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Abstract
Background The worldwide prevalence of obesity, a major risk factor for numerous debilitating chronic disorders, is
increasing rapidly. Although a substantial amount of the variation in body mass index (BMI) is estimated to be heritable, the
largest meta-analysis of genome-wide association studies (GWAS) to date explained only ~2.7% of the variation. To tackle
this ‘missing heritability’ problem of obesity, here we focused on the contribution of DNA repeat length polymorphisms
which are not detectable by GWAS.
Subjects and methods We determined the cytosine–adenine–guanine (CAG) repeat length in the nine known polyglutamine
disease-associated genes (ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, HTT, ATN1 and AR) in two large cohorts
consisting of 12,457 individuals and analyzed their association with BMI, using generalized linear mixed-effect models.
Results We found a significant association between BMI and the length of CAG repeats in seven polyglutamine disease-
associated genes (including ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP and AR). Importantly, these repeat variations
could account for 0.75% of the total BMI variation.
Conclusions Our findings incriminate repeat polymorphisms as an important novel class of genetic risk factors of obesity
and highlight the role of the brain in its pathophysiology.

Introduction

Obesity is a growing pandemic and acts as a major risk
factor for a variety of prevalent chronic disorders, including
cardiovascular, metabolic, inflammatory and neoplastic
diseases [1]. Several studies have estimated the heritability

of body mass index (BMI) at around 40–70% [2–4].
However, the BMI-associated loci identified in the largest
meta-analysis of genome-wide association studies (GWAS)
to date explained only ~2.7% of the variation [5], indicating
a large degree of ‘missing heritability’. The GWAS
approach, irrespective of its crucial contribution to the
genetic mapping of complex human traits, neglects the
effect of dynamic mutations on body composition, in the
way trinucleotide expansions, for instance, associate with
neurodegenerative disorders [6–8]. Recent studies have
indeed shown that variations in these highly unstable repeat
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expansions can result in phenotypic consequences for
organisms [9]. Nine hereditary neurodegenerative diseases,
including Huntington′s Disease (HD), are caused by
protein-coding trinucleotide expansions consisting of
cytosine–adenine–guanine (CAG) repeats (Table 1) [10,
11]. Alongside motor impairment and neuropsychiatric
disturbances, these disorders are often also accompanied by
severe weight loss and metabolic disturbances. Given recent
findings that even CAG repeat length variations in the non-
mutant range in polyglutamine disease-associated genes
(PDAGs) can act as risk factors for neuropsychiatric con-
ditions [12–14], we hypothesized that these prevalent
polymorphisms may also act as genetic risk factors of BMI.

Subjects and methods

Subjects

The nine known PDAGs (including ATXN1, ATXN2,
ATXN3, CACNA1A, ATXN7, TBP, HTT, ATN1 and AR)
were genotyped in all participants with sufficient amounts
of DNA available from blood samples of two well-
characterized cohorts: the Netherlands Epidemiology of
Obesity (NEO) study and the Prospective Study of Pra-
vastatin in the Elderly at Risk (PROSPER) study (Table 1
and Supplementary Tables 1–3). The NEO is a cohort study

among 6671 men and women aged 45–65 years living in
the greater area of Leiden, the Netherlands, with an over-
sampling of overweight or obese individuals. A total of
5217 participants had a BMI of 27 kg/m2 or higher. This
study was approved by the medical ethical committee of the
Leiden University Centre (LUMC) and written informed
consent was obtained from all participants [15]. The
PROSPER is a cohort study among 5786 men and women
between 70–82 years old with a pre-existing vascular dis-
ease or a raised risk for such a disease. Participants were
recruited from three countries with 2517 individuals from
Scotland, 2173 individuals from Ireland and 1096 indivi-
duals from the Netherlands. The study was approved by the
institutional ethics review boards of all centres and written
informed consent was obtained from all participants [16]. A
post-hoc power calculation using the sample sizes of the
NEO and PROSPER cohorts combined (n= 12,457)
showed that, at a significance level of α= 0.0056 (0.05/9,
because of the nine tested PDAGs), this sample size enabled
detection of a very small effect size equalling to R2= 0.001
or larger with a statistical power of ≥0.78 (calculated using
G*Power version 3.1.9.2) [17].

Genotyping

To determine the CAG repeat length in the nine PDAGs for
each individual, a polymerase chain reaction (PCR) was

Table 1 Summary of genotyped
polyglutamine disease-
associated genes (PDAGs)

CAG repeat ranges

Gene Disease Protein Normal Pathological Allele Mean Median N Range

ATXN1 SCA1 Ataxin-1 6–39 41–83 Short 29.21 29.00 12071 17–36

Long 30.79 30.00 12071 22–44

ATXN2 SCA2 Ataxin-2 14–32 33–500 Short 21.93 22.00 11937 11–30

Long 22.39 22.00 11937 17–36

ATXN3 SCA3 Ataxin-3 12–44 52–87 Short 19.02 20.00 12037 14–36

Long 24.25 23.00 12036 14–62

CACNA1A SCA6 CACNA1A 4–18 20–33 Short 10.58 11.00 12027 4–14

Long 12.47 13.00 12027 4–22

ATXN7 SCA7 Ataxin-7 3–19 37–460 Short 10.05 10.00 11641 5–16

Long 10.82 10.00 11641 7–30

TBP SCA17 TBP 25–43 45–66 Short 36.34 37.00 11979 21–40

Long 37.88 38.00 11979 21–47

HTT HD Huntington 6–26 36–121 Short 16.91 17.00 12055 6–31

Long 20.18 19.00 12055 10–40

ATN1 DRPLA Atrophin-1 3–38 48–93 Short 12.36 14.00 12100 3–22

Long 15.53 15.00 12100 8–28

AR SMBA Androgen receptor 6–36 38–72 Short 21.13 21.00 11849 7–36

Long 22.83 23.00 11849 7–39

CACNA1A calcium channel, voltage-dependent P/Q type, α 1A subunit, TBP thymine–adenine–thymine–adenine
(TATA) box binding protein, SCA spinocerebellar ataxia, HD Huntington′s disease, DRPLA dentatorubropalli-
doluysian atrophy, SBMA spinal bulbar muscular atrophy
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performed in a TProfessional thermocycler (Biometra,
Westburg) with labelled primers flanking the CAG stretch
of the PDAGs (Biolegio) (Supplementary Table 4). The
PCR was performed using 10 ng of genomic DNA, 1×
OneTaq mastermix (New England Biolabs, OneTaq Hot
start with GC Buffer master mix), 1 µl of primer Mix A or B
(Supplementary Table 4) and Aqua B. Braun water to a final
volume of 10 µl. The PCR was run for 27 cycles of 30 s,
denaturation at 94 °C, 1 min of annealing at 60 °C and 2 min
elongation at 68 °C, preceded by 5 min of initial denatura-
tion at 94 °C. Final elongation was performed at 69 °C for 5
min. Every PCR included a negative control without
genomic DNA and a reference sample of CEPH 1347-02
genomic DNA. The PCR products were run on an ABI
3730 automatic DNA sequencer (Applied Biosystems) and
analyzed using the GeneMarker software version 2.4.0. For
every analysis, we included three controls with known CAG
repeat lengths for each PDAG to assure every run was
performed reliably. All assessments were performed by
randomizing study participants across batches while
researchers were blinded with respect to the clinical
information.

Statistical analysis

We initially assessed the relation between CAG repeat sizes
in the two alleles of each PDAG and BMI for each cohort
separately (Supplementary Tables 5 and 6). Next, to com-
bine the results of both cohorts reliably, we first constructed
parsimonious models for each cohort with the CAG repeat
lengths of both alleles of each PDAG as independent vari-
ables (Supplementary Tables 7 and 8). Subsequently, we
only combined the data for PDAG alleles whose effects on
BMI were directionally consistent. We applied a general-
ized linear mixed-effect model with BMI as the outcome
variable and the CAG repeat lengths of both alleles as fixed
effects. To assess potential interaction or non-linear effects
[12, 18], we also included a product term of both alleles and
a quadratic term for each allele. When the effect on BMI of
only one allele was consistent between the two cohorts, we
only included the quadratic term of that specific allele.
Cohort (i.e. NEO or PROSPER) and country (i.e. Scotland,
Ireland or the Netherlands) were set as random effects to
account for potential population stratification. Non-
significant higher order terms were removed from this ori-
ginal model and the analysis was repeated to arrive at a final
model. All final models were corrected for age, sex and
population structure using principle components generated
from genome-wide genotyping data [19, 20]. The NEO data
were weighed to the BMI distribution of the general
population (the weight factor given to PROSPER partici-
pants was set at 1). To reduce multicollinearity, all

continuous variables were centred around their respective
means. Furthermore, we calculated the marginal R2 per
PDAG for each model to determine the amount of variance
explained by each gene [21]. To account for potential
effects of heteroscedasticity and influential points, all sta-
tistical significance tests were based on robust estimators of
standard errors, and all CAG repeat lengths with a fre-
quency of less than ten were excluded. In addition, we
excluded related participants and participants with a non-
Caucasian ethnicity to increase homogeneity (Supplemen-
tary Tables 9–11). For the results of the combined cohort,
we applied a false discovery rate (FDR) correction to
account for multiple testing, assuming nine independent
tests with q set at 0.05 [22].

To illustrate the combined effect of the significant CAG
repeat size variations in PDAGs on BMI we (1) calculated
the residual BMI after regression on age and sex as fixed
factors and cohort and country as random factors in a linear
mixed-effects model, (2) performed linear regression with
CAG repeat sizes in the alleles of the PDAGs significantly
associated with BMI (including all interaction and non-
linear effects which were identified as significant in the
main analyses) as the independent variables and this resi-
dual BMI as the outcome, (3) divided the total cohort in
four equally sized groups based on quartiles of the predicted
values of this regression model, and (4) plotted the average
BMI residual for each of these quartiles. All data are dis-
played as means and 95% confidence intervals (CIs) unless
otherwise specified. All analyses were performed in
STATA/SE version 14.2 (StataCorp LLC).

Results

We were able to determine the CAG repeat length between
11,641 and 12,100 participants of both cohorts for each
gene (Table 1). The lacking samples were due to too little
available DNA and were missing completely at random.
Between 6.9 and 7.4% were subsequently excluded due to
CAG repeat lengths with a frequency of less than ten,
participants being related or of non-Caucasian ethnicity
(Supplementary Tables 9–11), leaving a total of
10,832–11,222 participants per gene for the analyses with
5485–5676 from the NEO cohort and 5276–5615 from the
PROSPER cohort.

In the NEO cohort, we found four PDAGs that were
significantly associated with BMI (including ATXN1,
ATXN2, ATXN3 and TBP) (Supplementary Table 5). Seven
PDAGs in the PROSPER cohort were significantly asso-
ciated with BMI (including ATXN1, ATXN2, ATXN3,
CACNA1A, ATXN7, TBP and HTT) (Supplementary
Table 6). Between the two cohorts, the effect on BMI of at
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least one allele was in the same direction for eight PDAGs
(Supplementary Table 7 and 8). The data of only these
directionally consistent alleles were combined. The effects
of both HTT alleles were not consistent and therefore not
combined (Table 2). After combining the data of the
directionally consistent alleles, we found a total of seven
PDAGs (including ATXN1, ATXN2, ATXN3, CACNA1A,
ATXN7, TBP and AR) to be significantly associated with
BMI (Table 2). For 5744 participants in the NEO and 5244
participants in the PROSPER cohorts, we obtained principle
components generated from genome-wide genotyping data
as described before [19, 20]. We corrected for age, sex and
population structure using these principle components. This
correction did not substantially alter our results (Supple-
mentary Table 12).

In the combined cohort, the longer alleles of ATXN1,
ATXN2 and CACNA1A were significantly associated with
BMI. The association between BMI and the longer alleles of

ATXN1 and CACNA1A was quadratic, implying that both
shorter and longer CAG repeat lengths were associated with
a lower or higher BMI, respectively (Fig. 1a, b). The longer
allele of ATXN2 was associated with BMI in a linear
fashion. Higher numbers of CAG repeats were associated
with a higher BMI (Fig. 1c). For ATXN3, the interaction
between the two alleles affected BMI (Table 2). Given that
the effect of CAG repeat size in the shorter and longer
ATXN3 allele on BMI was in opposite direction, we cal-
culated the difference in CAG repeat size between the
longer and shorter ATXN3 alleles and found this difference
to have a quadratic association with BMI (Fig. 1d). Fur-
thermore, the shorter alleles of both ATXN7 and TBP had a
quadratic association with BMI (Fig. 1e, f). Lastly, we
examined the effect on BMI of the CAG repeat size in the
X-linked AR gene, for which we (1) analyzed men and
women separately, and (2) investigated either the shorter or
the longer AR allele in men and women combined. In men,

Table 2 The association
between polyglutamine disease-
associated genes (PDAGs) and
body mass index (BMI) in the
combined cohort

Gene Variable β-Coefficienta SE t p-Value 95% CI R2

ATXN1 ATXN1_s −0.058 0.047 −1.24 0.214 −0.150 0.034 1.84×10–3

ATXN1_l 0.078 0.029 2.74 0.006 0.022 0.134

ATXN1_l2 −0.036 0.011 −3.26 0.001 −0.058 −0.015

ATXN2 ATXN2_s −0.068 0.063 −1.08 0.282 −0.191 0.056 0.55×10–3

ATXN2_l 0.081 0.024 3.35 0.001 0.034 0.129

ATXN3 ATXN3_s −0.039 0.011 −3.58 <0.001 −0.061 −0.018 2.56×10–3

ATXN3_l 0.048 0.018 2.73 0.006 0.014 0.082

ATXN3_l2 0.003 0.001 4.14 <0.001 0.002 0.004

ATXN3_sl −0.020 0.000 −76.09 <0.001 −0.021 −0.020

CACNA1A CACNA1A_s −0.007 0.013 −0.53 0.599 −0.033 0.019 0.31×10–3

CACNA1A_l −0.038 0.006 −5.99 <0.001 −0.050 −0.025

CACNA1A1_l2 0.010 0.005 2.24 0.025 0.001 0.019

ATXN7 ATXN7_s 0.122 0.013 9.14 <0.001 0.095 0.148 0.56×10–3

ATXN7_l −0.019 0.026 −0.73 0.466 −0.071 0.033

ATXN7_s2 0.057 0.008 7.14 <0.001 0.041 0.073

TBP TBP_s 0.011 0.001 10.87 <0.001 0.009 0.014 1.24×10–3

TBP_l −0.126 0.087 −1.46 0.145 −0.296 0.044

TBP_s2 −0.012 0.004 −3.17 0.002 −0.019 −0.005

ATN1 ATN1_s −0.008 0.011 −0.70 0.486 −0.030 0.014

ATN1_l 0.032 0.021 1.51 0.130 −0.009 0.073

AR ♂ AR −0.018 0.011 −1.68 0.093 −0.039 0.003 0.23×10–3

AR_2 −0.003 0.001 −5.00 <0.001 −0.003 −0.002

AR ♀ AR_s −0.054 0.028 −1.95 0.052 −0.109 0.000 1.41×10–3

AR_l 0.025 0.010 2.45 0.014 0.005 0.045

AR_l2 −0.012 0.006 −2.11 0.035 −0.024 −0.001

AR (long) AR_l −0.011 0.003 −3.41 0.001 −0.017 −0.005 0.05×10–3

aThis column indicates the amount of BMI change in kg/m2 per unit CAG repeat size increase

s relatively shorter allele, l relatively longer allele, s2 quadratic term relatively shorter allele, l2 quadratic
term relatively longer allele, sl interaction term relatively shorter and longer allele, BMI body mass index,
PDAGs polyglutamine disease-associated genes, SE standard error, CI confidence interval, AR♂ AR assessed
in males, AR♀ AR assessed in females, AR (long) the longer AR allele assessed in both males and females
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long CAG repeat lengths resulted in an exponential
decrease of BMI, whereas in women, the longer AR allele
had a quadratic association with BMI (Table 2). When

analyzing the AR gene in men and women combined, a
longer AR CAG repeat size in the longer allele was also
associated with lower BMI (Fig. 1g). To estimate the total
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percentage of variation in BMI explained by these seven
PDAGs, we calculated the marginal R2 for the final model
including all the alleles which were significantly associated
with BMI in the per gene analysis (Table 2). For AR, we
included only the longer allele. The seven PDAGs that were
significantly associated with BMI accounted for 0.75% of
its variation in the combined cohort. Additional analysis of
the combined effect showed that the difference in BMI
between the lowest and highest quartile of the prediction
score calculated based on the CAG repeat sizes in these
seven PDAGs was about 0.42 kg/m2 (corresponding to 1.29
kg for an individual 1.75 m in height) (Fig. 2).

Discussion

Metabolic disturbances occur in many neurodegenerative
diseases, including polyglutamine disorders [23]. Spino-
cerebellar ataxia type 3 (SCA3), one of the most prevalent
polyglutamine diseases worldwide, is frequently

complicated by unintended weight loss. The number of
CAG repeats in the longer ATXN3 allele was shown to have
an inverse association with BMI in SCA3 patients [24, 25].
We found that a larger difference between both ATXN3
alleles was associated with a lower BMI. These results are
consistent with the decreased BMI in SCA3 patients as the
longer ATXN3 allele needs to have a relatively large number
of CAG repeats in order for the difference with the shorter
allele to be large. Furthermore, amyotrophy has been
reported in SCA1 and SCA6 patients with SCA1 patients
displaying a higher resting state energy expenditure and fat
oxidation compared to age, sex and body composition
matched controls [26, 27]. Consistent with these char-
acteristics, the curvilinear association between BMI and the
CAG repeat number in the longer ATXN1 allele indicated
that larger CAG repeat numbers also led to a lower BMI.
The association between BMI and the CAG repeat length in
CACNA1A was not consistent with the reported SCA6
characteristics, suggesting that the relationship between
CACNA1A and BMI is different for the ‘healthy’ range
compared to the diseased range. Including the diseased
range in future research could provide additional insights
into the overall effect of CACNA1A on BMI. Together,
these results indicate that the effects of PDAGs on meta-
bolism are not confined to the pathological range and may
represent a homoeostatic property of the polyglutamine
domains of the encoded proteins in systemic energy reg-
ulation [28].

The other PDAGs have also been suggested to be
involved in the regulation of BMI and metabolism. For
instance, normal ranged AR CAG repeat sizes, which
determine androgen receptor sensitivity to testosterone,
have been associated with body fat mass and blood lipid
levels before [29, 30]. Recent research also implicates
ATXN2 in metabolic processes. ATXN2 knockout or trans-
genic mice display changes in body weight, insulin sensi-
tivity and fertility [31, 32]. Furthermore, an single
nucleotide polymorphism (SNP) located in the A2BP1 gene
which encodes the ataxin-2 binding protein 1 (also known
as FOX-1) was associated with percentage of total body fat
in Pima Indians [33], while an single nucleotide poly-
morphism in ATXN2L encoding ataxin-2-like protein, which
interacts with ataxin-2, has been related to BMI [5, 34].
Other obesity-related SNPs change the affinity of the
thymine–adenine–thymine–adenine (TATA) box-binding
protein (TBP) encoded by TBP for human gene pro-
moters, suggesting a possible pathophysiological mechan-
ism for obesity involving TBP [35].

Cognitive and behavioural changes are key characteristics
of polyglutamine disorders. However, little is known about
the extent to which repeat variations within the ‘healthy’
range result in similar deficits and whether these could cause
changes in BMI. In previous research, we found a significant

Fig. 2 The effect of CAG repeat size variations in polyglutamine
disease-associated genes (PDAGs) on body mass index (BMI). This
plot illustrates that in combination, CAG repeat size variations in only
seven PDAGs can account for a variation of up to ~0.42 kg/m2 in BMI.
Please refer to the Methods section for details on how the ‘Predicted
Score’ was constructed

Fig. 1 Scatterplots of the association between body mass index (BMI)
and polyglutamine disease-associated genes (PDAGs). Shorter and
longer CAG repeats lengths in the longer alleles of ATXN1 (a) and
CACNA1A (b) were associated with a lower and higher BMI,
respectively. c Larger CAG repeat numbers in longer allele of ATXN2
were associated with a higher BMI. d The difference in CAG repeat
number between the shorter and longer ATXN3 alleles had a quadratic
association with BMI. Larger and smaller differences between these
alleles were associated with a lower BMI. e Shorter and longer CAG
repeats in the shorter ATXN7 allele (e) and the shorter TBP allele (f)
were associated with a higher and lower BMI, respectively. g The
longer allele of AR had a quadratic association with BMI. Shorter and
longer CAG repeats were associated with a higher BMI. Beta-coeffi-
cient ± SE. CI confidence interval
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association between the risk of lifetime depression and the
CAG repeat numbers in ATXN7 and TBP [12]. The asso-
ciation between depression and obesity has been well
established and a meta-analysis of longitudinal studies
showed that obese individuals had a 55% increased risk of
depression and depressed individuals had a 58% increased
risk of becoming obese [36]. Interestingly, the association of
the CAG repeat number in the shorter ATXN7 allele with
BMI and depression was consistent with larger CAG repeat
numbers leading to both a higher risk of lifetime depression
and a higher BMI [12]. ATXN7 encodes ataxin-7 (ATXN7),
a member of the TATA-binding protein-free TAF complex
(TFTC) and the SPT3/TAF9/GCN5 acetyltransferase
(STAGA) complex. These complexes are coactivators
involved in the initiation of gene transcription via RNA
polymerase II [37]. Through modification of the transcrip-
tion of RNA polymerase II-dependent genes, ATXN7 repeat
variations could cause obesity resulting in depression via
metabolic pathways, such as inflammatory responses, dys-
regulation of the hypothalamic–pituitary–adrenal axis (HPA
axis) and alterations in the brain due to diabetes mellitus and
insulin resistance [38–49]. In addition, increased psycholo-
gical stress, body dissatisfaction, physical pain and a
decreased self-esteem due to obesity could also cause
depression [50–52]. Conversely, repeat polymorphisms in
ATXN7 could cause depression leading to obesity through
the adoption of an unhealthy lifestyle, including insufficient
physical exercise and unhealthy dietary preferences [53]. AR
CAG repeat variations have also been previously associated
with depression in men. Larger CAG repeat numbers in AR
lead to lower transcriptional effects of testosterone and were
associated with depressive symptoms [54–56]. Furthermore,
larger CAG repeat numbers in AR were associated with
lower test scores on three cognitive tests in older white men
and decreased effects of testosterone have been associated
with cognitive problems in rodents, such as decreased per-
formances in spatial learning, memory and inhibitory
avoidance tasks. Different studies have shown that working
memory and episodic memory are core cognitive processes
critical for food-related decision-making, and that disruption
of these processes contributes to problems with appetite
control and weight gain [57]. Therefore, high CAG repeat
numbers in AR and the resulting decreased transcriptional
effects of testosterone might lead to cognitive deficits that in
turn could result in changes in appetite control and BMI.

We recognize that our cohort size was relatively small
compared to the sample sizes usually included in GWAS.
However, the fact that we were able to find many tandem
repeat polymorphisms in the PDAGs significantly asso-
ciated with BMI implies that our study was sufficiently
powered to detect these effects. In addition, our sample size
allowed us to find relatively small effects similar to, for
instance, the effect of the type 2 diabetes-associated A allele

at rs9939609 linked to the FTO gene that was associated
with a median per-allele change of ~0.36 kg/m2 and
explained a variance in BMI of ~1%, or the effect of the C
allele at rs17782313 linked to the MC4R gene that was
associated with a difference in BMI of ~0.22 kg/m2 per
allele and explained ~0.14% of the variance in BMI [58,
59]. Although increasing the sample size might have
resulted in the detection of even more and even smaller
effects, we must affirm that determining the repeat numbers
in these genes was not a straightforward process, could not
be automated and was extremely laborious. This fact also
compelled us to focus on a set of predefined and promising
genes with repeat variations which are known to be (1)
related to changes in protein function, and (2) causative of
(brain) disorders which are accompanied by profound
metabolic disturbances. Nonetheless, many more interesting
tandem repeat polymorphisms exist in the human genome,
and future research is warranted to delineate the effects of
these other repeat polymorphisms on BMI [60]. Recently, a
method was described that could allow genome-wide
imputation of short tandem repeats (STRs) from SNP data
using a phased SNP/STR haplotype panel generated from
available whole-genome sequencing datasets [61]. How-
ever, these SNP/STR haplotypes have not been published
yet, but once these data become publicly available, this
panel could be used to test the association between
many STR variations and BMI within the myriad of existing
data.

To our knowledge, the association between normal ran-
ged CAG repeat polymorphisms in the nine PDAGs and
BMI was not assessed before and the SNPs previously
found associated with BMI were not located in or near the
investigated PDAGs [5]. Through linkage disequilibrium
(LD) analysis, several studies found haplotypes associated
with expanded or large ‘healthy’ ranged CAG repeat
numbers in ATXN1, CACNA1A, ATXN7 and AR [62–67].
However, these associated haplotypes differed substantially
per investigated population. In addition, the CAG repeat
sequence in PDAGs are directly translated in the respective
proteins and have important functional consequences [68].
Therefore, the CAG repeat sequence itself is likely to lead
to the variation in BMI. Although we cannot fully exclude
potential modifying effects of other genetic loci in linkage
disequilibrium with PDAGs, the fact that tagging SNPs in
or around PDAGs have not been related to BMI before
suggests that the influence of other genetic variants in
linkage disequilibrium with these triplet repeats is likely to
be minimal [5].

In summary, we found the CAG repeat size in seven
PDAGs to be significantly associated with BMI in two large
study populations accounting for 0.75% of the total varia-
tion. As PDAGs are known to be critically implicated in
processes which recently were identified through pathway
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analysis to be involved in obesity susceptibility, including
synaptic function and glutamate signalling, and can be
specifically targeted by promising therapeutics currently in
development for polyglutamine disorders, including gene
suppression strategies [69], our results open a novel ther-
apeutic avenue for obesity treatment. In conclusion, we
demonstrate the relevance of trinucleotide repeats as a new
class of genetic risk factors of obesity and provide further
evidence for the fundamental link between the brain and
metabolism.
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