Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Biology

Zinc alpha2 glycoprotein protects against obesity-induced hepatic steatosis

Abstract

Background/Aim

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, impaired insulin sensitivity, and chronic low-grade inflammation. Our previous studies indicated that zinc alpha2 glycoprotein (ZAG) alleviates palmitate (PA)-induced intracellular lipid accumulation in hepatocytes. This study is to further characterize the roles of ZAG on the development of hepatic steatosis, insulin resistance (IR), and inflammation.

Methods

ZAG protein levels in the livers of NAFLD patients, high-fat diet (HFD)-induced or genetically (ob/ob) induced obese mice, and in PA-treated hepatocytes were determined by western blotting. C57BL/6J mice injected with an adenovirus expressing ZAG were fed HFD for indicated time to induce hepatic steatosis, IR, and inflammation, and then biomedical, histological, and metabolic analyses were conducted to identify pathologic alterations in these mice. The molecular mechanisms underlying ZAG-regulated hepatic steatosis were further explored and verified in mice and hepatocytes.

Results

ZAG expression was decreased in NAFLD patient liver biopsy samples, obese mice livers, and PA-treated hepatocytes. Simultaneously, ZAG overexpression alleviated intracellular lipid accumulation via upregulating adiponectin and lipolytic genes (FXR, PPARα, etc.) while downregulating lipogenic genes (SREBP-1c, LXR, etc.) in obese mice as well as in cultured hepatocytes. ZAG improved insulin sensitivity and glucose tolerance via activation of IRS/AKT signaling. Moreover, ZAG significantly inhibited NF-ĸB/JNK signaling and thus resulting in suppression of obesity-associated inflammatory response in hepatocytes.

Conclusions

Our results revealed that ZAG could protect against NAFLD by ameliorating hepatic steatosis, IR, and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bzowej NH. Nonalcoholic steatohepatitis: the new frontier for liver transplantation. Curr Opin Organ Transplant. 2018. https://doi.org/10.1097/MOT.0000000000000502.

  2. Chen Z, Yu R, Xiong Y, Du F, Zhu S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis. 2017;16:203.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016;65:1062–79.

    Article  CAS  PubMed  Google Scholar 

  4. Adolph TE, Grander C, Grabherr F, Tilg H, Adipokines and non-alcoholic fatty liver disease: multiple interactions. Int J Mol Sci. 2017;18:E1649

    Article  PubMed  Google Scholar 

  5. Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016;8:101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burgi W, Schmid K. Preparation and properties of Zn-alpha 2-glycoprotein of normal human plasma. J Biol Chem. 1961;236:1066–74.

    CAS  PubMed  Google Scholar 

  7. Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci USA. 2004;101:2500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liao X, Wang X, Li H, Li L, Zhang G, Yang M, et al. Sodium-glucose cotransporter 2 (SGLT2) inhibitor increases circulating zinc-alpha2-glycoprotein levels in patients with type 2 diabetes. Sci Rep. 2016;6:32887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell ST, Tisdale MJ. Role of beta-adrenergic receptors in the anti-obesity and anti-diabetic effects of zinc-alpha2-glycoprotein (ZAG). Biochim Biophys Acta. 2012;1821:590–9.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, et al. Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun. 2018. https://doi.org/10.1016/j.bbrc.2018.01.039.

    Article  CAS  PubMed  Google Scholar 

  11. Balaz M, Vician M, Janakova Z, Kurdiova T, Surova M, Imrich R, et al. Subcutaneous adipose tissue zinc-alpha2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity (Silver Spring). 2014;22:1821–9.

    Article  CAS  Google Scholar 

  12. Gao D, Trayhurn P, Bing C. Macrophage-secreted factors inhibit ZAG expression and secretion by human adipocytes. Mol Cell Endocrinol. 2010;325:135–42.

    Article  CAS  PubMed  Google Scholar 

  13. Xiao X, Li H, Qi X, Wang Y, Xu C, Liu G, et al. Zinc alpha2 glycoprotein alleviates palmitic acid-induced intracellular lipid accumulation in hepatocytes. Mol Cell Endocrinol. 2017;439:155–64.

    Article  CAS  PubMed  Google Scholar 

  14. Fan G, Qiao Y, Gao S, Guo J, Zhao R, Yang X. Effects of zinc alpha2 glycoprotein on lipid metabolism of liver in high-fat diet-induced obese mice. Horm Metab Res. 2017;49:793–800.

    Article  CAS  PubMed  Google Scholar 

  15. Cang X, Wang X, Liu P, Wu X, Yan J, Chen J, et al. PINK1 alleviates palmitate induced insulin resistance in HepG2 cells by suppressing ROS mediated MAPK pathways. Biochem Biophys Res Commun. 2016;478:431–8.

    Article  CAS  PubMed  Google Scholar 

  16. Younossi ZM, Loomba R, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, et al. Current and future therapeutic regimens for non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Hepatology. 2017. https://doi.org/10.1002/hep.29724.

    Article  PubMed  Google Scholar 

  17. Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2017. https://doi.org/10.1007/s00535-017-1415-1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alves-Bezerra M, Cohen DE. Triglyceride metabolism in the liver. Compr Physiol. 2017;8:1–8.

    PubMed  PubMed Central  Google Scholar 

  19. Gan L, Xiang W, Xie B, Yu L. Molecular mechanisms of fatty liver in obesity. Front Med. 2015;9:275–87.

    Article  PubMed  Google Scholar 

  20. Montagner A, Polizzi A, Fouche E, Ducheix S, Lippi Y, Lasserre F, et al. Liver PPARalpha is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut. 2016;65:1202–14.

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther. 2017;179:142–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berlanga A, Guiu-Jurado E, Porras JA, Auguet T. Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol. 2014;7:221–39.

    PubMed  PubMed Central  Google Scholar 

  23. Chen Q, Wang T, Li J, Wang S, Qiu F, Yu H, et al. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients. 2017;9. pii: E96. https://doi.org/10.3390/nu9020096.

    Article  PubMed Central  Google Scholar 

  24. Xiong X, Wang X, Lu Y, Wang E, Zhang Z, Yang J, et al. Hepatic steatosis exacerbated by endoplasmic reticulum stress-mediated downregulation of FXR in aging mice. J Hepatol. 2014;60:847–54.

    Article  CAS  PubMed  Google Scholar 

  25. Cui CX, Deng JN, Yan L, Liu YY, Fan JY, Mu HN, et al. Silibinin capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. J Ethnopharmacol. 2017;208:24–35.

    Article  CAS  PubMed  Google Scholar 

  26. Zhan Z, Ren H, Peng ML. Role of CD36 in nonalcoholic fatty liver disease. Zhonghua Gan Zang Bing Za Zhi. 2017;25:953–6.

    CAS  PubMed  Google Scholar 

  27. Liu M, Liu F. Up- and down-regulation of adiponectin expression and multimerization: mechanisms and therapeutic implication. Biochimie. 2012;94:2126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17:779–89.

    Article  CAS  PubMed  Google Scholar 

  29. Elattar S, Dimri M, Satyanarayana A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J. 2018. https://doi.org/10.1096/fj.201701465RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dongiovanni P, Stender S, Pietrelli A, Mancina RM, Cespiati A, Petta S, et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med. 2017. https://doi.org/10.1111/joim.12719.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol. 2017;234:R1–21.

    Article  CAS  PubMed  Google Scholar 

  32. Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 2013;56:1129–39.

    Article  CAS  PubMed  Google Scholar 

  33. Samocha-Bonet D, Chisholm DJ, Tonks K, Campbell LV, Greenfield JR. Insulin-sensitive obesity in humans—a ‘favorable fat’ phenotype? Trends Endocrinol Metab. 2012;23:116–24.

    Article  CAS  PubMed  Google Scholar 

  34. Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220:T1–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhattacharyya S, Feferman L, Tobacman JK. Carrageenan inhibits insulin signaling through GRB10-mediated decrease in Tyr(P)-IRS1 and through inflammation-induced increase in Ser(P)307-IRS1. J Biol Chem. 2015;290:10764–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Geidl-Flueck B, Gerber PA. Insights into the hexose liver metabolism-glucose versus fructose. Nutrients. 2017;9. pii: E1026. https://doi.org/10.3390/nu9091026.

  37. Ke B, Zhao Z, Ye X, Gao Z, Manganiello V, Wu B, et al. Inactivation of NF-kappaB p65 (RelA) in liver improves insulin sensitivity and inhibits cAMP/PKA pathway. Diabetes. 2015;64:3355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qu C, Zhou X, Yang G, Li L, Liu H, Liang Z. The natural logarithm of zinc-alpha2-glycoprotein/HOMA-IR is a better predictor of insulin sensitivity than the product of triglycerides and glucose and the other lipid ratios. Cytokine. 2016;79:96–102.

    Article  CAS  PubMed  Google Scholar 

  39. Xiang M, Wang PX, Wang AB, Zhang XJ, Zhang Y, Zhang P, et al. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J Hepatol. 2016;64:1365–77.

    Article  CAS  PubMed  Google Scholar 

  40. Xie L, Wang PX, Zhang P, Zhang XJ, Zhao GN, Wang A, et al. DKK3 expression in hepatocytes defines susceptibility to liver steatosis and obesity. J Hepatol. 2016;65:113–24.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Wang T, Liu X, Wei X, Xu T, Yin M, et al. Neuronal zinc-alpha2-glycoprotein is decreased in temporal lobe epilepsy in patients and rats. Neuroscience. 2017;357:56–66.

    Article  CAS  PubMed  Google Scholar 

  42. Leal VO,Lobo JC,Stockler-Pinto MB,Farage NE,Abdalla DS,Leite M,Jr. et al. Is zinc-alpha2-glycoprotein a cardiovascular protective factor for patients undergoing hemodialysis? Clin Chim Acta. 2012;413:616–9.

    Article  CAS  PubMed  Google Scholar 

  43. Welters ID, Bing C, Ding C, Leuwer M, Hall AM. Circulating anti-inflammatory adipokines high molecular weight adiponectin and zinc-alpha2-glycoprotein (ZAG) are inhibited in early sepsis, but increase with clinical recovery: a pilot study. BMC Anesthesiol. 2014;14:124.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guo J, Liu Z, Sun H, Huang Y, Albrecht E, Zhao R. Lipopolysaccharide challenge significantly influences lipid metabolism and proteome of white adipose tissue in growing pigs. Lipids Health Dis. 2015;14:68.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gao L, Wang PX, Zhang Y, Yu CJ, Ji Y, Wang X, et al. Tumor necrosis factor receptor-associated factor 5 (Traf5) acts as an essential negative regulator of hepatic steatosis. J Hepatol. 2016;65:125–36.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu LH, Wang A, Luo P, Wang X, Jiang DS, Deng W, et al. Mindin/Spondin 2 inhibits hepatic steatosis, insulin resistance, and obesity via interaction with peroxisome proliferator-activated receptor alpha in mice. J Hepatol. 2014;60:1046–54.

    Article  CAS  PubMed  Google Scholar 

  47. An S, Zhao LP, Shen LJ, Wang S, Zhang K, Qi Y, et al. USP18 protects against hepatic steatosis and insulin resistance through its deubiquitinating activity. Hepatology. 2017;66:1866–84.

    Article  CAS  PubMed  Google Scholar 

  48. Liu M, Zhu H, Dai Y, Pan H, Li N, Wang L, et al. Zinc-alpha2-glycoprotein is associated with obesity in Chinese people and HFD-induced obese mice. Front Physiol. 2018;9:62.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eckardt K, Schober A, Platzbecker B, Mracek T, Bing C, Trayhurn P, et al. The adipokine zinc-alpha2-glycoprotein activates AMP kinase in human primary skeletal muscle cells. Arch Physiol Biochem. 2011;117:88–93.

    Article  CAS  PubMed  Google Scholar 

  50. Sanders PM, Tisdale MJ. Effect of zinc-alpha2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue. Cancer Lett. 2004;212:71–81.

    Article  CAS  PubMed  Google Scholar 

  51. Herweijer H, Wolff JA. Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther. 2007;14:99–107.

    Article  CAS  PubMed  Google Scholar 

  52. Siddiqui WH, Buttar HS. Pharmacokinetics of triclosan in rat after intravenous and intravaginal administration. J Environ Pathol Toxicol. 1979;2:861–71.

    CAS  PubMed  Google Scholar 

  53. Lei L, Li K, Li L, Fang X, Zhou T, Zhang C, et al. Circulating zinc-α2-glycoprotein levels are low in newly diagnosed patients with metabolic syndrome and correlate with adiponectin. Nutr Metab (Lond). 2017;14:53.

    Article  Google Scholar 

  54. Tian M, Liang Z, Liu R, Li K, Tan X, Luo Y, et al. Effects of sitagliptin on circulating zinc-α2-glycoprotein levels in newly diagnosed type 2 diabetes patients: a randomized trial. Eur J Endocrinol. 2016;174:147–55.

    Article  CAS  PubMed  Google Scholar 

  55. Xu L, Yu W, Niu M, Zheng C, Qu B, Li Y, et al. Serum ZAG levels were associated with eGFR mild decrease in T2DM patients with diabetic nephropathy. Int J Endocrinol. 2017;2017:5372625.

    PubMed  PubMed Central  Google Scholar 

  56. Lai Y, Chen J, Li L, Yin J, He J, Yang M, et al. Circulating zinc-α2-glycoprotein levels and insulin resistance in polycystic ovary syndrome. Sci Rep. 2016;6:25934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the National Natural Science Foundation of China (81270925 and 81070667), Major Scientific Research Projects of Hunan Health and Family Planning Commission (A2017011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Hua Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, XH., Wang, YD., Qi, XY. et al. Zinc alpha2 glycoprotein protects against obesity-induced hepatic steatosis. Int J Obes 42, 1418–1430 (2018). https://doi.org/10.1038/s41366-018-0151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0151-9

This article is cited by

Search

Quick links