Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

Evaluation of chitotriosidase as a biomarker for adipose tissue inflammation in overweight individuals and type 2 diabetic patients

Abstract

Background

Overweight and obesity can lead to adipose tissue inflammation, which causes insulin resistance and on the long-term type 2 diabetes mellitus (T2D). The inflammatory changes of obese-adipose tissue are characterized by macrophage infiltration and activation, but validated circulating biomarkers for adipose tissue inflammation for clinical use are still lacking. One of the most secreted enzymes by activated macrophages is chitotriosidase (CHIT1).

Objective

To test whether circulating CHIT1 enzymatic activity levels reflect adipose tissue inflammation.

Methods

Plasma and adipose tissue samples of 105 subjects (35 lean, 37 overweight, and 33 T2D patients) were investigated. CHIT1 mRNA levels were determined in adipose tissue-resident innate immune cells. CHIT1 mRNA levels, protein abundance, and plasma enzymatic activity were subsequently measured in adipose tissue biopsies and plasma of control subjects with varying levels of obesity and adipose tissue inflammation as well as in T2D patients.

Results

In adipose tissue, CHIT1 mRNA levels were higher in stromal vascular cells compared to adipocytes, and higher in adipose tissue-residing macrophages compared to circulating monocytes (pā€‰<ā€‰0.001). CHIT1 mRNA levels in adipose tissue were enhanced in overweightcompared to lean subjects and even more in T2D patients (pā€‰<ā€‰0.05). In contrast, plasma CHIT1 enzymatic activity did not differ between lean, overweight subjects and T2D patients. A mutation of the CHIT1 gene decreases plasma CHIT1 activity.

Conclusions

CHIT1 is expressed by adipose tissue macrophages and expression is higher in overweight subjects and T2D patients, indicating its potential as tissue biomarker for adipose tissue inflammation. However, these differences do not translate into different plasma CHIT1 activity levels. Moreover, a common CHIT1 gene mutation causing loss of plasma CHIT1 activity interferes with its use as a biomarker of adipose tissue inflammation. These results indicate that plasma CHIT1 activity is of limited value as a circulating biomarker for adipose tissue inflammation in human subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94:206ā€“18.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. WHO. Global status report on noncommunicable diseases 2014. Geneva: World Health Organization; 2014.

    Google ScholarĀ 

  3. Bluher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab. 2013;27:163ā€“77.

    ArticleĀ  Google ScholarĀ 

  4. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93:1ā€“21.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Tack CJ, Stienstra R, Joosten LA, Netea MG. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev. 2012;249:239ā€“52.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15:639ā€“60.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Odegaard JI, Chawla A. Type 2 responses at the interface between immunity and fat metabolism. Curr Opin Immunol. 2015;36:67ā€“72.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Kohlgruber A, Lynch L. Adipose tissue inflammation in the pathogenesis of type 2 diabetes. Curr Diabetes Rep. 2015;15:92.

    ArticleĀ  Google ScholarĀ 

  9. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796ā€“808.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821ā€“30.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18:363ā€“74.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Malaguarnera L. Chitotriosidase: the yin and yang. Cell Mol Life Sci. 2006;63:3018ā€“29.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Sonmez A, Haymana C, Tapan S, Safer U, Celebi G, Ozturk O, et al. Chitotriosidase activity predicts endothelial dysfunction in type-2 diabetes mellitus. Endocrine. 2010;37:455ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Hollak CE, van Weely S, van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93:1288ā€“92.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Kanneganti M, Kamba A, Mizoguchi E. Role of chitotriosidase (chitinase 1) under normal and disease conditions. J Epithel Biol Pharmacol. 2012;5:1ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Kabaroglu C, Onur E, Barutcuoglu B, Ozhan B, Erdinc S, Var A, et al. Inflammatory marker levels in obese adolescents with glucose intolerance: increased chitotriosidase activity. Clin Biochem. 2012;45:281ā€“4.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Zurawska-Plaksej E, Knapik-Kordecka M, Rorbach-Dolata A, Piwowar A. Increased chitotriosidase activity in plasma of patients with type 2 diabetes. Arch Med Sci. 2016;12:977ā€“84.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Zurawska-Plaksej E, Kratz EM, Ferens-Sieczkowska M, Knapik-Kordecka M, Piwowar A. Changes in glycosylation of human blood plasma chitotriosidase in patients with type 2 diabetes. Glycoconj J. 2016;33:29ā€“39.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Zurawska-Plaksej E, Lugowska A, Hetmanczyk K, Knapik-Kordecka M, Adamiec R, Piwowar A. Proteins from the 18 glycosyl hydrolase family are associated with kidney dysfunction in patients with diabetes type 2. Biomarkers. 2015;20:52ā€“7.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Ballak DB, van Diepen JA, Moschen AR, Jansen HJ, Hijmans A, Groenhof GJ, et al. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat Commun. 2014;5:4711.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Ballak DB, van Asseldonk EJ, van Diepen JA, Jansen H, Hijmans A, Joosten LA, et al. TLR-3 is present in human adipocytes, but its signalling is not required for obesity-induced inflammation in adipose tissue in vivo. PLoS ONE. 2015;10:e0123152.

    ArticleĀ  Google ScholarĀ 

  22. Jansen HJ, Stienstra R, van Diepen JA, Hijmans A, van der Laak JA, Vervoort GM, et al. Start of insulin therapy in patients with type 2 diabetes mellitus promotes the influx of macrophages into subcutaneous adipose tissue. Diabetologia. 2013;56:2573ā€“81.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. van Diepen JA, Robben JH, Hooiveld GJ, Carmone C, Alsady M, Boutens L, et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia. 2017;60:1304ā€“13.

    ArticleĀ  Google ScholarĀ 

  24. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980;12:175ā€“81.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46:2347ā€“55.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Lin K, Kools H, de Groot PJ, Gavai AK, Basnet RK, Cheng F, et al. MADMAX - management and analysis database for multiple ~omics experiments. J Integr Bioinforma. 2011;8:160.

    ArticleĀ  Google ScholarĀ 

  27. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4:249ā€“64.

    ArticleĀ  Google ScholarĀ 

  28. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 2005;33:e175.

    ArticleĀ  Google ScholarĀ 

  29. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    ArticleĀ  Google ScholarĀ 

  30. Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf GD, Medvedovic M. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMC Bioinforma. 2006;7:538.

    ArticleĀ  Google ScholarĀ 

  31. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289ā€“300.

    Google ScholarĀ 

  32. Moore DS, Notz, WI, Flinger, MA The basic practice of statistics. 6th ed. New York, NY: W. H. Freeman and Company; 2013.

  33. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, et al. Assessment of PLSDA cross validation. Metabolomics. 2008;4:81ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Wold S, Sjƶstrƶm M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109ā€“30.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54:2277ā€“86.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Sprenger R, Doneanu C, Langridge J, Vissers H, Aerts H. MRM quantification of chitotriosidase in human plasma. Application Note Waters Corporation.

  37. Boot RG, Renkema GH, Verhoek M, Strijland A, Bliek J, de Meulemeester TM, et al. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998;273:25680ā€“5.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Di Rosa M, Malaguarnera G, De Gregorio C, Dā€™Amico F, Mazzarino MC, Malaguarnera L. Modulation of chitotriosidase during macrophage differentiation. Cell Biochem Biophys. 2013;66:239ā€“47.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Di Rosa M, De Gregorio C, Malaguarnera G, Tuttobene M, Biazzo F, Malaguarnera L. Evaluation of AMCase and CHIT-1 expression in monocyte macrophages lineage. Mol Cell Biochem. 2013;374:73ā€“80.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Di Rosa M, Malaguarnera G, De Gregorio C, Drago F, Malaguarnera L. Evaluation of CHI3L-1 and CHIT-1 expression in differentiated and polarized macrophages. Inflammation. 2013;36:482ā€“92.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Renkema GH, Boot RG, Strijland A, Donker-Koopman WE, van den Berg M, Muijsers AO, et al. Synthesis, sorting, and processing into distinct isoforms of human macrophage chitotriosidase. Eur J Biochem. 1997;244:279ā€“85.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Malaguarnera L, Di Rosa M, Zambito AM, dellā€™Ombra N, Di Marco R, Malaguarnera M. Potential role of chitotriosidase gene in nonalcoholic fatty liver disease evolution. Am J Gastroenterol. 2006;101:2060ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Pecht T, Gutman-Tirosh A, Bashan N, Rudich A. Peripheral blood leucocyte subclasses as potential biomarkers of adipose tissue inflammation and obesity subphenotypes in humans. Obes Rev. 2014;15:322ā€“37.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Eckel N, Li Y, Kuxhaus O, Stefan N, Hu FB, Schulze MB. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nursesā€™ Health Study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 2018;6:714ā€“24.

    ArticleĀ  Google ScholarĀ 

  45. Greenhill C. Redefining metabolically healthy obesity. Nat Rev Endocrinol. 2018. [Epub ahead of print].

  46. McDonnell ME, Ganley-Leal LM, Mehta A, Bigornia SJ, Mott M, Rehman Q, et al. B lymphocytes in human subcutaneous adipose crown-like structures. Obesity . 2012;20:1372ā€“8.

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Curat CA, Wegner V, SengenĆØs C, Miranville A, Tonus C, Busse R, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49:744.

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta. 2014;1842:446ā€“62.

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Dahlman I, Kaaman M, Olsson T, Tan GD, Bickerton AS, Wahlen K, et al. A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects. J Clin Endocrinol Metab. 2005;90:5834ā€“40.

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Murdolo G, Hammarstedt A, Sandqvist M, Schmelz M, Herder C, Smith U, et al. Monocyte chemoattractant protein-1 in subcutaneous abdominal adipose tissue: characterization of interstitial concentration and regulation of gene expression by insulin. J Clin Endocrinol Metab. 2007;92:2688ā€“95.

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, et al. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes. 2005;54:2305ā€“13.

    ArticleĀ  Google ScholarĀ 

  52. Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab. 2005;90:2282ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K-i, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Investig. 2006;116:1494ā€“505.

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. Martin BC, Warram JH, Krolewski AS, Soeldner JS, Kahn CR, Martin BC, et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet. 1992;340:925ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Elmonem MA, Amin HS, El-Essawy RA, Mehaney DA, Nabil M, Kamel LN, et al. Association of chitotriosidase enzyme activity and genotype with the risk of nephropathy in type 2 diabetes. Clin Biochem. 2016;49:444ā€“8.

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Kundak Ahmet A, Tascılar Mehmet E, Abaci A, Devrim I, Ozgen Ilker T, Demirpek U, et al. Serum chitotriosidase activity: is it a new inflammatory marker in obese children? J Pediatr Endocrinol Metab. 2012;25:63.

    PubMedĀ  Google ScholarĀ 

  57. Turan E, Sozmen B, Eltutan M, Sozmen EY. Serum chitotriosidase enzyme activity is closely related to HbA1c levels and the complications in patients with diabetes mellitus type 2. Diabetes Metab Syndr. 2017;11:S503ā€“S6.

    ArticleĀ  Google ScholarĀ 

  58. Fusetti F, von Moeller H, Houston D, Rozeboom HJ, Dijkstra BW, Boot RG, et al. Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J Biol Chem. 2002;277:25537ā€“44.

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Di Rosa M, Malaguarnera L. Chitotriosidase: a new inflammatory marker in diabetic complications. Mol Cell Biol. 2016;83:211ā€“9.

    Google ScholarĀ 

  60. Malaguarnera L, Simpore J, Prodi DA, Angius A, Sassu A, Persico I, et al. A 24-bp duplication in exon 10 of human chitotriosidase gene from the sub-Saharan to the Mediterranean area: role of parasitic diseases and environmental conditions. Genes Immun. 2003;4:570ā€“4.

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Di Rosa M, Mangano K, De Gregorio C, Nicoletti F, Malaguarnera L. Association of chitotriosidase genotype with the development of non-alcoholic fatty liver disease. Hepatol Res. 2013;43:267ā€“75.

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This work is part of the Perspectief Biomarker Development Center Research Programme with project number 13543, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). We thank Jacqueline Ratter for collecting and isolating CD14+ cells from adipose tissues and blood samples. We thank Astrid van Rens for measuring the plasma CHIT1 enzyme activity in blood plasma samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain J. van Gool.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tans, R., van Diepen, J.A., Bijlsma, S. et al. Evaluation of chitotriosidase as a biomarker for adipose tissue inflammation in overweight individuals and type 2 diabetic patients. Int J Obes 43, 1712ā€“1723 (2019). https://doi.org/10.1038/s41366-018-0225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0225-8

Search

Quick links