KM, et al. Altered baseline brain activities before food intake in obese men: a resting state fMRI study. Neurosci Lett. 2015;584:156–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Kullmann S, Pape AA, Heni M, Ketterer C, Schick F, Haring HU, et al. Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults. Cereb Cortex. 2013;23:1247–56.

    PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Stoeckel LE, Kim J, Weller RE, Cox JE, Cook EW 3rd, Horwitz B. Effective connectivity of a reward network in obese women. Brain Res Bull. 2009;79:388–95.

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Leslie M, Silva P, Paloyelis Y, Blevins J, Treasure J. A Systematic review and quantitative meta-analysis of oxytocin’s effects on feeding. J Neuroendocrinol. 2018.

  82. 82.

    Burmester V, Higgs S, Terry P. Rapid-onset anorectic effects of intranasal oxytocin in young men. Appetite. 2018;130:104–9.

    PubMed  Article  Google Scholar 

  83. 83.

    Maestrini S, Mele C, Mai S, Vietti R, Di Blasio A, Castello L, et al. Plasma oxytocin concentration in pre- and postmenopausal women: Its relationship with obesity, body composition and metabolic variables. Obes Facts. 2018;11:429–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Lawson EA, Ackerman KE, Slattery M, Marengi DA, Clarke H, Misra M. Oxytocin secretion is related to measures of energy homeostasis in young amenorrheic athletes. J Clin Endocrinol Metab. 2014;99:E881–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Engel S, Klusmann H, Ditzen B, Knaevelsrud C, Schumacher S. Menstrual cycle-related fluctuations in oxytocin concentrations: a systematic review and meta-analysis. Front Neuroendocrinol. 2019;52:144–55.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our participants as well as the staff at the Massachusetts General Hospital Harvard Clinical and Translational Science Center and Athinoula A. Martinos Center for Biomedical Imaging.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Elizabeth A. Lawson or Franziska Plessow.

Ethics declarations

Conflict of interest

The study was supported by the Boston Nutrition Obesity Research Center—5P30DK046200-20; Nutrition Obesity Research Center at Harvard—P30DK040561; 5R01DK109932-02; K23 MH092560; K24 MH120568; and Harvard Clinical and Translational Science Center 0UL1TR001102-01. EAL has a financial interest in OXT Therapeutics, a company developing an IN OXT and long-acting analogs of OXT to treat obesity and metabolic disease. EAL’s interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. This company was not involved in any way in this research. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kerem, L., Hadjikhani, N., Holsen, L. et al. Oxytocin reduces the functional connectivity between brain regions involved in eating behavior in men with overweight and obesity. Int J Obes 44, 980–989 (2020). https://doi.org/10.1038/s41366-019-0489-7

Download citation

Further reading

Search

Quick links