Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipocyte and Cell Biology

Regulation of PKCβ levels and autophagy by PML is essential for high-glucose-dependent mesenchymal stem cell adipogenesis

Abstract

Background/Objectives

Obesity is a complex disease characterized by the accumulation of excess body fat, which is caused by an increase in adipose cell size and number. The major source of adipocytes comes from mesenchymal stem cells (MSCs), although their roles in obesity remain unclear. An understanding of the mechanisms, regulation, and outcomes of adipogenesis is crucial for the development of new treatments for obesity-related diseases. Recently an unexpected role for the tumor suppressor promyelocytic leukemia protein (PML) in hematopoietic stem cell biology and metabolism regulation has come to light, but its role in MSC biology remains unknown. Here, we investigated the molecular pathway underlying the role of PML in the control of adipogenic MSC differentiation.

Subjects/Methods

Muscle-derived stem cells (MDSCs) and adipose-derived stem cells (ADSCs) obtained from mice and voluntary patients (as a source of MSCs) were cultured in the presence of high glucose (HG) concentration, a nutrient stress condition known to promote MSCs differentiation into mature adipocytes and the adipogenic potential of PML was assessed.

Results

PML is essential for a correct HG-dependent adipogenic differentiation, and the enhancement of PML levels is fundamental during adipogenesis. Increased PML expression enables the upregulation of protein kinase Cβ (PKCβ), which, in turn, by controlling autophagy levels permits an increase in peroxisome proliferator-activated receptor γ (PPARγ) that leads the adipogenic differentiation. Therefore, genetic and pharmacological depletion of PML prevents PKCβ expression, and by increasing autophagy levels, impairs the MSCs adipogenic differentiation. Human ADSCs isolated from overweight patients displayed increased PML and PKCβ levels compared to those found in normal weight individuals, indicating that the PML-PKCβ pathway is directly involved in the enhancement of adipogenesis and human metabolism.

Conclusions

The new link found among PML, PKCβ, and autophagy opens new therapeutic avenues for diseases characterized by an imbalance in the MSCs differentiation process, such as metabolic syndromes and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  Google Scholar 

  2. Tolar J, Le Blanc K, Keating A, Blazar BR. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells. 2010;28:1446–55.

    Article  Google Scholar 

  3. Bernardo ME, Pagliara D, Locatelli F. Mesenchymal stromal cell therapy: a revolution in regenerative medicine? Bone Marrow Transplant. 2012;47:164–71.

    Article  CAS  Google Scholar 

  4. Brook CG, Lloyd JK, Wolf OH. Relation between age of onset of obesity and size and number of adipose cells. BMJ. 1972;2:25–7.

    Article  CAS  Google Scholar 

  5. Faust IM, Johnson PR, Stern JS, Hirsch J. Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am J Physiol. 1978;235:E279–86.

    CAS  PubMed  Google Scholar 

  6. Hirsch J, Batchelor B. Adipose tissue cellularity in human obesity. Clin Endocrinol Metab. 1976;5:299–311.

    Article  CAS  Google Scholar 

  7. DeGaris RM, Pennefather JN. Prolonged supersensitivity to noradrenaline of smooth muscle of the epididymal half of the rat vas deferens denervated by vasectomy. J Auton Pharmacol. 1987;7:267–79.

    Article  CAS  Google Scholar 

  8. Chen BY, Wang X, Chen LW, Luo ZJ. Molecular targeting regulation of proliferation and differentiation of the bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells. Curr Drug Targets. 2012;13:561–71.

    Article  CAS  Google Scholar 

  9. Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009;433:1–7.

    Article  CAS  Google Scholar 

  10. De Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng. 2004;10:393–401.

    Article  Google Scholar 

  11. Shtutman M, Zhurinsky J, Oren M, Levina E, Ben-Ze’ev A. PML is a target gene of beta-catenin and plakoglobin, and coactivates beta-catenin-mediated transcription. Cancer Res. 2002;62:5947–54.

    CAS  PubMed  Google Scholar 

  12. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.

    Article  Google Scholar 

  13. Rowley JD. Identification of the constant chromosome regions involved in human hematologic malignant disease. Science. 1982;216:749–51.

    Article  CAS  Google Scholar 

  14. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VV, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991;66:663–74.

    Article  CAS  Google Scholar 

  15. Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol. 2004;6:665–72.

    Article  CAS  Google Scholar 

  16. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP. Identification of a tumour suppressor network opposing nuclear Akt function. Nature. 2006;441:523–7.

    Article  CAS  Google Scholar 

  17. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006;442:779–85.

    Article  CAS  Google Scholar 

  18. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science. 2010;330:1247–51.

    Article  CAS  Google Scholar 

  19. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453:1072–8.

    Article  CAS  Google Scholar 

  20. Regad T, Bellodi C, Nicotera P, Salomoni P. The tumor suppressor Pml regulates cell fate in the developing neocortex. Nat Neurosci. 2009;12:132–40.

    Article  CAS  Google Scholar 

  21. Carracedo A, Weiss D, Leliaert AK, Bhasin M, de Boer VC, Laurent G, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest. 2012;122:3088–100.

    Article  CAS  Google Scholar 

  22. Kim MK, Yang S, Lee KH, Um JH, Liu M, Kang H, et al. Promyelocytic leukemia inhibits adipogenesis, and loss of promyelocytic leukemia results in fat accumulation in mice. Am J Physiol Endocrinol Metab. 2011;301:E1130–42.

    Article  CAS  Google Scholar 

  23. Cheng X, Guo S, Liu Y, Chu H, Hakimi P, Berger NA, et al. Ablation of promyelocytic leukemia protein (PML) re-patterns energy balance and protects mice from obesity induced by a Western diet. J Biol Chem. 2013;288:29746–59.

    Article  CAS  Google Scholar 

  24. Marrelli M, Pujia A, Palmieri F, Gatto R, Falisi G, Gargari M, et al. Innovative approach for the in vitro research on biomedical scaffolds designed and customized with CAD-CAM technology. Int J Immunopathol Pharmacol. 2016;29:778–83.

    Article  CAS  Google Scholar 

  25. Hope RG, McLauchlan J. Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol. 2000;81(Part 8):1913–25.

    Article  CAS  Google Scholar 

  26. Chuang CC, Yang RS, Tsai KS, Ho FM, Liu SH. Hyperglycemia enhances adipogenic induction of lipid accumulation: involvement of extracellular signal-regulated protein kinase 1/2, phosphoinositide 3-kinase/Akt, and peroxisome proliferator-activated receptor gamma signaling. Endocrinology. 2007;148:4267–75.

    Article  CAS  Google Scholar 

  27. Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, et al. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci USA. 2008;105:1226–31.

    Article  CAS  Google Scholar 

  28. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994;8:1224–34.

    Article  CAS  Google Scholar 

  29. Bastie C, Holst D, Gaillard D, Jehl-Pietri C, Grimaldi PA. Expression of peroxisome proliferator-activated receptor PPARdelta promotes induction of PPARgamma and adipocyte differentiation in 3T3C2 fibroblasts. J Biol Chem. 1999;274:21920–5.

    Article  CAS  Google Scholar 

  30. Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18:1350–8.

    Article  CAS  Google Scholar 

  31. Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A, et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med. 2001;193:1361–71.

    Article  CAS  Google Scholar 

  32. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9.

    Article  CAS  Google Scholar 

  33. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell . 2011;147:728–41.

    Article  CAS  Google Scholar 

  34. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431:200–5.

    Article  CAS  Google Scholar 

  35. Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, Gandin V, et al. S6K1 plays a critical role in early adipocyte differentiation. Dev Cell. 2010;18:763–74.

    Article  CAS  Google Scholar 

  36. Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest. 2007;117:387–96.

    Article  Google Scholar 

  37. Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 2008;8:399–410.

    Article  CAS  Google Scholar 

  38. Yoon MS, Zhang C, Sun Y, Schoenherr CJ, Chen J. Mechanistic target of rapamycin controls homeostasis of adipogenesis. J Lipid Res. 2013;54:2166–73.

    Article  CAS  Google Scholar 

  39. Liu F, Fang F, Yuan H, Yang D, Chen Y, Williams L, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res. 2013;28:2414–30.

    Article  CAS  Google Scholar 

  40. Missiroli S, Bonora M, Patergnani S, Poletti F, Perrone M, Gafa R, et al. PML at mitochondria-associated membranes is critical for the repression of autophagy and cancer development. Cell Rep. 2016;16:2415–27.

    Article  CAS  Google Scholar 

  41. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16:487–511.

    Article  CAS  Google Scholar 

  42. Clemens MJ, Trayner I, Menaya J. The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J Cell Sci. 1992;103(Part 4):881–7.

    CAS  PubMed  Google Scholar 

  43. Gallicano GI, Yousef MC, Capco DG. PKC—a pivotal regulator of early development. Bioessays. 1997;19:29–36.

    Article  CAS  Google Scholar 

  44. Zhou Y, Wang D, Li F, Shi J, Song J. Different roles of protein kinase C-betaI and -delta in the regulation of adipocyte differentiation. Int J Biochem Cell Biol. 2006;38:2151–63.

    Article  CAS  Google Scholar 

  45. Artemenko Y, Gagnon A, Aubin D, Sorisky A. Anti-adipogenic effect of PDGF is reversed by PKC inhibition. J Cell Physiol. 2005;204:646–53.

    Article  CAS  Google Scholar 

  46. Fleming I, MacKenzie SJ, Vernon RG, Anderson NG, Houslay MD, Kilgour E. Protein kinase C isoforms play differential roles in the regulation of adipocyte differentiation. Biochem J. 1998;333(Part 3):719–27.

    Article  CAS  Google Scholar 

  47. McGowan K, DeVente J, Carey JO, Ways DK, Pekala PH. Protein kinase C isoform expression during the differentiation of 3T3-L1 preadipocytes: loss of protein kinase C-alpha isoform correlates with loss of phorbol 12-myristate 13-acetate activation of nuclear factor kappaB and acquisition of the adipocyte phenotype. J Cell Physiol. 1996;167:113–20.

    Article  CAS  Google Scholar 

  48. Patergnani S, Marchi S, Rimessi A, Bonora M, Giorgi C, Mehta KD, et al. PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy. 2013;9:1367–85.

    Article  CAS  Google Scholar 

  49. Matsushita K, Dzau VJ. Mesenchymal stem cells in obesity: insights for translational applications. Lab Invest. 2017;97:1158–66.

    Article  Google Scholar 

  50. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546.

    Article  Google Scholar 

  51. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23:1128–39.

    Article  CAS  Google Scholar 

  52. Caballero B. The global epidemic of obesity: an overview. Epidemiol Rev. 2007;29:1–5.

    Article  Google Scholar 

  53. Tatullo M, Simone GM, Tarullo F, Irlandese G, Vito D, Marrelli M, et al. Antioxidant and antitumor activity of a bioactive polyphenolic fraction isolated from the brewing process. Sci Rep. 2016;6:36042.

    Article  CAS  Google Scholar 

  54. Boyer F, Vidot JB, Dubourg AG, Rondeau P, Essop MF, Bourdon E. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxid Med Cell Longev. 2015;2015:534873.

    Article  Google Scholar 

  55. Marrelli M, Gentile S, Palmieri F, Paduano F, Tatullo M. Correlation between Surgeon’s experience, surgery complexity and the alteration of stress related physiological parameters. PLoS ONE. 2014;9:e112444.

    Article  Google Scholar 

  56. Tatullo M, Gentile S, Paduano F, Santacroce L, Marrelli M. Crosstalk between oral and general health status in e-smokers. Medicine (Baltim). 2016;95:e5589.

    Article  Google Scholar 

  57. Sun J, Fu S, Zhong W, Huang H. PML overexpression inhibits proliferation and promotes the osteogenic differentiation of human mesenchymal stem cells. Oncol Rep. 2013;30:2785–94.

    Article  CAS  Google Scholar 

  58. Carracedo A, Rousseau D, Douris N, Fernandez-Ruiz S, Martin-Martin N, Weiss D, et al. The promyelocytic leukemia protein is upregulated in conditions of obesity and liver steatosis. Int J Biol Sci. 2015;11:629–32.

    Article  CAS  Google Scholar 

  59. Fracanzani AL, Valenti L, Bugianesi E, Vanni E, Grieco A, Miele L, et al. Risk of nonalcoholic steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease and low visceral adiposity. J Hepatol. 2011;54:1244–9.

    Article  CAS  Google Scholar 

  60. Cheng HC, Liu SW, Li W, Zhao XF, Zhao X, Cheng M, et al. Arsenic trioxide regulates adipogenic and osteogenic differentiation in bone marrow MSCs of aplastic anemia patients through BMP4 gene. Acta Biochim Biophys Sin (Shanghai). 2015;47:673–9.

    Article  CAS  Google Scholar 

  61. Oliver L, Hue E, Priault M, Vallette FM. Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev. 2012;21:2779–88.

    Article  CAS  Google Scholar 

  62. Nuschke A, Rodrigues M, Stolz DB, Chu CT, Griffith L, Wells A. Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther. 2014;5:140.

    Article  Google Scholar 

  63. Bansode RR, Huang W, Roy SK, Mehta M, Mehta KD. Protein kinase C deficiency increases fatty acid oxidation and reduces fat storage. J Biol Chem. 2008;283:231–6.

    Article  CAS  Google Scholar 

  64. Camp HS, Li O, Wise SC, Hong YH, Frankowski CL, Shen X, et al. Differential activation of peroxisome proliferator-activated receptor-gamma by troglitazone and rosiglitazone. Diabetes. 2000;49:539–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CG is supported by local funds from the University of Ferrara, the Italian Association for Cancer Research, the Italian Ministry of Health, and by Cariplo grant. MRW is supported by the FOIE GRAS and mtFOIE GRAS projects.These projects received funding from the European Union’sHorizon 2020 Research and Innovation programme under the MarieSkłodowska-Curie Grant Agreement No. 722619 (FOIE GRAS) andGrant Agreement No. 734719 (mtFOIE GRAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlotta Giorgi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morganti, C., Missiroli, S., Lebiedzinska-Arciszewska, M. et al. Regulation of PKCβ levels and autophagy by PML is essential for high-glucose-dependent mesenchymal stem cell adipogenesis. Int J Obes 43, 963–973 (2019). https://doi.org/10.1038/s41366-018-0167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0167-1

This article is cited by

Search

Quick links