Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Gestational diabetes and maternal obesity are associated with sex-specific changes in miRNA and target gene expression in the fetus

Abstract

Background/objectives

Pregnancies complicated by gestational diabetes (GDM) or maternal obesity have been linked to the development of diabetes, obesity, and fatty liver disease later in life with sex-specific manifestations. Alterations in miRNA expression in offspring exposed to GDM and maternal obesity and effects on hepatic development are unknown. Here, we describe how exposure to maternal obesity in utero leads to sex-specific changes in miRNA and target gene expression in human fetal liver.

Methods

Candidate miRNA expression was measured in second trimester amniotic fluid (AF) from women with GDM. Targets of differentially expressed miRNAs were determined and pathway enrichment of target genes was performed. MiRNA and target gene expression were measured in a separate cohort of second trimester primary human fetal hepatocytes (PHFH) exposed to maternal obesity via qPCR and western blot. All studies were IRB approved.

Results

GDM-exposed AF had significant increases in miRNAs 199a-3p, 503-5p, and 1268a (fold change (FC) ≥ 1.5, p < 0.05). Female offspring-specific analysis showed enrichment in miRNAs 378a-3p, 885-5p, and 7-1-3p (p < 0.05). MiRNA gene targets were enriched in hepatic pathways. Key genes regulating de novo lipogenesis were upregulated in obesity-exposed PHFH, especially in males. Significantly altered miRNAs in GDM AF were measured in obese-exposed PHFH, with consistent increases in miRNAs 885-5p, 199-3p, 503-5p, 1268a, and 7-1-3p (FC ≥ 1.5, p < 0.05). Female PHFH exposed to maternal obesity had increased expression of miR-885-5p, miR-199-3p, miR-503-5p, miR-1268s, and miR-7-1-3p (p < 0.05), corresponding to decreased target genes expression for ABCA1, PAK4, and INSR. In male PHFHs, no miRNA changes were measured but there was increased expression of ABCA1, PAK4, and INSR (p < 0.05).

Conclusions

Our data suggest sex-specific changes in miRNA and gene expression in PHFH may be one mechanism contributing to the sexual dimorphism of metabolic disease in offspring exposed to GDM and maternal obesity in utero.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, et al. Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem. 2012;23:341–8.

    CAS  PubMed  Google Scholar 

  2. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6.

    PubMed  Google Scholar 

  3. Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG. 2006;113:1126–33.

    CAS  PubMed  Google Scholar 

  4. Crume TL, Ogden L, West NA, Vehik KS, Scherzinger A, Daniels S, et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) Study. Diabetologia. 2011;54:87–92.

    CAS  PubMed  Google Scholar 

  5. Kawasaki M, Arata N, Ogawa Y. Obesity and abnormal glucose tolerance in the offspring of mothers with diabetes. Curr Opin Obstet Gynecol. 2018;30:361–8.

  6. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Investig. 2009;119:323–35.

    CAS  PubMed  Google Scholar 

  7. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    CAS  PubMed  Google Scholar 

  8. Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav. 2005;86:661–8.

    CAS  PubMed  Google Scholar 

  9. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118:2316–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97:51–61.

    CAS  PubMed  Google Scholar 

  11. Mouillet JF, Chu T, Sadovsky Y. Expression patterns of placental microRNAs. Birth Defects Res A Clin Mol Teratol. 2011;91:737–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol. 2015;213(4 Suppl):S163–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25:341–8.

    PubMed  Google Scholar 

  15. Pinney SE, Mesaros CA, Snyder NW, Busch CM, Xiao R, Aijaz S, et al. Second trimester amniotic fluid bisphenol A concentration is associated with decreased birth weight in term infants. Reprod Toxicol. 2017;67:1–9.

    CAS  PubMed  Google Scholar 

  16. O'Neill K, Alexander J, Azuma R, Xiao R, Snyder NW, Mesaros CA, et al. Gestational diabetes alters the metabolomic profile in 2nd trimester amniotic fluid in a sex-specific manner. Int J Mol Sci. 2018;19:E2696.

    PubMed  Google Scholar 

  17. Lazaro CA, Croager EJ, Mitchell C, Campbell JS, Yu C, Foraker J, et al. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology. 2003;38:1095–106.

    PubMed  Google Scholar 

  18. Alejandro EU, Gregg B, Wallen T, Kumusoglu D, Meister D, Chen A, et al. Maternal diet-induced microRNAs and mTOR underlie beta cell dysfunction in offspring. J Clin Invest. 2014;124:4395–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Collares CV, Evangelista AF, Xavier DJ, Rassi DM, Arns T, Foss-Freitas MC, et al. Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes. 2013;6:491.

    PubMed  PubMed Central  Google Scholar 

  20. Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns. 2009;9:193–9.

    CAS  PubMed  Google Scholar 

  21. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–21.

    CAS  PubMed  Google Scholar 

  22. Hu L, Han J, Zheng F, Ma H, Chen J, Jiang Y, et al. Early second-trimester serum microRNAs as potential biomarker for nondiabetic macrosomia. Biomed Res Int. 2014;2014:394125.

    PubMed  PubMed Central  Google Scholar 

  23. Lazzarini R, Olivieri F, Ferretti C, Mattioli-Belmonte M, Di Primio R, Orciani M. mRNAs and miRNAs profiling of mesenchymal stem cells derived from amniotic fluid and skin: the double face of the coin. Cell Tissue Res. 2014;355:121–30.

    CAS  PubMed  Google Scholar 

  24. Liu T, Chen Q, Huang Y, Huang Q, Jiang L, Guo L. Low microRNA-199a expression in human amniotic epithelial cell feeder layers maintains human-induced pluripotent stem cell pluripotency via increased leukemia inhibitory factor expression. Acta Biochim Biophys Sin (Shanghai). 2012;44:197–206.

    CAS  Google Scholar 

  25. Miranda-Sayago JM, Fernandez-Arcas N, Reyes-Engel A, Benito C, Narbona I, Alonso A. Changes in CDKN2D, TP53, and miR125a expression: potential role in the evaluation of human amniotic fluid-derived mesenchymal stromal cell fitness. Genes Cells. 2012;17:673–87.

    CAS  PubMed  Google Scholar 

  26. Pillar N, Yoffe L, Hod M, Shomron N. The possible involvement of microRNAs in preeclampsia and gestational diabetes mellitus. Best Pract Res Clin Obstet Gynaecol. 2015;29:176–82.

    PubMed  Google Scholar 

  27. Rayner KJ, Hennessy EJ. Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res. 2013;54:1174–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ross SA, Davis CD. The emerging role of microRNAs and nutrition in modulating health and disease. Annu Rev Nutr. 2014;34:305–36.

    CAS  PubMed  Google Scholar 

  29. Tryggestad JB, Vishwanath A, Jiang S, Mallappa A, Teague AM, Takahashi Y, et al. Influence of gestational diabetes mellitus on human umbilical vein endothelial cell miRNA. Clin Sci (Lond). 2016;130:1955–67.

    CAS  Google Scholar 

  30. Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci USA. 2014;111:14518–23.

    CAS  PubMed  Google Scholar 

  31. Zhao C, Dong J, Jiang T, Shi Z, Yu B, Zhu Y, et al. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS ONE. 2011;6:e23925.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao C, Zhang T, Shi Z, Ding H, Ling X. MicroRNA-518d regulates PPARalpha protein expression in the placentas of females with gestational diabetes mellitus. Mol Med Rep. 2014;9:2085–90.

    CAS  PubMed  Google Scholar 

  33. Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. Int J Gynaecol Obstet. 2015;130:49–53.

    CAS  PubMed  Google Scholar 

  34. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.

    PubMed  PubMed Central  Google Scholar 

  35. Qi R, Weiland M, Gao XH, Zhou L, Mi QS. Identification of endogenous normalizers for serum microRNAs by microarray profiling: U6 small nuclear RNA is not a reliable normalizer. Hepatology. 2012;55:1640–2.

    PubMed  Google Scholar 

  36. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

  37. Stefulj J, Panzenboeck U, Becker T, Hirschmugl B, Schweinzer C, Lang I, et al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res. 2009;104:600–8.

    CAS  PubMed  Google Scholar 

  38. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19:232–43.

    CAS  PubMed  Google Scholar 

  39. Lingwood BE, Henry AM, d'Emden MC, Fullerton AM, Mortimer RH, Colditz PB, et al. Determinants of body fat in infants of women with gestational diabetes mellitus differ with fetal sex. Diabetes Care. 2011;34:2581–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Regnault N, Gillman MW, Rifas-Shiman SL, Eggleston E, Oken E. Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care. 2013;36:3045–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Retnakaran R, Kramer CK, Ye C, Kew S, Hanley AJ, Connelly PW, et al. Fetal sex and maternal risk of gestational diabetes mellitus: the impact of having a boy. Diabetes Care. 2015;38:844–51.

    CAS  PubMed  Google Scholar 

  42. Alexander J, Teague AM, Chen J, Aston CE, Leung YK, Chernausek S, et al. Offspring sex impacts DNA methylation and gene expression in placentae from women with diabetes during pregnancy. PLoS ONE. 2018;13:e0190698.

    PubMed  PubMed Central  Google Scholar 

  43. He L, Tang M, Xiao T, Liu H, Liu W, Li G, et al. Obesity-associated miR-199a/214 cluster inhibits adipose browning via PRDM16-PGC-1alpha transcriptional network. Diabetes. 2018;67:2585–600.

    PubMed  Google Scholar 

  44. Dimasuay KG, Boeuf P, Powell TL, Jansson T. Placental responses to changes in the maternal environment determine fetal growth. Front Physiol. 2016;7:12.

    PubMed  PubMed Central  Google Scholar 

  45. Jansson T, Aye IL, Goberdhan DC. The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta. 2012;33(Suppl 2):e23–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10:542–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation. 2011;123:282–91.

    CAS  PubMed  Google Scholar 

  48. Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res. 2012;93:583–93.

    CAS  PubMed  Google Scholar 

  49. Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol. 2009;36:181–8.

    PubMed  Google Scholar 

  50. Zhou B, Ma R, Si W, Li S, Xu Y, Tu X, et al. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett. 2013;333:159–69.

    CAS  PubMed  Google Scholar 

  51. Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci USA. 2012;109:15330–5.

    CAS  PubMed  Google Scholar 

  52. Huang N, Wang J, Xie W, Lyu Q, Wu J, He J, et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem Biophys Res Commun. 2015;457:37–42.

    CAS  PubMed  Google Scholar 

  53. Nieto M, Hevia P, Garcia E, Klein D, Alvarez-Cubela S, Bravo-Egana V, et al. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant. 2012;21:1761–74.

    PubMed  Google Scholar 

  54. Filios SR, Shalev A. beta-Cell MicroRNAs: small but powerful. Diabetes. 2015;64:3631–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kredo-Russo S, Mandelbaum AD, Ness A, Alon I, Lennox KA, Behlke MA, et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development. 2012;139:3021–31.

    CAS  PubMed  Google Scholar 

  56. Raitoharju E, Seppala I, Lyytikainen LP, Viikari J, Ala-Korpela M, Soininen P, et al. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism-The Young Finns Study. Sci Rep. 2016;6:38262.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hur K, Toiyama Y, Schetter AJ, Okugawa Y, Harris CC, Boland CR, et al. Identification of a metastasis-specific MicroRNA signature in human colorectal cancer. J Natl Cancer Inst. 2015;107.

  58. Mitsuhashi K, Yamamoto I, Kurihara H, Kanno S, Ito M, Igarashi H, et al. Analysis of the molecular features of rectal carcinoid tumors to identify new biomarkers that predict biological malignancy. Oncotarget. 2015;6:22114–25.

    PubMed  PubMed Central  Google Scholar 

  59. Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA. 2014;311:392–404.

    CAS  PubMed  Google Scholar 

  60. Tan Y, Ge G, Pan T, Wen D, Gan J. Serum MiRNA panel as potential biomarkers for chronic hepatitis B with persistently normal alanine aminotransferase. Clin Chim Acta. 2015;451(Pt B):232–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jeanne Manson, Ph.D and Deborah Driscoll, M.D. for their work in establishing the amniotic fluid and amniocyte biospecimen repository.

Funding

Research reported in this publication was supported by the National Institute of Environmental Health Sciences and the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under award numbers SEP: K08 DK090302, P30 ES013508, UL1TR001878, the McCabe Foundation and the creation of the biospecimen repository: 5R21-ES11675.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara E. Pinney.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Azuma, R., Akumuo, R. et al. Gestational diabetes and maternal obesity are associated with sex-specific changes in miRNA and target gene expression in the fetus. Int J Obes 44, 1497–1507 (2020). https://doi.org/10.1038/s41366-019-0485-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0485-y

This article is cited by

Search

Quick links