Epidemiology and Population Health

DNA methylome profiling in identical twin pairs discordant for body mass index

Abstract

Objective

Body mass index (BMI) serves as an important measurement of obesity and adiposity, which are highly correlated with cardiometabolic diseases. Although high heritability has been estimated, the identified genetic variants by genetic association studies only explain a small proportion of BMI variation. As an active effort for further exploring the molecular basis of BMI variation, large-scale epigenome-wide association studies have been conducted but with limited number of loci reported, perhaps due to poorly controlled confounding factors, including genetic factors. Being genetically identical, monozygotic twins discordant for BMI are ideal subjects for analyzing the epigenetic association between DNA methylation and BMI, providing perfect control on their genetic makeups largely responsible for BMI variation.

Subjects

We performed an epigenome-wide association study on BMI using 30 identical twin pairs (15 male and 15 female pairs) with age ranging from 39 to 72 years and degree of BMI discordance ranging from 3–7.5 kg/m2. Methylation data from whole blood samples were collected using the reduced representation bisulfite sequencing technique.

Results

After adjusting for blood cell composition and clinical variables, we identified 136 CpGs with p-value < 1e-4, 30 CpGs with p < 1e-05 but no CpGs reached genome-wide significance. Genomic region-based analysis found 11 differentially methylated regions harboring coding and non-coding genes some of which were validated by gene expression analysis on independent samples.

Conclusions

Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic regulation on BMI and obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, Lu Y, et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.

    Google Scholar 

  2. 2.

    Gaziano TA, Opie LH. Body-mass index and mortality. Lancet. 2009;374:113–4.

    PubMed  Google Scholar 

  3. 3.

    Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363:2211–9.

    CAS  Google Scholar 

  4. 4.

    Centers of disease control. Body mass index: considerations for practitioners. CDC; 2011. https://www.cdc.gov/obesity/downloads/BMIforPactitioners.pdf.

  5. 5.

    Eriksen D, Rosthøj S, Burr H, Holtermann A. Sedentary work-Associations between five-year changes in occupational sitting time and body mass index. Prev Med (Baltim). 2015;73:1–5.

    Google Scholar 

  6. 6.

    García Villar J, Quintana-Domeque C. Income and body mass index in Europe. Econ Hum Biol. 2009;7:73–83.

    PubMed  Google Scholar 

  7. 7.

    Elks CE, Hoed M den, Zhao JH, Sharp SJ, Wareham NJ, Loos RJF, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne). 2012. https://doi.org/10.3389/fendo.2012.00029.

  8. 8.

    Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 2017. https://doi.org/10.1016/j.ajhg.2017.06.005.

    CAS  PubMed  Google Scholar 

  9. 9.

    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015. https://doi.org/10.1038/nature14177.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016. https://doi.org/10.1038/nrg.2016.59.

    CAS  PubMed  Google Scholar 

  11. 11.

    Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA methylation and body-mass index: A genome-wide analysis. Lancet. 2014;383:1990–8.

    CAS  PubMed  Google Scholar 

  12. 12.

    Wilson LE, Harlid S, Xu Z, Sandler DP, Taylor JA. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort. Int J Obes. 2017. https://doi.org/10.1038/ijo.2016.184.

    PubMed  Google Scholar 

  13. 13.

    Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017. https://doi.org/10.1038/nature20784.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tan Q. Epigenetic epidemiology of complex diseases using twins. Med Epigenetics. 2013;1:46–51.

    CAS  Google Scholar 

  15. 15.

    Li W, Christiansen L, Hjelmborg J, Baumbach J, Tan Q. On the power of epigenome-wide association studies using a disease-discordant twin design. Bioinformatics. 2018;34:bty532–bty532.

    Google Scholar 

  16. 16.

    Kurdyukov S, Bullock M. DNA methylation analysis: choosing the right method. Biology (Basel). 2016. https://doi.org/10.3390/biology5010003.

    PubMed Central  Google Scholar 

  17. 17.

    Duan H, Ning F, Zhang D, Wang S, Zhung D, Tan Q, et al. The qingdao twin registry: a status update. Twin Res Hum Genet. 2013. https://doi.org/10.1017/thg.2012.113.

    PubMed  Google Scholar 

  18. 18.

    Qiao Q, Pang Z, Gao W, Wang S, Dong Y, Zhang L, et al. A large-scale diabetes prevention program in real-life settings in Qingdao of CHN (2006-12). Prim. Care Diabetes. 2010. https://doi.org/10.1016/j.pcd.2010.04.003.

    PubMed  Google Scholar 

  19. 19.

    Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Krueger F. Trim galore. Babraham Bioinforma; 2016 (on line).

  21. 21.

    Langmead B, Salzberg SL. Langmead. Bowtie2. Nat Methods. 2013;9:357–9.

    Google Scholar 

  22. 22.

    Hebestreit K, Dugas M, Klein HU. Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics. 2013;29:1647–53.

    CAS  PubMed  Google Scholar 

  23. 23.

    Rahmani E, Zaitlen N, Baran Y, Eng C, Hu D, Galanter J, et al. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies. Nat Methods. 2016. https://doi.org/10.1038/nmeth.3809.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Tan Q, Christiansen L, von Bornemann Hjelmborg J, Christensen K. Twin methodology in epigenetic studies. J Exp Biol. 2015;218:134–9.

    PubMed  Google Scholar 

  25. 25.

    Hochberg Y, Benjaminit Y. Controlling the false discovery rate: a practical and powerful approach to multiple controlling the false discovery rate: a practical and powerful approach to multiple testing. Source J R Stat Soc Ser B J R Stat Soc Ser B J R Stat Soc B. 1995;57:289–300.

    Google Scholar 

  26. 26.

    McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: Software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics. 2012. https://doi.org/10.1093/bioinformatics/bts545.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics. 2005. https://doi.org/10.1093/bioinformatics/bti525.

    CAS  PubMed  Google Scholar 

  29. 29.

    Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/ Bioconductor package biomaRt. Nat Protoc. 2009. https://doi.org/10.1038/nprot.2009.97.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005. https://doi.org/10.1073/pnas.0506580102.

    CAS  Google Scholar 

  31. 31.

    Peng Y, Chen FF, Ge J, Zhu JY, Shi XE, Li X, et al. miR-429 inhibits differentiation and promotes proliferation in porcine preadipocytes. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17122047.

    PubMed Central  Google Scholar 

  32. 32.

    Magenta A, Ciarapica R, Capogrossi MC. The emerging role of MIR-200 family in cardiovascular diseases. Circ Res. 2017. https://doi.org/10.1161/CIRCRESAHA.116.310274.

    CAS  PubMed  Google Scholar 

  33. 33.

    Crépin D, Benomar Y, Riffault L, Amine H, Gertler A, Taouis M. The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment. Mol Cell Endocrinol. 2014. https://doi.org/10.1016/j.mce.2013.12.016.

    PubMed  Google Scholar 

  34. 34.

    Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol. 2016. https://doi.org/10.1016/j.bcp.2016.05.005.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Messina G, De Luca V, Viggiano A, Ascione A, Iannaccone T, Chieffi S, et al. Autonomic nervous system in the control of energy balance and body weight: Personal contributions. Neurol Res Int. 2013. https://doi.org/10.1155/2013/639280.

    Google Scholar 

  36. 36.

    Charrier B, Pilon N. Toward a better understanding of enteric gliogenesis. Neurogenesis 2017. https://doi.org/10.1080/23262133.2017.1293958.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Li J, Tang Y, Purkayastha S, Yan J, Cai D. Control of obesity and glucose intolerance via building neural stem cells in the hypothalamus. Mol Metab. 2014. https://doi.org/10.1016/j.molmet.2014.01.012.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lorenz C, Prigione A. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling. Curr Opin Cell Biol. 2017. https://doi.org/10.1016/j.ceb.2017.12.004.

    CAS  PubMed  Google Scholar 

  39. 39.

    Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW, Wadden T, et al. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes. 2013. https://doi.org/10.2337/db12-1605.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bouret SG. Development of Hypothalamic Circuits That ControlFood Intake and Energy Balance. In: Harris RBS (Ed.) Appetiteand Food Intake: Central Control. 2nd Boca Raton (FL): CRCPress/Taylor & Francis; 2017. Chapter 7. Available from: https://www.ncbi.nlm.nih.gov/books/NBK453139/ https://doi.org/10.1201/9781315120171-7.

    Google Scholar 

  41. 41.

    Godisela KK, Reddy SS, Kumar CU, Saravanan N, Reddy PY, Jablonski MM, et al. Impact of obesity with impaired glucose tolerance on retinal degeneration in a rat model of metabolic syndrome. Mol Vis. 2017;23:263–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Hotta K, Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Kessoku T, et al. Identification of the genomic region under epigenetic regulation during non-alcoholic fatty liver disease progression. Hepatol Res. 2018. https://doi.org/10.1111/hepr.12992.

    PubMed  Google Scholar 

  43. 43.

    Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet. 2017. https://doi.org/10.1093/hmg/ddx290.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Feitosa MF, Wojczynski MK, North KE, Zhang Q, Province MA, Carr JJ, et al. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis. 2013. https://doi.org/10.1016/j.atherosclerosis.2013.01.038.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Day SE, Coletta RL, Kim JY, Garcia LA, Campbell LE, Benjamin TR, et al. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood. Epigenetics. 2017. https://doi.org/10.1080/15592294.2017.1281501.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Xie J-J, Jiang Y-Y, Jiang Y, Li C-Q, Chee L-M, An O, et al. Increased expression of the long non-coding RNA LINC01503, regulated by TP63, in squamous cell carcinoma and effects on oncogenic activities of cancer cell lines. Gastroenterology. 2018. https://doi.org/10.1053/j.gastro.2018.02.018.

    PubMed  Google Scholar 

  47. 47.

    Suryavanshi S, Jadhav S, McConnell B. Polymorphisms/mutations in A-kinase anchoring proteins (AKAPs): role in the cardiovascular system. J Cardiovasc Dev Dis. 2018. https://doi.org/10.3390/jcdd5010007.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the EFSD/CDS/Lilly Collaborative Diabetes Research Program (2013), the Lundbeck Foundation [grant number R170-2014-1353]; the DFF research project 1 from the Danish Council for Independent Research, Medical Sciences (DFF-FSS): DFF–6110-00114; the Novo Nordisk Foundation Medical and Natural Sciences Research Grant [grant number NNF13OC0007493, and by the National Natural Science Foundation of China grant # 81773506.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qihua Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, D., Wang, W. et al. DNA methylome profiling in identical twin pairs discordant for body mass index. Int J Obes 43, 2491–2499 (2019). https://doi.org/10.1038/s41366-019-0382-4

Download citation

Further reading

Search