Article | Published:

Epidemiology and Population Health

In utero dioxin exposure and cardiometabolic risk in the Seveso Second Generation Study

International Journal of Obesity (2019) | Download Citation

Abstract

Background/objectives

In utero exposure to endocrine-disrupting compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) may alter risk of obesity and related metabolic disease later in life. We examined the relationship of prenatal exposure to TCDD with obesity and metabolic syndrome (MetS) in children born to a unique cohort of TCDD-exposed women resulting from a 1976 explosion in Seveso, Italy.

Subjects/methods

In 2014, nearly 40 years after the explosion, we enrolled 611 post-explosion offspring, 2 to 39 years of age, in the Seveso Second Generation Study. In utero TCDD exposure was defined primarily as TCDD concentration measured in maternal serum collected soon after the explosion and alternately as TCDD estimated at pregnancy. We measured height, weight, waist circumference, body fat, blood pressure, and fasting blood levels of lipids and glucose, which were combined to assess body mass index (BMI) and MetS.

Results

Children (314 female, 297 male) averaged 23.6 (±6.0) years of age. Among the 431 children ≥18 years, a 10-fold increase in initial maternal TCDD concentration was inversely associated with BMI in daughters (adj-β = −0.99 kg/m2; 95% CI -1.86, -0.12), but not sons (adj-β = 0.41 kg/m2; 95% CI −0.35, 1.18) (p-int = 0.02). A similar relationship was found in the younger children (2–17 years); a 10-fold increase in initial maternal TCDD was inversely associated with BMI z-score (adj-β = −0.59 kg/m2; 95% CI −1.12, −0.06) among daughters, but not sons (adj-β = 0.04 kg/m2; 95% CI −0.34, 0.41) (p-int = 0.03). In contrast, in sons only, initial maternal TCDD was associated with increased risk for MetS (adj-RR = 2.09, 95% CI 1.09, 4.02). Results for TCDD estimated at pregnancy were comparable.

Conclusions

These results suggest prenatal TCDD exposure alters cardiometabolic endpoints in a sex-specific manner. In daughters, in utero TCDD is inversely associated with adiposity measures. In sons, in utero TCDD is associated with increased risk for MetS.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.

  2. 2.

    GBMC. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86.

  3. 3.

    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

  4. 4.

    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

  5. 5.

    Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:943162.

  6. 6.

    Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33.

  7. 7.

    Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol. 2011;73:135–62.

  8. 8.

    Desai M, Jellyman JK, Ross MG. Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes. 2015;39:633.

  9. 9.

    Zook D, Rappe C. Environmental sources, distribution, and fate. In: Schecter A, editor. Dioxins and Health. New York: Plenum Press; 1994. p. 79–113.

  10. 10.

    Birnbaum LS, Tuomisto J. Non-carcinogenic effects of TCDD in animals. Food Addit Contam. 2000;17:275–88.

  11. 11.

    Pirkle JL, Wolfe WH, Patterson DG, Needham LL, Michalek JE, Miner JC, et al. Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Vietnam Veterans of Operation Ranch Hand. J Toxicol Environ Health. 1989;27:165–71.

  12. 12.

    Schecter A, Papke O, Ball M. Evidence for transplacental transfer of dioxins from mother to fetus: chlorinated dioxin and dibenzofuran in the livers of stillborn infants. Chemosphere. 1990;21:1017–22.

  13. 13.

    Kirkley AG, Sargis RM. Environmental endocrine disruption of energy metabolism and cardiovascular risk. Curr Diab Rep. 2014;14:494.

  14. 14.

    Enan E, Liu PC, Matsumura F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes reduction of glucose transporting activities in the plasma membranes of adipose tissue and pancreas from the guinea pig. J Biol Chem. 1992;267:19785–91.

  15. 15.

    Enan E, Matsumura F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced alterations in protein phosphorylation in guinea pig adipose tissue. J Biochem Toxicol. 1993;8:89–99.

  16. 16.

    Kurita H, Yoshioka W, Nishimura N, Kubota N, Kadowaki T, Tohyama C. Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J Appl Toxicol. 2009;29:689–94.

  17. 17.

    Kopf PG, Huwe JK, Walker MK. Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovasc Toxicol. 2008;8:181–93.

  18. 18.

    Seefeld MD, Keesey RE, Peterson RE. Body weight regulation in rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 1984;76:526–36.

  19. 19.

    Zhu BT, Gallo MA, Burger CW Jr., Meeker RJ, Cai MX, Xu S, et al. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin administration and high-fat diet on the body weight and hepatic estrogen metabolism in female C3H/HeN mice. Toxicol Appl Pharmacol. 2008;226:107–18.

  20. 20.

    Aragon AC, Goens MB, Carbett E, Walker MK. Perinatal 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure sensitizes offspring to angiotensin II-induced hypertension. Cardiovasc Toxicol. 2008;8:145–54.

  21. 21.

    Sugai E, Yoshioka W, Kakeyama M, Ohsako S, Tohyama C. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin modulates dysregulation of the lipid metabolism in mouse offspring fed a high-calorie diet. J Appl Toxicol. 2014;34:296–306.

  22. 22.

    van Esterik JC, Verharen HW, Hodemaekers HM, Gremmer ER, Nagarajah B, Kamstra JH, et al. Compound- and sex-specific effects on programming of energy and immune homeostasis in adult C57BL/6JxFVB mice after perinatal TCDD and PCB 153. Toxicol Appl Pharmacol. 2015;289:262–75.

  23. 23.

    Rashid CS, Carter LG, Hennig B, Pearson KJ. Perinatal Polychlorinated Biphenyl 126 Exposure Alters Offspring Body Composition. J Pediatr Biochem. 2013;3:47–53.

  24. 24.

    La Merrill M, Baston DS, Denison MS, Birnbaum LS, Pomp D, Threadgill DW. Mouse breast cancer model-dependent changes in metabolic syndrome-associated phenotypes caused by maternal dioxin exposure and dietary fat. Am J Physiol Endocrinol Metab. 2009;296:E203–10.

  25. 25.

    Leijs MM, Koppe JG, Vulsma T, Olie K, van Aalderen WMC, de Voogt P, et al. Alterations in the programming of energy metabolism in adolescents with background exposure to dioxins, dl-PCBs and PBDEs. PLoS One. 2017;12:e0184006.

  26. 26.

    Iszatt N, Stigum H, Govarts E, Murinova LP, Schoeters G, Trnovec T, et al. Perinatal exposure to dioxins and dioxin-like compounds and infant growth and body mass index at seven years: a pooled analysis of three European birth cohorts. Environ Int. 2016;94:399–407.

  27. 27.

    Tai PT, Nishijo M, Nghi TN, Nakagawa H, Van Luong H, Anh TH, et al. Effects of perinatal dioxin exposure on development of children during the first 3 years of life. J Pediatr. 2016;175:159–66.e2.

  28. 28.

    Delvaux I, Van Cauwenberghe J, Den Hond E, Schoeters G, Govarts E, Nelen V, et al. Prenatal exposure to environmental contaminants and body composition at age 7-9 years. Environ Res. 2014;132:24–32.

  29. 29.

    Wohlfahrt-Veje C, Audouze K, Brunak S, Antignac JP, le Bizec B, Juul A, et al. Polychlorinated dibenzo-p-dioxins, furans, and biphenyls (PCDDs/PCDFs and PCBs) in breast milk and early childhood growth and IGF1. Reproduction. 2014;147:391–9.

  30. 30.

    Su PH, Chen JY, Chen JW, Wang SL. Growth and thyroid function in children with in utero exposure to dioxin: a 5-year follow-up study. Pediatr Res. 2010;67:205–10.

  31. 31.

    di Domenico A, Silano V, Viviano G, Zapponi G. Accidental release of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at Seveso, Italy. II. TCDD distribution in the soil surface layer. Ecotoxicol Environ Saf. 1980;4:298–320.

  32. 32.

    Mocarelli P, Pocchiari F, Nelson N. Preliminary report: 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure to humans–Seveso, Italy. MMWR Morb Mortal Wkly Rep. 1988;37:733–6.

  33. 33.

    Needham L, Patterson DG, VN H. Levels of TCDD in selected human populations and their relevance to human risk assessment. In: Gallo MA, editor. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1991. 229–57 p.

  34. 34.

    Warner M, Mocarelli P, Brambilla P, Wesselink A, Samuels S, Signorini S, et al. Diabetes, metabolic syndrome, and obesity in relation to serum dioxin concentrations: the Seveso women’s health study. Environ Health Perspect. 2013;121:906–11.

  35. 35.

    Eskenazi B, Mocarelli P, Warner M, Samuels S, Vercellini P, Olive D, et al. Seveso Women’s Health Study: a study of the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on reproductive health. Chemosphere. 2000;40:1247–53.

  36. 36.

    Eskenazi B, Warner M, Brambilla P, Signorini S, Ames J, Mocarelli P. The Seveso accident: a look at 40years of health research and beyond. Environ Int. 2018;121(Pt 1):71–84.

  37. 37.

    Pisani P, Faggiano F, Krogh V, Palli D, Vineis P, Berrino F. Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int J Epidemiol. 1997;26(Suppl 1):S152–60.

  38. 38.

    Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, et al. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88(5 Pt 1):2460–70.

  39. 39.

    Patterson DG, Hampton L, Lapeza CR, Belser WT, Green V, Alexander L, et al. High-resolution gas chromatographic/high-resolution mass spectrometric analysis of human serum on a whole-weight and lipid basis for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anal Chem. 1987;59:2000–5.

  40. 40.

    Eskenazi B, Mocarelli P, Warner M, Needham L, Patterson DG, Samuels S, et al. Relationship of serum TCDD concentrations and age at exposure of female residents of Seveso, Italy. Environ Health Perspect. 2004;112:22–7.

  41. 41.

    Patterson DG, Turner WE. Method 28: Measurement of PCDDs, PCDFs, and Coplanar PCBs in Serum by HRGC/ID-HRMS. Atanta: National Center for Enviromental Health, CDC; 2005.

  42. 42.

    Warner M, Mocarelli P, Brambilla P, Wesselink A, Patterson DG, Turner WE, et al. Serum TCDD and TEQ concentrations among Seveso women, 20 years after the explosion. J Expo Sci Environ Epidemiol. 2014;24:588–94.

  43. 43.

    Akins JR, Waldrep K, Bernert JT Jr. The estimation of total serum lipids by a completely enzymatic ‘summation’ method. Clin Chim Acta. 1989;184:219–26.

  44. 44.

    Hornung RW, Reed LD. Estimation of average concentration in the presence of non-detectable values. Appl Occup Environ Hyg. 1990;5:48–51.

  45. 45.

    World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation on Obesity. Geneva: World Health Organization; 1998.

  46. 46.

    Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Invest. 2006;29:581–93.

  47. 47.

    Cook S, Auinger P, Huang TT. Growth curves for cardio-metabolic risk factors in children and adolescents. J Pediatr. 2009;155:S6 e15–26.

  48. 48.

    Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents - an IDF consensus report. Pediatr Diabetes. 2007;8:299–306.

  49. 49.

    Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7:284–94.

  50. 50.

    Stata Corp. Stata Statistical Software: Release 13.1. College Station: Stata Press; 2013.

  51. 51.

    Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta. 2003;1619:263–8.

  52. 52.

    Barouki R, Aggerbeck M, Aggerbeck L, Coumoul X. The aryl hydrocarbon receptor system. Drug Metabol Drug Interact. 2012;27:3–8.

  53. 53.

    Linden J, Lensu S, Tuomisto J, Pohjanvirta R. Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol. 2010;31:452–78.

  54. 54.

    Jaeger C, Tischkau SA. Role of aryl hydrocarbon receptor in circadian clock disruption and metabolic dysfunction. Environ Health Insights. 2016;10:133–41.

  55. 55.

    Sato S, Shirakawa H, Tomita S, Ohsaki Y, Haketa K, Tooi O, et al. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol Appl Pharmacol. 2008;229:10–9.

  56. 56.

    Kim MJ, Pelloux V, Guyot E, Tordjman J, Bui LC, Chevallier A, et al. Inflammatory pathway genes belong to major targets of persistent organic pollutants in adipose cells. Environ Health Perspect. 2012;120:508–14.

  57. 57.

    Cimafranca MA, Hanlon PR, Jefcoate CR. TCDD administration after the pro-adipogenic differentiation stimulus inhibits PPARgamma through a MEK-dependent process but less effectively suppresses adipogenesis. Toxicol Appl Pharmacol. 2004;196:156–68.

  58. 58.

    Aylward LL, Hays SM. Temporal trends in human TCDD body burden: decreases over three decades and implications for exposure levels. J Expo Anal Environ Epidemiol. 2002;12:319–28.

  59. 59.

    Eskenazi B, Mocarelli P, Warner M, Chee WY, Gerthoux PM, Samuels S, et al. Maternal serum dioxin levels and birth outcomes in women of Seveso, Italy. Environ Health Perspect. 2003;111:947–53.

  60. 60.

    Wesselink A, Warner M, Samuels S, Parigi A, Brambilla P, Mocarelli P, et al. Maternal dioxin exposure and pregnancy outcomes over 30 years of follow-up in Seveso. Environ Int. 2014;63:143–8.

Download references

Acknowledgements

We gratefully acknowledge our collaborators at CDC including Donald G. Patterson, Jr., Wayman Turner, and the late Larry L. Needham for their significant contributions to exposure assessment and sample analysis in the Seveso Women’s Health and Second Generation Studies, the field staff at Hospital of Desio including Nicole Gelpi and Claudia Siracusa for coordinating data collection, and the participants and their families. This study was supported by Grant Numbers F06 TW02075-01 from the National Institutes of Health, R01 ES07171 and 2P30-ESO01896-17 from the National Institute of Environmental Health Sciences, R82471 from the U.S. Environmental Protection Agency, and #2896 from Regione Lombardia and Fondazione Lombardia Ambiente, Milan, Italy. Ms. JA was supported by F31ES026488 from the National Institutes of Health.

Author information

Affiliations

  1. Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA

    • Marcella Warner
    • , Stephen Rauch
    • , Jennifer Ames
    •  & Brenda Eskenazi
  2. Department of Laboratory Medicine, School of Medicine, Hospital of Desio, University of Milano-Bicocca, Desio-Milano, Italy

    • Paolo Mocarelli
    • , Paolo Brambilla
    •  & Stefano Signorini

Authors

  1. Search for Marcella Warner in:

  2. Search for Stephen Rauch in:

  3. Search for Jennifer Ames in:

  4. Search for Paolo Mocarelli in:

  5. Search for Paolo Brambilla in:

  6. Search for Stefano Signorini in:

  7. Search for Brenda Eskenazi in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Marcella Warner.

Supplementary information

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41366-018-0306-8