Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

Detailed assessment of hypothalamic damage in craniopharyngioma patients with obesity

Abstract

Background/objectives

Hypothalamic obesity (HO) occurs in 50% of patients with the pituitary tumor craniopharyngioma (CP). Attempts have been made to predict the risk of HO based on hypothalamic (HT) damage on magnetic resonance imaging (MRI), but none have included volumetry. We performed qualitative and quantitative volumetric analyses of HT damage. The results were explored in relation to feeding related peptides and body fat.

Subjects/methods

A cross-sectional study of childhood onset CPs involving 3 Tesla MRI, was performed at median 22 years after first operation; 41 CPs, median age 35 (range: 17–56), of whom 23 had HT damage, were compared to 32 controls. After exclusions, 35 patients and 31 controls remained in the MRI study. Main outcome measures were the relation of metabolic parameters to HT volume and qualitative analyses of HT damage.

Results

Metabolic parameters scored persistently very high in vascular risk particularly among HT damaged patients. Patients had smaller HT volumes compared to controls 769 (35–1168) mm3 vs. 879 (775–1086) mm3; P < 0.001. HT volume correlated negatively with fat mass and leptin among CP patients (rs = −0.67; P < .001; rs = −0.53; P = 0.001), and explained 39% of the variation in fat mass. For every 100 mm3 increase in HT volume fat mass decreased by 2.7 kg (95% CI: 1.5–3.9; P < 0.001). Qualitative assessments revealed HT damage in three out of six patients with normal volumetry, but HT damage according to operation records.

Conclusions

A decrease in HT volume was associated with an increase in fat mass and leptin. We present a method with a high inter-rater reliability (0.94) that can be applied by nonradiologists for the assessment of HT damage. The method may be valuable in the risk assessment of diseases involving the HT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014;220:T25–46.

    Article  CAS  PubMed  Google Scholar 

  2. van Swieten MM, Pandit R, Adan RA, van der Plasse G. The neuroanatomical function of leptin in the hypothalamus. J Chem Neuroanat. 2014;61-62:207–20.

    Article  PubMed  Google Scholar 

  3. Horvath T, Diano S, Sotonyi P, Heiman M, Tschöp M. Minireview: ghrelin and the regulation of energy balance—a hypothalamic perspective. Endocrinology. 2001;142:4163–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bülow B, Attewell R, Hagmar L, Malmström P, Nordström CH, Erfurth EM. Postoperative prognosis in craniopharyngioma with respect to cardiovascular mortality, survival, and tumor recurrence. J Clin Endocrinol Metab. 1998;83:3897–904.

    PubMed  Google Scholar 

  5. Holmer H, Ekman B, Björk J, Nordstöm CH, Popovic V, Siversson A, et al. Hypothalamic involvement predicts cardiovascular risk in adults with childhood onset craniopharyngioma on long-term GH therapy. Eur J Endocrinol. 2009;61:671–9.

    Article  Google Scholar 

  6. Holmer H, Pozarek G, Wirfält E, Popovic V, Ekman B, Björk J, et al. Reduced energy expenditure and impaired feeding-related signals but not high energy intake reinforces hypothalamic obesity in adults with childhood onset craniopharyngioma. J Clin Endocrinol Metab. 2010;95:5395–402.

    Article  CAS  PubMed  Google Scholar 

  7. Müller HL, Gebhardt U, Teske C, Faldum A, Zwiener I, Warmuth-Metz M, et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: Results of the multinational prospective trial kraniopharyngeom 2000 after 3-year follow-up. Eur J Endocrinol. 2011;165:17–24.

    Article  PubMed  Google Scholar 

  8. Bunin GR, Surawicz TS, Witman PA, Preston-Martin S, Davis F, Bruner JM. The descriptive epidemiology of craniopharyngioma. J Neurosurg. 1998;89:547–51.

    Article  CAS  PubMed  Google Scholar 

  9. Erfurth EM, Holmer H, Fjalldal SB. Mortality and morbidity in adult craniopahryngioma. Pituitary. 2013;16:46–55.

    Article  PubMed  Google Scholar 

  10. Müller HL. Childhood craniopharyngioma. Pituitary. 2013;16:56–67.

    Article  PubMed  Google Scholar 

  11. Müller HL, Emser A, Faldum A, Bruhnken G, Etavard-Goris N, Gebhardt U, et al. Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. J Clin Endocrinol Metab. 2004;89:3298–305.

    Article  PubMed  Google Scholar 

  12. Grant DB, Kendall BE, Neville BG, Stanhope R, Watkins KE, Hayward RD. Management of childhood craniopharyngioma: can the morbidity of radical surgery be predicted. J Neurosurg. 1996;85:73–81.

    Article  PubMed  Google Scholar 

  13. Roth CL. Hypothalamic obesity in craniopharyngioma patients: disturbed energy homeostasis related to extent of hypothalamic damage and its implication for obesity intervention. J Clin Med. 2015;4:1774–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Babinski J. Tumeur du corps pituitaire sans acromégalie et avecarrêt de développement des organes génitaux. Rev Neurol. 1900;8:531–3.

    Google Scholar 

  15. Frohlich A. Ein fall von tumor der hypophysis cerebri ohne akromegalie. Wien Klin Rdsch. 1901;15:883–6.

    Google Scholar 

  16. Hochberg I, Hochberg Z. Expanding the definition of hypothalamic obesity. Obes Rev. 2010;11:709–21.

    Article  CAS  PubMed  Google Scholar 

  17. Roth CL, Hunneman DH, Gebhardt U, Stoffel-Wagner B, Reinehr T, Müller HL. Reduced sympathetic metabolites in urine of obese patients with craniopharyngioma. Pediatr Res. 2007;61:496–501.

    Article  CAS  PubMed  Google Scholar 

  18. Lustig RH. Hypothalamic obesity: the sixth cranial endocrinopathy. Endocrinologist. 2002;12:210–7.

    Article  Google Scholar 

  19. Bray GA, Gallagher TF Jr. Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a review of the literature. Medicine (Baltimore). 1975;54:301–30.

    Article  CAS  Google Scholar 

  20. Bray GA, Inoue S, Nishizawa Y. Hypothalamic obesity. The autonomic hypothesis and the lateral hypothalamus. Diabetologia. 1981;20:366–77.

    Article  CAS  PubMed  Google Scholar 

  21. Roth C, Wilken B, Hanefels F, Schröter W, Leonhardt U. Hyperphagia in children with craniopharyngioma is associatedwith hyperleptinaemia and a failure in the downregulation of appetite. Eur J Endocrinol. 1998;138:89–91.

    Article  CAS  PubMed  Google Scholar 

  22. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50:707–9.

    Article  PubMed  Google Scholar 

  23. Roth CL, Gebhardt U, Müller HL. Appetite-regulating hormone changes in patients with craniopharyngioma. Obesity. 2011;19:36–42.

    Article  CAS  PubMed  Google Scholar 

  24. Bray GA. Syndromes of hypothalamic obesity in man. Pediatr Ann. 1984;13:525–36.

    CAS  PubMed  Google Scholar 

  25. De Vile CJ, Grant DB, Kendall BE, Neville BG, Stanhope R, Watkins KE, et al. Management of childhood craniopharyngioma: can the morbidity of radical surgery be predicted? J Neurosurg. 1996;85:73–81.

    Article  PubMed  Google Scholar 

  26. Puget S, Garnett M, Wray A, Grill J, Habrand JL, Bodaert N, et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J Neurosurg. 2007;106:3–12.

    PubMed  Google Scholar 

  27. Elliott RE, Sands SA, Strom RG, Wisoff JH. Craniopharyngioma Clinical Status Scale: a standardized metric of preoperative function and posttreatment outcome. Neurosurg Focus. 2010;28:E2.

    Article  PubMed  Google Scholar 

  28. Elowe-Gruau E, Beltrand J, Brauner R, Pinto G, Samara-Boustani D, Thalassinos C, et al. Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. J Clin Endocrinol Metab. 2013;98:2376–82.

    Article  CAS  PubMed  Google Scholar 

  29. Van Gompel JJ, Nippoldt TB, Higgins DM, Meyer FB. Magnetic resonance imaging-graded hypothalamic compression in surgically treated adult craniopharyngiomas determining postoperative obesity. Neurosurg Focus. 2010;28:E3.

    Article  PubMed  Google Scholar 

  30. Mortini P, Gagliardi F, Bailo M, Spina A, Parlangeli A, Falini A, et al. Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine. 2016;51:148–62.

    Article  CAS  PubMed  Google Scholar 

  31. Mallucci C, Pizer B, Blair J, Didi M, Doss A, Upadrasta S, et al. Management of craniopharyngioma: the Liverpool experience following the introduction of the CCLG guidelines. Introducing a new risk assessment grading system. Childs Nerv Syst. 2012;28:1181–92.

    Article  PubMed  Google Scholar 

  32. Ha J, Cohen J, Aziz T, Convit A. Association of obesity-mediated insulin resistance and hypothalamic volumes: possible sex differences. Hind Public Corp. 2013;35:249–59.

    CAS  Google Scholar 

  33. Follin C, Gabery S, Petersén Å, Sundgren PC, Björkman-Burtcher I, Lätt J, et al. Associations between metabolic risk factors and the hypothalamic volume in childhood leukemia survivors treated with cranial radiotherapy. PLoS ONE. 2016;11:e0147575.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fjalldal S, Holmer H, Rylander L, Elfving M, Ekman B, Osterberg K, et al. Hypothalamic involvement predicts cognitive performance and psychosocial health in long-term survivors of childhood craniopharyngioma. J Clin Endocrinol Metab. 2013;98:3253–62.

    Article  CAS  PubMed  Google Scholar 

  35. Follin C, Link K, Wiebe T, Moëll C, Björk J, Erfurth EM. Bone loss after childhood acute lymphoblastic leukaemia: an observational study with and without GH therapy. Eur J Endocrinol. 2011;164:695–703.

    Article  CAS  PubMed  Google Scholar 

  36. Link K, Moell C, Garwicz S, Cavallin-Ståhl E, Björk J, Thilén U, et al. Growth hormone deficiency predicts cardiovascular risk in young adults treated for acute lymphoblastic leukemia in childhood. J Clin Endrinol Metab. 2004;89:5003–12.

    Article  CAS  Google Scholar 

  37. Wilhelmsen L, Tibblin G, Aurell M, Bjure J, Ekström-Jodal B, Grimby G. Physical activity, physical fitness and risk of myocardial infarction. Adv Cardiol. 1976;18:217–30.

    Article  CAS  PubMed  Google Scholar 

  38. Smets EM, Garssen B, Bonke B, De Haes JC. The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39:315–25.

    Article  CAS  PubMed  Google Scholar 

  39. Gabery S, Murphy K, Schultz K, Loy CT, McCusker E, Kirik D, et al. Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses. Acta Neuropathol. 2010;120:777–88.

    Article  CAS  PubMed  Google Scholar 

  40. Gabery S, Georgiou-Karistianis N, Lundh SH, Cheong RY, Churchyard A, Chua P, et al. Volumetric analysis of the hypothalamus in Huntington disease using 3T MRI: the image-HD study. PLoS ONE. 2015;10:e0117593.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mai J, Paxinos G, Voss T. Atlas of human brain. Oxford, UK: Academic Press; 2008.

    Google Scholar 

  42. Harz KJ, Müller HL, Waldeck E, Pudel V, Roth C. Obesity in patients with craniopharyngioma: assessment of food intake and movement counts indicating physical activity. J Clin Endocrinol Metab. 2003;88:5227–31.

    Article  CAS  PubMed  Google Scholar 

  43. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    Article  CAS  PubMed  Google Scholar 

  44. Goldstone AP, Patterson M, Kalingag N, Ghatei MA, Brynes AE, Bloom SR, et al. Fasting and postprandialhyperghrelinemia in Prader–Willi syndrome is partially explainedby hypoinsulinemia, and is not due to peptide YY3–36 deficiencyor seen in HT obesity due to craniopharyngioma. J Clin Endocrinol Metab. 2005;90:2681–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Children's Cancer Foundation, the Swedish Cancer Foundation, and the Medical Faculty, Lund University, Sweden

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Erfurth.

Ethics declarations

Conflict of interest

Eva Marie Erfurth received lecture fees from Pfizer and Eli Lilly, B.E. received lecture fees from Novartis and has received fees for consultancy from Pfizer and Shire, all other authors have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fjalldal, S., Follin, C., Gabery, S. et al. Detailed assessment of hypothalamic damage in craniopharyngioma patients with obesity. Int J Obes 43, 533–544 (2019). https://doi.org/10.1038/s41366-018-0185-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0185-z

This article is cited by

Search

Quick links