Article | Published:

Behavior, Psychology and Sociology

Attentional bias and response inhibition in severe obesity with food disinhibition: a study of P300 and N200 event-related potential

International Journal of Obesity (2019) | Download Citation




In obesity there is growing evidence for common mechanism between food intake regulation and substance use disorders, especially more attentional bias and less cognitive control. In the present study we investigated whether severely obese subjects with or without disordered eating exhibit electroencephalographic (EEG) event-related potential (ERP) modifications as observed in substance abusers.


A total of 90 women were included; 30 in the normal-weight (NW) group (18.5 < BMI < 24.5 kg/m2; no food disinhibition or restriction on the Three-Factor Eating Questionnaire) and 60 participants with BMI ≥ 35 kg/m2 were separated into two groups (n = 30): without food disinhibition (disinhibition score ≤8; ObFD− group) and with food disinhibition (score >8; ObFD+). Clinical and metabolic parameters as well as compartmental aspects (Eating Disorders Inventory-2, EDI-2) were assessed. Participants underwent an ERP recording with an auditory oddball paradigm.


The mean ± SD P300 amplitudes in Pz were significantly (p < 0.05) lower in ObFD− (12.4 ± 4.6) and ObFD+ (12.5 ± 4.4) groups than in the NW group (15.8 ± 5.9). The mean ± SD N200 amplitude in Cz was significantly lower in the ObFD− group (−2.0 ± 5.4) than in the NW group (−5.2 ± 4.2 vs; p = 0.035). N200 Cz amplitude was correlated with EDI-2 Binge eating risk score (ρ = 0.331; p = 0.01), EDI-2 Body Dissatisfaction score (ρ = 0.351; p = 0.007), and Drive for Thinness score (ρ = 0.26; p = 0.05).


The present study provides evidence for reduction of P300 and N200 amplitude in obese women and that N200 amplitude may be related to more disordered eating and eating disorder risk. This leads to consider attentional bias and response inhibition as core mechanisms in obesity and as possible targets for new therapeutic strategy.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Wiss DA, Brewerton TD. Incorporating food addiction into disordered eating: the disordered eating food addiction nutrition guide (DEFANG). Eat Weight Disord EWD. 2017;22:49–59.

  2. 2.

    Stojek MMK, MacKillop J. Relative reinforcing value of food and delayed reward discounting in obesity and disordered eating: A systematic review. Clin Psychol Rev. 2017;55:1–11.

  3. 3.

    Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017;18:741.

  4. 4.

    Ziauddeen H, Alonso-Alonso M, Hill JO, Kelley M, Khan NA. Obesity and the Neurocognitive Basis of Food Reward and the Control of Intake12. Adv Nutr. 2015;6:474–86.

  5. 5.

    Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

  6. 6.

    Dawe S, Gullo MJ, Loxton NJ. Reward drive and rash impulsiveness as dimensions of impulsivity: implications for substance misuse. Addict Behav. 2004;29:1389–405.

  7. 7.

    Lavagnino L, Arnone D, Cao B, Soares JC, Selvaraj S. Inhibitory control in obesity and binge eating disorder: a systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci Biobehav Rev. 2016;68:714–26.

  8. 8.

    Giel KE, Teufel M, Junne F, Zipfel S, Schag K. Food-related impulsivity in obesity and binge eating disorder-a systematic update of the evidence. Nutrients. 2017;9.

  9. 9.

    Rochat L, Maurage P, Heeren A, Billieux J. Let’s open the decision-making umbrella: a framework for conceptualizing and assessing features of impaired decision making in addiction. Neuropsychol Rev. 2018.

  10. 10.

    Booth C, Spronk D, Grol M, Fox E. Uncontrolled eating in adolescents: the role of impulsivity and automatic approach bias for food. Appetite. 2018;120:636–43.

  11. 11.

    Mackey L, White MJ, Tyack Z, Finlayson G, Dalton M, King NA. A dual-process psychobiological model of temperament predicts liking and wanting for food and trait disinhibition. Appetite 2018.

  12. 12.

    Brooks SJ, Lochner C, Shoptaw S, Stein DJ. Using the research domain criteria (RDoC) to conceptualize impulsivity and compulsivity in relation to addiction. Prog Brain Res. 2017;235:177–218.

  13. 13.

    Motlagh F, Ibrahim F, Menke JM, Rashid R, Seghatoleslam T, Habil H. Neuroelectrophysiological approaches in heroin addiction research: a review of literatures. J Neurosci Res. 2016;94:297–309.

  14. 14.

    Campanella S, Pogarell O, Boutros N. Event-related potentials in substance use disorders: a narrative review based on articles from 1984 to 2012. Clin EEG Neurosci. 2014;45:67–76.

  15. 15.

    Luijten M, Machielsen MWJ, Veltman DJ, Hester R, de Haan L, Franken IHA. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci. 2014;39:149–69.

  16. 16.

    Buzzell GA, Fedota JR, Roberts DM, McDonald CG. The N2 ERP component as an index of impaired cognitive control in smokers. Neurosci Lett. 2014;563:61–5.

  17. 17.

    Euser AS, Arends LR, Evans BE, Greaves-Lord K, Huizink AC, Franken IHA. The P300 event-related brain potential as a neurobiological endophenotype for substance use disorders: a meta-analytic investigation. Neurosci Biobehav Rev. 2012;36:572–603.

  18. 18.

    Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118:2128–48.

  19. 19.

    Littel M, Euser AS, Munafò MR, Franken IHA. Electrophysiological indices of biased cognitive processing of substance-related cues: a meta-analysis. Neurosci Biobehav Rev. 2012;36:1803–16.

  20. 20.

    Hill SY, O’Brien J. Psychological and neurobiological precursors of alcohol use disorders in high risk youth. Curr Addict Rep. 2015;2:104–13.

  21. 21.

    Balconi M, Venturella I, Finocchiaro R. Evidences from rewarding system, FRN and P300 effect in internet-addiction in young people. SHORT TITLE: Rewarding system and EEG in internet-addiction. Brain Sci. 2017;7.

  22. 22.

    Fielding A, Fu Y, Franz EA. The Brain’s reward response occurs even without actual reward! J Gambl Stud. 2017:1–15.

  23. 23.

    Pires L, Leitão J, Guerrini C, Simões MR. Event-related brain potentials in the study of inhibition: cognitive control, source localization and age-related modulations. Neuropsychol Rev. 2014;24:461–90.

  24. 24.

    Kok A, Ramautar JR, De Ruiter MB, Band GPH, Ridderinkhof KR. ERP components associated with successful and unsuccessful stopping in a stop-signal task. Psychophysiology. 2004;41:9–20.

  25. 25.

    Larson MJ, Clayson PE, Clawson A. Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int J Psychophysiol. 2014;93:283–97.

  26. 26.

    Franken IHA, Luijten M, van der Veen FM, van Strien JW. Cognitive control in young heavy drinkers: an ERP study. Drug Alcohol Depend. 2017;175:77–83.

  27. 27.

    Babiloni C, Del Percio C, Valenzano A, Marzano N, De Rosas M, Petito A, et al. Frontal attentional responses to food size are abnormal in obese subjects: an electroencephalographic study. Clin Neurophysiol. 2009;120:1441–8.

  28. 28.

    Tascilar ME, Turkkahraman D, Oz O, Yucel M, Taskesen M, Eker I, et al. P300 auditory event-related potentials in children with obesity: is childhood obesity related to impairment in cognitive functions? Pediatr Diabetes. 2011;12:589–95.

  29. 29.

    Reyes S, Peirano P, Peigneux P, Lozoff B, Algarin C. Inhibitory control in otherwise healthy overweight 10-year-old children. Int J Obes 2005. 2015;39:1230–5.

  30. 30.

    Nijs IMT, Muris P, Euser AS, Franken IHA. Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety. Appetite. 2010;54:243–54.

  31. 31.

    Carbine KA, Duraccio KM, Kirwan CB, Muncy NM, LeCheminant JD, Larson MJ. A direct comparison between ERP and fMRI measurements of food-related inhibitory control: Implications for BMI status and dietary intake. Neuroimage. 2018;166:335–48.

  32. 32.

    Hume DJ, Howells FM, Rauch HGL, Kroff J, Lambert EV. Electrophysiological indices of visual food cue-reactivity. Differences in obese, overweight and normal weight women. Appetite. 2015;85:126–37.

  33. 33.

    Mustelin L, Kärkkäinen U, Kaprio J, Keski-Rahkonen A. The Eating Disorder Inventory in the screening for DSM-5 binge eating disorder. Eat Behav. 2016;22:145–8.

  34. 34.

    Finlayson G. Food addiction and obesity: unnecessary medicalization of hedonic overeating. Nat Rev Endocrinol. 2017;13:493–8.

  35. 35.

    Luijten M, Machielsen MWJ, Veltman DJ, Hester R, de Haan L, Franken IHA. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci. 2014;39:149–69.

  36. 36.

    Kaiser S, Weiss O, Hill H, Markela-Lerenc J, Kiefer M, Weisbrod M. N2 event-related potential correlates of response inhibition in an auditory Go/Nogo task. Int J Psychophysiol. 2006;61:279–82.

  37. 37.

    Falkenstein M. Inhibition, conflict and the Nogo-N2. Clin Neurophysiol. 2006;117:1638–40.

  38. 38.

    Nieuwenhuis S, Yeung N, van den Wildenberg W, Ridderinkhof KR. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci. 2003;3:17–26.

  39. 39.

    Chen S, Jia Y, Woltering S. Neural differences of inhibitory control between adolescents with obesity and their peers. Int J Obes. 2018.

  40. 40.

    Villarejo C, Jiménez-Murcia S, Álvarez-Moya E, Granero R, Penelo E, Treasure J, et al. Loss of control over eating: a description of the eating disorder/obesity spectrum in women. Eur Eat Disord Rev. 2014;22:25–31.

  41. 41.

    Arns M, Drinkenburg W, Leon Kenemans J. The effects of QEEG-informed neurofeedback in ADHD: an open-label pilot study. Appl Psychophysiol Biofeedback. 2012;37:171–80.

  42. 42.

    Sokhadze TM, Cannon RL, Trudeau DL. EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Appl Psychophysiol Biofeedback. 2008;33:1–28.

  43. 43.

    Cespón J, Rodella C, Rossini PM, Miniussi C, Pellicciari MC. Anodal transcranial direct current stimulation promotes frontal compensatory mechanisms in healthy elderly subjects. Front Aging Neurosci. 2017;9:420.

  44. 44.

    Izzidien A, Ramaraju S, Roula MA, McCarthy PW. Effect of anodal-tDCS on event-related potentials: a controlled study. Biomed Res Int. 2016;2016:1584947.

  45. 45.

    Bersani G, Marconi D, Limpido L, Tarolla E, Caroti E. Pilot study of light therapy and neurocognitive performance of attention and memory in healthy subjects. Psychol Rep. 2008;102:299–304.

  46. 46.

    Lapenta OM, Sierve KD, de Macedo EC, Fregni F, Boggio PS. Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite. 2014;83:42–8.

  47. 47.

    Eichen DM, Matheson BE, Appleton-Knapp SL, Boutelle KN. Neurocognitive treatments for eating disorders and obesity. Curr Psychiatry Rep. 2017;19:62.

  48. 48.

    Pompili A, Arnone B, D’Amico M, Federico P, Gasbarri A. Evidence of estrogen modulation on memory processes for emotional content in healthy young women. Psychoneuroendocrinology. 2016;65:94–101.

Download references


We thank the Hospices Civils de Lyon for their financial support (young investigator award), the CRNH-RA clinical research team: Dr. N. Feugier for volunteer recruitment/follow-up; C. Maitrepierre, J. Peyrat, E. Bain for clinical/technical help; and M. Sothier for help in dietary analysis.


This study was supported by a young investigator award of the Hospices Civils de Lyon, France.

Author information


  1. Centre Référent pour l’Anorexie et les Troubles du Comportement Alimentaire (CREATYON), Hospices Civils de Lyon, Lyon, France

    • Sylvain Iceta
    •  & Bérénice Segrestin
  2. INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon (CRNL), Equipe PSYR2 Centre Hospitalier Le Vinatier, Lyon, France

    • Sylvain Iceta
    •  & Emmanuel Poulet
  3. Centre Intégré de l’Obésité Rhône-Alpes; Fédération Hospitalo-Universitaire DO-iT, Service Endocrinologie-Diabète-Nutrition, Université de Lyon, Groupement Hospitalier Sud, Hospices Civils de Lyon, Lyon, France

    • Sylvain Iceta
    • , Martine Laville
    •  & Emmanuel Disse
  4. Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, Pierre Benite, France

    • Julien Benoit
    • , Philippe Cristini
    • , Stéphanie Lambert-Porcheron
    • , Bérénice Segrestin
    • , Martine Laville
    •  & Emmanuel Disse


  1. Search for Sylvain Iceta in:

  2. Search for Julien Benoit in:

  3. Search for Philippe Cristini in:

  4. Search for Stéphanie Lambert-Porcheron in:

  5. Search for Bérénice Segrestin in:

  6. Search for Martine Laville in:

  7. Search for Emmanuel Poulet in:

  8. Search for Emmanuel Disse in:

Conflict of interest

The authors declare that they have no conflict of interest.


All participants gave their written informed consent to participate in the study. The study sponsor was the Hospices Civils de Lyon, Lyon, France (a university hospital), and the study was performed after approval from the ethics committee (Comité de protection des personnes, CPP) and in accordance with the French Law on data protection and civil liberties and the ethical standards laid down in the 1964 Declaration of Helsinki.

Corresponding author

Correspondence to Sylvain Iceta.

About this article

Publication history