Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physiology

High-fat feeding reprograms maternal energy metabolism and induces long-term postpartum obesity in mice

Abstract

Background

Excessive gestational weight gain (EGWG) closely associates with postpartum obesity. However, the causal role of EGWG in postpartum obesity has not been experimentally verified. The objective of this study was to determine whether and how EGWG causes long-term postpartum obesity.

Methods

C57BL/6 mice were fed with high-fat diet during gestation (HFFDG) or control chow, then their body composition and energy metabolism were monitored after delivery.

Results

We found that HFFDG significantly increased gestational weight gain. After delivery, adiposity of HFFDG-treated mice (Preg-HF) quickly recovered to the levels of controls. However, 3 months after parturition, Preg-HF mice started to gain significantly more body fat even with regular chow. The increase of body fat of Preg-HF mice was progressive with aging and by 9 months after delivery had increased 2-fold above the levels of controls. The expansion of white adipose tissue (WAT) of Preg-HF mice was manifested by hyperplasia in visceral fat and hypertrophy in subcutaneous fat. Preg-HF mice developed low energy expenditure and UCP1 expression in interscapular brown adipose tissue (iBAT) in later life. Although blood estrogen concentrations were similar between Preg-HF and control mice, a significant decrease in estrogen receptor α (ERα) expression and hypermethylation of the ERα promoter was detected in the fat of Preg-HF mice 9 months after delivery. Interestingly, hypermethylation of ERα promoter and low ERα expression were only detected in adipocyte progenitor cells in both iBAT and WAT of Preg-HF mice at the end of gestation.

Conclusions

These results demonstrate that HFFDG causes long-term postpartum obesity independent of early postpartum fat retention. This study also suggests that HFFDG adversely programs long-term postpartum energy metabolism by epigenetically reducing estrogen signaling in both BAT and WAT.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Cynthia LO, Cheryl DF, Katherine MF. Prevalence of obesity among adults and youth: united states, 2011–2014. In. Hyattsville. MD: National Center for Health Statistics: National Center for Health Statistics; 2015.

  2. 2.

    Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. TRends in obesity among adults in the united states, 2005 to 2014. JAMA. 2016;315:2284–91.

    CAS  Article  Google Scholar 

  3. 3.

    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311:806–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Qiao L, Wattez JS, Lee S, Nguyen A, Schaack J, Hay WW, Jr. et al. Adiponectin deficiency impairs maternal metabolic adaptation to pregnancy in mice. Diabetes. 2017;66:1126–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Cohen AK, Chaffee BW, Rehkopf DH, Coyle JR, Abrams B. Excessive gestational weight gain over multiple pregnancies and the prevalence of obesity at age 40. Int J Obes. 2014;38:714–8.

    CAS  Article  Google Scholar 

  6. 6.

    Groth SW, Holland ML, Kitzman H, Meng Y. Gestational weight gain of pregnant African American adolescents affects body mass index 18 years later. J Obstet Gynecol Neonatal Nurs. 2013;42:541–50.

    PubMed  Article  Google Scholar 

  7. 7.

    McClure CK, Catov JM, Ness R, Bodnar LM. Associations between gestational weight gain and BMI, abdominal adiposity, and traditional measures of cardiometabolic risk in mothers 8 y postpartum. Am J Clin Nutr. 2013;98:1218–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Walter JR, Perng W, Kleinman KP, Rifas-Shiman SL, Rich-Edwards JW, Oken E. Associations of trimester-specific gestational weight gain with maternal adiposity and systolic blood pressure at 3 and 7 years postpartum. Am J Obstet Gynecol. 2015;212:499 e1–499 e12.

    Article  Google Scholar 

  9. 9.

    Mamun AA, Kinarivala M, O’Callaghan MJ, Williams GM, Najman JM, Callaway LK. Associations of excess weight gain during pregnancy with long-term maternal overweight and obesity: evidence from 21 y postpartum follow-up. Am J Clin Nutr. 2010;91:1336–41.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Widen EM, Whyatt RM, Hoepner LA, Ramirez-Carvey J, Oberfield SE, Hassoun A, et al. Excessive gestational weight gain is associated with long-term body fat and weight retention at 7 y postpartum in African American and Dominican mothers with underweight, normal, and overweight prepregnancy BMI. Am J Clin Nutr. 2015;102:1460–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Rooney BL, Schauberger CW, Mathiason MA. Impact of perinatal weight change on long-term obesity and obesity-related illnesses. Obstet Gynecol. 2005;106:1349–56.

    PubMed  Article  Google Scholar 

  12. 12.

    Linne Y, Dye L, Barkeling B, Rossner S. Long-term weight development in women: a 15-year follow-up of the effects of pregnancy. Obes Res. 2004;12:1166–78.

    PubMed  Article  Google Scholar 

  13. 13.

    Yoo HS, Qiao L, Bosco C, Leong L-H, Lytle N, Feng G-S, et al. Intermittent cold exposure enhances fat accumulation in mice. PLoS ONE. 2014;9:e96432.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Qiao L, Yoo HS, Bosco C, Lee B, Feng G-S, Schaack J, et al. Adiponectin reduces thermogenesis by inhibiting brown adipose tissue activation in mice. Diabetologia. 2014;57:1027–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Tseng Y-H, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454:1000–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Qiao L, MacLean PS, Schaack J, Orlicky DJ, Darimont C, Pagliassotti M, et al. C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer. Diabetes. 2005;54:1744–54.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Westberry JM, Trout AL, Wilson ME. Epigenetic regulation of estrogen receptor alpha gene expression in the mouse cortex during early postnatal development. Endocrinology. 2010;151:731–40.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Andrews JF, Richard D, Jennings G, Trayhurn P. Brown adipose tissue thermogenesis during pregnancy in mice. Ann Nutr Metab. 1986;30:87–93.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Frontera M, Pujol E, Rodriguez-Cuenca S, Catala-Niell A, Roca P, Garcia-Palmer FJ, et al. Rat brown adipose tissue thermogenic features are altered during mid-pregnancy. Cell Physiol Biochem. 2005;15:203–10.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Martinez de Morentin PB, Lage R, Gonzalez-Garcia I, Ruiz-Pino F, Martins L, Fernandez-Mallo D, et al. Pregnancy induces resistance to the anorectic effect of hypothalamic malonyl-CoA and the thermogenic effect of hypothalamic AMPK inhibition in female rats. Endocrinology. 2015;156:947–60.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Trayhurn P, Douglas JB, McGuckin MM. Brown adipose tissue thermogenesis is /‘suppressed/‘ during lactation in mice. Nature. 1982;298:59–60.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Mercer SW, Trayhurn P. Effect of high fat diets on the thermogenic activity of brown adipose tissue in cold-acclimated mice. J Nutr. 1984;114:1151–8.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Wu MV, Bikopoulos G, Hung S, Ceddia RB. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure. J Biol Chem. 2014;289:34129–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Brooks SL, Rothwell NJ, Stock MJ, Goodbody AE, Trayhurn P. Increased proton conductance pathway in brown adipose tissue mitochondria of rats exhibiting diet-induced thermogenesis. Nature. 1980;286:274–6.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Garcia-Ruiz E, Reynes B, Diaz-Rua R, Ceresi E, Oliver P, Palou A. The intake of high-fat diets induces the acquisition of brown adipocyte gene expression features in white adipose tissue. Int J Obes (Lond). 2015;39:1619–29.

    CAS  Article  Google Scholar 

  26. 26.

    Lee Y-H, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012;15:480–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J Physiol Endocrinol Metab. 2005;289:E608–16.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Villena JA, Kralli A. ERRalpha: a metabolic function for the oldest orphan. Trends Endocrinol Metab: TEM. 2008;19:269–76.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Van Pelt RE, Gavin KM, Kohrt WM. Regulation of body composition and bioenergetics by estrogens. Endocrinol Metab Clin North Am. 2015;44:663–76.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Al-Safi ZA, Polotsky AJ. Obesity and menopause. Best Pract Res Clin Obstet Gynaecol. 2015;29:548–53.

    PubMed  Article  Google Scholar 

  32. 32.

    Hevener AL, Clegg DJ, Mauvais-Jarvis F. Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome. Mol Cell Endocrinol. 2015;418:306–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Watanabe T, Inoue S, Hiroi H, Orimo A, Kawashima H, Muramatsu M. Isolation of estrogen-responsive genes with a CpG island library. Mol Cell Biol. 1998;18:442–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Wilson ME, Westberry JM, Prewitt AK. Dynamic regulation of estrogen receptor-alpha gene expression in the brain: a role for promoter methylation? Front Neuroendocrinol. 2008;29:375–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Waalkes MP, Liu J, Chen H, Xie Y, Achanzar WE, Zhou YS, et al. Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst. 2004;96:466–74.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Lin HF, Hsi E, Liao YC, Chhor B, Hung J, Juo SH, et al. Demethylation of circulating estrogen receptor alpha gene in cerebral ischemic stroke. PLoS ONE. 2015;10:e0139608.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Giacinti L, Claudio PP, Lopez M, Giordano A. Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist. 2006;11:1–8.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Matsuda KI. Epigenetic changes in the estrogen receptor alpha gene promoter: implications in sociosexual behaviors. Front Neurosci. 2014;8:344.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Kos M, Reid G, Denger S, Gannon F. Minireview: genomic organization of the human ERalpha gene promoter region. Mol Endocrinol. 2001;15:2057–63.

    CAS  PubMed  Google Scholar 

  40. 40.

    Berry R, Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 2013;15:302–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Church CD, Berry R, Rodeheffer MS. Isolation and study of adipocyte precursors. Methods Enzymol. 2014;537:31–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Berggren EK, Groh-Wargo S, Presley L, Hauguel-De MS, Catalano PM. Maternal fat, but not lean, mass is increased among overweight/obese women with excess gestational weight gain. Am J Obstet Gynecol. 2015;214:745e1–5.

    Article  Google Scholar 

  43. 43.

    Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ. A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes (Lond). 2010;34:989–1000.

    CAS  Article  Google Scholar 

  44. 44.

    Hong J, Stubbins RE, Smith RR, Harvey AE, Nunez NP. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J. 2009;8:11.

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Perez PA, DiPatrizio NV. Impact of maternal western diet-induced obesity on offspring mortality and peripheral endocannabinoid system in mice. PLoS ONE. 2018;13:e0205021.

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Lichtenbelt WDV, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. New Engl J Med. 2009;360:1500–8.

    Article  Google Scholar 

  47. 47.

    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults (vol 360, pg 1518, 2009). New Engl J Med. 2009;361:1123–1123.

    CAS  Google Scholar 

  48. 48.

    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. New Engl J Med. 2009;360:1509–17.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA. 2000;97:12729–34.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Cooke PS, Heine PA, Taylor JA, Lubahn DB. The role of estrogen and estrogen receptor-alpha in male adipose tissue. Mol Cell Endocrinol. 2001;178:147–54.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Davis KE, M DN, Sun K, W MS, J DB, J AZ, et al. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab. 2013;2:227–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Martinez de Morentin PB, Gonzalez-Garcia I, Martins L, Lage R, Fernandez-Mallo D, Martinez-Sanchez N, et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 2014;20:41–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Heim M, Frank O, Kampmann G, Sochocky N, Pennimpede T, Fuchs P, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology. 2004;145:848–59.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Benvenuti S, Cellai I, Luciani P, Deledda C, Saccardi R, Mazzanti B, et al. Androgens and estrogens prevent rosiglitazone-induced adipogenesis in human mesenchymal stem cells. J Endocrinol Invest. 2012;35:365–71.

    CAS  PubMed  Google Scholar 

  56. 56.

    Gao B, Huang Q, Lin YS, Wei BY, Guo YS, Sun Z, et al. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway. PLoS ONE. 2014;9:e99137.

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Pedram A, Razandi M, Blumberg B, Levin ER. Membrane and nuclear estrogen receptor alpha collaborate to suppress adipogenesis but not triglyceride content. FASEB J. 2015;30:230–40.

Download references

Acknowledgements

This work was supported by NIH grants HD069634 (J.S.), DK095132 (J.S.), HD007186 (W.W.H.Jr), HD068372(W.W.H.Jr), UL1TR001082(W.W.H.Jr), and American Diabetes grant 1–16-IBS-272 (J.S.). JS is the guarantor of this work and, as such, had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author Contributions

LQ, KC, JSW, SL, HG and GSF contributed research data. LQ, WWHJr. and JS contributed to research design and manuscript preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianhua Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Chu, K., Wattez, JS. et al. High-fat feeding reprograms maternal energy metabolism and induces long-term postpartum obesity in mice. Int J Obes 43, 1747–1758 (2019). https://doi.org/10.1038/s41366-018-0304-x

Download citation

Further reading

Search

Quick links